
Teaching 
Computing 

Science 
t the ACM Computer Science Conference last 

February, Edsger Dijkstra gave an invited talk A called “On the Cruelty of Really Teaching 
Computing Science.” He challenged some of 

the basic assumptions on which our curricula 
are based and provoked a lot of discussion. The edi- 
tors of Comwunications received several recommenda- 
tions to publish his talk in these pages. His comments 
brought into the foreground some of the background 
of controversy that surrounds the issue of what be- 
longs in the core of a computer science curriculum. 

To give full airing to the controversy, we invited 
Dijkstra to engage in a debate with selected col- 
leagues, each of whom would contribute a short 
critique of his position, with Dijkstra himself making 
a closing statement. He graciously accepted this offer. 

We invited people from a variety of specialties, 
backgrounds, and interpretations to provide their 
comments. David Parnas is a noted software engineer 
who was outspoken in his criticism of the proposed 

Strategic Defense Initiative. William Scherlis is 
known for his articulate advocacy of formal methods 
in computer science. M. H. van Emden is known for 
his contributions in programming languages and 
philosophical insights into science. Jacques Cohen 
is known for his work with programming languages 
and logic programming and is a member of the Edi- 
torial Panel of this magazine. Richard Hamming 
received the Turing Award in 1968 and is well known 
for his work in communications and coding theory. 
Richard M. Karp received the Turing Award in 1985 
and is known for his contributions in the design of 
algorithms. Terry Winograd is well known for his 
early work in artificial intelligence and recent work 
in the principles of design. 

I am grateful to these people for participating in 
this debate and to Professor Dijkstra for creating the 
opening. 

Peter J Denning 
Editor-in-Chief 

December 1989 Volume 32 Number 12 Communications of the ACM 1397 

This is a debate, including a full paper by Dijsktra plus comments by others on it.
 Edsger W. Dijkstra (1989) "On the Cruelty of Really Teaching Computing Science" 
Comm. ACM, Vol.32, no.12 pp.1398-1404 
https://doi.org/10.1145/76380.76381



Debate 

Edsger W. Dijkstra was born in 1930 in Rotterdam, The 
Netherlands, where he lived until 1948. He studied mathe- 
matics and theoratical physics at the University of Leiden, 
frlom which he gr,aduated in 1958. During that period, in 
S’eptember 1951. he was introduced to programming in 
Cambridge, England, and in March, 1952, he was appointed 
to the Mathematical Centre as The Netherlands’ first profes- 
sional programmer. In 1959 he earned his Ph.D. in Comput- 
ing Science from the University of Amsterdam. In 1962 
he was appointed Full Professor of Mathematics at the 
Eindhoven University of Technology. In 1973, while retaining 
links with the University, he became Research Fellow of the 
Blurroughs Corporation, a position he enjoyed until 1984, 
when he receivecl the Schlumberger Centennial Chair in 
Computer Sciences at the University of Texas at Austin. 

Dijkstra, recipient of the 1972 ACM Turing Award, is 
known for early graph-theoretical algorithms, the first imple- 
mentation of ALGOL. 60, and the first operating system com- 
posed of explicitly synchronized sequential processes. He is 
also credited with the invention of guarded commands and of 
predicate transformers as a means for defining semantics, 
and programming methodology in the broadest sense of the 
term. 

His current interests focus on the formal derivation of pro- 
grams and the streamlining of the mathematical argument. 
His publications represent only a minor fraction of his writ- 
ings-he writes, in fact, so much that he cannot afford the 
use of time-saving devices such as word processors. He 
owns, however, several fountain pens, three of which are 
Mont Blancs, for which he mixes his own ink. 

ON THE CRUELTY OF REALLY TEACIHING COMPUTING SCIENCE 

T he underlying assumption of this talk is that com- 
puters represent a rad.ical novelty in our history. The 
first part of this talk will make much more precise what 
we m’ean in this context by the adjective “radical” and 
will then supply ample evidence in support of our as- 
sumption. The second half pursues some of the scien- 
tific and educational consequences of the radical nov- 
elty the computers embody. 

The usual way in which we plan today for tomorrow 
is in yesterday’s vocabulary. We do so because we try 
to get away with the use of concepts that we are famil- 
iar with and that have acquired their meanings in our 
past experience. Of course, the words and the concepts 
do not quite fit because our future differs from our past, 
but then we stretch them a little bit. It is the most 
common way of trying to cope with novelty. Linguists 
are quite familiar with the phenomenon that the mean- 
ings of words evolve over time, but also know that this 
is a slow and gradual process. 

By means of metaphors and analogies, we try to link 
the new to the old, the novel to the familiar. Under 
sufficiently slow and gradual change, it works reasona- 
bly wmell; in the case of a sharp discontinuity, however, 
the method breaks down. Though we may glorify it 

with the name “common sense,” our past experience is 
no longer relevant; the analogies become too shallow; 
and, the metaphors become more misleading 1:han illu- 
minating. This is the situation that is characteristic of 
the “radical” novelty. 

Coping with radical novelty requires an orthogonal 
method. One must consider one’s own past, the experi- 
ences collected, and the habits formed in it as an unfor- 
tunate accident of history, and one has to approach the 
radical novelty with a blank mind, consciously refusing 
to try to link history with what is already familiar, 
because the familiar is hopelessly inadequate. One has, 
with initially a kind of split personality, to come to 
grips with a radical novelty as a dissociated topic in its 
own right. Coming to grips with a radical novelty 
amounts to creating and learning a new foreign lan- 
guage that cannot be translated into one’s own mother 
tongue. (Anyone who has learned quantum mechanics 
knows what I am talking about.) Needless to say, ad- 
justing to radical novelties is not a very popular activity 
for it requires hard work. For the same reason, the 
radical novelties, themselves, are unwelcome. 

By now, you may well ask why I have paid so much 
attention to and have spent so much eloquence on such 

1398 Communications of the ACM December 1989 Volume 32 Number 12 



Debate 

a simple and obvious notion as the radical novelty. My 
reason is very simple: radical novelties are so disturb- 
ing that they tend to be suppressed or ignored to the 
extent that even the possibility of their existence, in 
general, is more often denied than admitted. 

On the historical evidence I shall be short. Carl 
Friedrich Gauss, the Prince of Mathematicians but also 
somewhat of a coward, was certainly aware of the fate 
of Galileo-and could probably have predicted the 
calumniation of Einstein-when he decided to suppress 
Galileo’s discovery of non-Euclidean geometry, thus 
leaving it to Bolyai and Lobatchewsky to receive the 
flak. 

It is probably more illuminating to go a little bit fur- 
ther back: to the Middle Ages. One of its characteristics 
was that “reasoning by analogy” was rampant; another 
characteristic was almost total intellectual stagnation, 
and we now see why the two go together. A reason for 
mentioning this is to point out that by developing a 
keen ear for unwarranted analogies, one can detect a 
lot of medieval thinking today. 

The other thing I cannot stress enough is that the 
fraction of the population for which gradual change 
seems to be all but the only paradigm of history is very 
large, probably much larger than one would expect. 
Certainly, when I started to observe it, their number 
turned out to be much larger than I had expected. 

For instance, the vast majority of the mathematical 
community has never challenged its tacit assumption 
that doing mathematics will remain very much the 
same type of mental activity it has always been. New 
topics will come, flourish, and go as they have done in 
the past, but with the human brain being what it is, our 
ways of teaching, learning, and understanding mathe- 
matics, of problem solving, and of mathematical discov- 
ery will remain pretty much the same. Herbert Robbins 
clearly states why he rules out a quantum leap in 
mathematical ability: 

“Nobody is going to run 100 meters in five seconds, 
no matter how much is invested in training and ma- 
chines. The same can be said about using the brain. 
The human mind is no different now from what it 
was five thousand years ago. And when it comes to 
mathematics, you must realize that this is the hu- 
man mind at an extreme limit of its capacity.” 

My comment in the margin was “so reduce the use of 
the brain and calculate!” Using Robbins’s own analogy, 
one could remark that for going from A to B fast, there 
could now exist alternatives to running that are orders 
of magnitude more effective. Robbins flatly refuses to 
honor any alternative to time-honored brain usage with 
the name of “doing mathematics,” thus, exorcizing the 
danger of radical novelty by the simple device of ad- 
justing his definitions to his needs. Simply, by defini- 
tion, mathematics will continue to be what it used to 
be. Enough said about the mathematicians. 

Let me give you just one more example of the wide- 
spread disbelief in the existence of radical novelties 

and, hence, in the need to learn how to cope with 
them. It is the prevailing educational practice for which 
gradual, almost imperceptible, change seems to be the 
exclusive paradigm. How many educational texts are 
not recommended for their appeal to the student’s intu- 
ition! They constantly try to present everything that 
could be an exciting novelty as something as familiar as 
possible. They consciously try to link the new material 
to what is supposed to be the student’s familiar world. 

It already starts with the teaching of arithmetic. In- 
stead of teaching z + 3 = 5, the hideous arithmetic 
operator “plus” is carefully disguised by calling it 
“and,” and the little kids are given lots of familiar ex- 
ample, first, with clearly visible objects such as apples 
and pears, which are in, in contrast to equally counta- 
ble objects such as percentages and electrons, which 
are out. The same, silly tradition is reflected at the 
university level in different introductory calculus 
courses for the future physicist, architect, or business 
major, each course adorned with examples from the 
respective fields. The educational dogma seems to be 
that everything is fine as long as the student does not 
notice that he is learning something really new; more 
often than not, the student’s impression is indeed 
correct. 

I consider the failure of an educational practice to 
prepare the next generation for the phenomenon of 
radical novelties a serious shortcoming. (When King 
Ferdinand visited the conservative University of 
Cervera, the Rector proudly reassured the monarch 
with the words: “Far be from us, Sire, the dangerous 
novelty of thinking.” Spain’s problems in the century 
that followed justify my characterization of the short- 
coming as “serious.“) This was to show the extent to 
which education has adopted the paradigm of gradual 
change. 

The concept of radical novelties is of contemporary 
significance because, while we are ill-prepared to cope 
with them, science and technology have now shown 
themselves expert at inflicting them upon us. Earlier 
scientific examples are the theory of relativity and 
quantum mechanics; later technological examples are 
the atom bomb and the pill. For decades, the former 
two gave rise to a torrent of religious, philosophical, or, 
otherwise, quasi-scientific tracts. We can daily observe 
the profound inadequacy with which the latter two are 
approached, be it by our statesmen and religious lead- 
ers or by the public at large. This illustrates the damage 
done to our peace of mind by radical novelties. 

I raised all this because of my contention that auto- 
matic computers represent a radical novelty, and that 
only by identifying them as such can we identify all the 
nonsense, the misconception, and the mythology that 
surround them. Closer inspection will reveal that it is 
even worse, viz., that automatic computers embody not 
only one radical novelty but two of them. 

The first radical novelty is a direct consequence of 
the raw power of today’s computing equipment. We all 
know how we cope with something big and complex: 
divide and rule, i.e., we view the whole as a composi- 

December 1989 Volume 32 Number 12 Communications of the ACM 1399 



Debate 

turn osf parts and deal with the parts separately. And if 
a part is too big, we repeat the procedure. The town is 
made up from neighborhoods that are structured by 
street.s, that contain buildings, that are made from walls 
and floors, that are built from bricks, etc., eventually 
down to the elementary particles. And we have all our 
specia.lists along the line, from the town planner via the 
architect to the solid state physicist, and further. Be- 
cause! in a sense, the whole is “bigger” than its parts, 
the depth of a hierarc:hical decomposition is some sort 
of logarithm of the ratio of the “sizes” of the whole and 
the ultimate smallest :parts. From a bit to a few 
hundred megabytes, from a microsecond to half an 
hour of computing, it confronts us with the completely 
baffling ratio of log! 

The programmer is in the unique position that his is 
the only discipline ,and profession in which such a gi- 
gantic ratio, which totally baffles our imagination, has 
to be bridged by a single technology. He has to be able 
to think in terms of conceptual hierarchies that are 
much deeper than a single mind ever needed to face 
before. Compared to that number of semantic levels, 
the average mathematical theory is almost flat. By 
evoking the need for deep conceptual hierarchies, the 
automatic computer confronts us with a radically 
new intellectual challenge that has no precedent in 
our history. 

Aga:in, I have to stress this radical novelty because 
the true believer in gradual change and incremental 
improvements is unable to see it. For him, an automatic 
computer is something like the familiar cash register, 
only somewhat bigger, faster, and more flexible. But 
the analogy is ridiculously shallow. It is orders of mag- 
nitude worse than comparing, as a means of transporta- 
tion, the supersonic jet plane with a crawling baby, for 
that speed ratio is only a thousand. 

The second radical novelty is that the automatic 
compu.ter is our first large-scale digital device. We had 
a few with a noticeable discrete component. I just men- 
tioned the cash register and can add the typewriter, 
with its individual keys. With a single stroke you can 
type either a Q or a W but, though their keys are next 
to each other, not a mixture of those two letters. But 
such mechanisms are the exception, and the vast ma- 
jority of our mechanisms are viewed as analogue de- 
vices whose behavior is, over a large range, a continu- 
ous function of all parameters involved. If we press the 
point of the pencil a little bit harder, we get a slightly 
thicker line; if the violinist slightly misplaces his finger, 
he plays slightly out of tune. To this I should add that, 
to the extent that we view ourselves as mechanisms, 
we view ourselves, primarily, as analogue devices. If 
we push a little harder we expect to do a little better. 
Very often, the behavior is not only a continuous but 
even a monotonic function. To test whether a hammer 
suits us over a certain range of nails, we try it out on 
the smallest and largest nails of the range, and if the 
outcomes of those two experiments are positive, we are 
perfectly willing to believe that the hammer will suit 
us for all nails in between. 

Communications of the ACM 

It is possible, and even tempting, to view a program 
as an abstract mechanism, as a device of some sort. To 
do so, however, is highly dangerous. The analogy is too 
shallow because a program is, as a mechanism, totally 
different from all the familiar analogue devices we 
grew up with. Like all digitally encoded info:rmation, it 
has, unavoidably, the uncomfortable property that the 
smallest possible perturbations-i.e., changes of a single 
bit-can have the most drastic consequences,. (For the 
sake of completeness, I add that the picture is not es- 
sentially changed by the introduction of redundancy or 
error correction.) In the discrete world of computing, 
there is no meaningful metric in which “small” changes 
and “small” effects go hand in hand, and there never 
will be. 

This second radical novelty shares the usual fate of 
all radical novelties: it is denied because its truth 
would be too discomforting. It is hard to estimate the 
damage done by this denial, but with million. program- 
mers in the world, a cost of millions of dollars per day 
seems a very modest guess. 

Having described-admittedly in the broadest possi- 
ble terms-the nature of computing’s novelties, I shall 
now provide the evidence that these novelties are, in- 
deed, radical. I shall do so by explaining a number of 
otherwise strange phenomena as frantic-but, as we 
now know, doomed-efforts at hiding or denying the 
frighteningly unfamiliar. 

A number of these phenomena have been bundled 
under the name “Software Engineering.” As ec.onomics 
is known as “The Miserable Science,” software engi- 
neering should be known as “The Doomed Discipline”: 
doomed because it cannot even approach its goal since 
its goal is self-contradictory. Software engineering, of 
course, presents itself as another worthy cause, but that 
is eyewash. If you carefully read its literature and ana- 
lyze what its devotees actually do, you will d.L:cover 
that software engineering has accepted as its c:harter, 
“How to program if you cannot.” 

The popularity of its name is enough to ma.ke it sus- 
pect. In what we denote as “primitive societies,” the 
superstition that knowing someone’s true name gives 
you magic power over him is not unusual. We are 
hardly less primitive. Why do we persist here in an- 
swering the telephone with the most unhelpful “hello” 
instead of our name? Nor are we above the equally 
primitive superstition that we can gain some control 
over some unknown, malicious demon by cal.ling it by 
a safe, familiar, and innocent name, such as “engineer- 
ing.” But it is totally symbolic, as one of the [J.S. com- 
puter manufacturers proved a few years ago when it 
hired, one night, hundreds of new “software Iengineers” 
via the simple device of elevating all its programmers to 
that exalted rank. So much for that term. 

The practice is pervaded by the reassuring illusion 
that programs are just devices like any others, the only 
difference admitted being that their manufacture might 
require a new type of craftsmen, viz., programmers. 
From there, it is only a small step to measuring 
“programmer productivity” in terms of “number of lines 

December 1989 Volume 32 .Vumber 12 



Debate 

of code produced per month.” This is a very costly 
measuring unit because it encourages the writing of 
insipid code, but, today, I am less interested in how 
foolish a unit it is from even a pure business point of 
view. My point, today, is that if we wish to count lines 
of code, we should not regard them as “lines produced” 
but as “lines spent.” The current conventional wisdom 
is so foolish as to book that count on the wrong side of 
the ledger. 

Besides the notion of productivity, quality control 
continues to be distorted by the reassuring illusion that 
what works with other devices works with programs as 
well. It is now two decades since it was pointed out 
that program testing may convincingly demonstrate the 
presence of bugs but can never demonstrate their ab- 
sence. After quoting this well-publicized remark de- 
voutly, the software engineer returns to the order of the 
day and continues to refine his testing strategies, just 
like the alchemist of yore who continued to refine his 
chrysocosmic purifications. 

Unfathomed misunderstanding is further revealed by 
the term “software maintenance,” of which many peo- 
ple continue to believe that programs-and even pro- 
gramming languages themselves-are subject to wear 
and tear. Your car needs maintenance too, does it not? 
Famous is the story of the oil company that believed 
that its Pascal programs did not last as long as its 
Fortran programs “because Pascal was not main- 
tained.” 

In the same vein, I must draw attention to the aston- 
ishing readiness with which the suggestion has been 
accepted that the pains of software production are 
largely due to a lack of appropriate “programming 
tools.” (The telling “programmer’s workbench” was 
soon to follow.) Again, the shallowness of the underly- 
ing analogy is worthy of the Middle Ages. Confronta- 
tions with insipid “tools” of the “algorithm-animation” 
variety has not mellowed my judgement; on the con- 
trary, it has confirmed my initial suspicion that we are 
primarily dealing with yet another dimension of the 
snake-oil business. 

Finally, to correct the possible impression that the 
inability to face radical novelty is confined to the in- 
dustrial world, let me offer you an explanation of the 
continuing popularity of artificial intelligence. You 
would expect people to feel threatened by the “giant 
brains or machines that think.” In fact, the frightening 
computer becomes less frightening if it is used only to 
simulate a familiar noncomputer. I am sure that this 
explanation will remain controversial for quite some 
time for artificial intelligence, as a mimicking of the 
human mind, prefers to view itself as being at the front 
line, whereas my explanation relegates it to the rear- 
guard. (The effort of using machines to mimic the hu- 
man mind has always struck me as rather silly. I would 
rather use them to mimic something better.) 

So much for the evidence that the computer’s novel- 
ties are, indeed, radical. 

And now comes the second-and hardest-part of 
my talk: the scientific and educational consequences of 

the above. The educational consequences are, of 
course, the hairier ones, so let us postpone their discus- 
sion and stay for a while with computing science itself. 
What is computing? And what is a science of comput- 
ing about? 

Well, when all is said and done, the only thing com- 
puters can do for us is to manipulate symbols and pro- 
duce results of such manipulations. From our previous 
observations, we should recall that this is a discrete 
world and, moreover, that both the number of symbols 
involved and the amount of manipulation performed is 
many orders of magnitude larger than we can envisage. 
They totally baffle our imagination, and we must, 
therefore, not try to imagine them. But before a com- 
puter is ready to perform a class of meaningful manipu- 
lations-or calculations, if you prefer-we must write a 
program. 

By evoking the need for deep conceptual hier- 
archies, the automatic computer confronts us 
with a radically new intellectual challenge that 
has no precedent in our history. 

What is a program? Several answers are possible. 
We can view the program as what turns the general- 
purpose computer into a special-purpose symbol ma- 
nipulator, and it does so without the need to change a 
single wire. (This was an enormous improvement over 
machines with problem-dependent wiring panels.) I 
prefer to describe it the other way round. The program 
is an abstract symbol manipulator which can be turned 
into a concrete one by supplying a computer to it. After 
all, it is no longer the purpose of programs to instruct 
our machines; these days, it is the purpose of machines 
to execute our programs. 

So, we have to design abstract symbol manipulators. 
We all know what they look like. They look like pro- 
grams or-to use somewhat more general terminol- 
ogy-usually rather elaborate formulae from some for- 
mal system. It really helps to view a program as a 
formula. First, it puts the programmer’s task in the 
proper perspective: he has to derive that formula. Sec- 
ond, it explains why the world of mathematics all but 
ignored the programming challenge: programs were so 
much longer formulae than it was used to that it did 
not even recognize them as such. Now back to the 
programmer’s job. He has to derive that formula; he has 
to derive that program. We know of only one reliable 
way of doing that, viz., by means of symbol manipula- 
tion. And now the circle is closed. We construct our 
mechanical symbol manipulators by means of human 
symbol manipulation. 

Hence, computing science is-and will always be- 
concerned with the interplay between mechanized and 
human symbol manipulation usually referred to as 
“computing” and “programming,” respectively. An im- 

December 1989 Volume 32 Number 12 Communications of the ACM 1401 



Debate 

medi.ate benefit of this insight is that it reveals “auto- 
matic programming” as a contradiction in terms. A fur- 
ther benefit is that it gives us a clear indication where 
to locate computing science on the world map of intel- 
lectual disciplines: in the direction of formal mathemat- 
ics and applied logic, but, ultimately, far beyond where 
those are now for computing science is interested in 
effective use of formal methods and on a much, much 
larger scale than we have witnessed so far. Because, 
these days, no computing endeavor is respectable with- 
out an acronym, I propose that we adopt for computing 
science VLSAL (Very Large Scale Application of Logic), 
and, to be on the safe side, we had better follow the 
shining examples of our leaders and make a trademark 
of it. 

In the long run, I expect computing science to tran- 
scend its parent disciplines, mathematics and logic, by 
effectively realizing a significant part of Leibniz’s 
Dream of providing symbolic calculation as an alterna- 
tive IO human reasoning. (Please note the difference 
between “mimicking” and “providing an alternative to.” 
Alternatives are allowed to be better.) 

Needless to say, this vision of what computing sci- 
ence is about is not umiversally applauded. On the con- 
trary, it has met widespread-and sometimes even vio- 
lent--opposition from all sorts of directions. I mention 
as examples 

0. 

1. 

2. 

3. 

4. 

5. 

6. 

the mathematical guild, which would rather con- 
tinue to believe that the Dream of Leibniz is an un- 
realistic illusion 
the business co:mmunity, which, having been sold 
the idea that computers would make life easier, is 
mentally unprepared to accept that they only solve 
the easier problems at the price of creating much 
harder ones 
the subculture of the compulsive programmer, 
wbose ethics prescribe that one silly idea and a 
month of frantic coding should suffice to make him a 
life-long millionaire 
computer engineering, which would rather continue 
to act as if it is all only a matter of higher bit rates 
and more flops pe.r second 
the military, which is now totally absorbed in the 
business of using computers to mutate billion-dollar 
budgets into the illusion of automatic safety 
all soft sciences for which computing now acts as 
some sort of interdisciplinary haven 
the educational business that feels that if it has to 
teach formal math.ematics to CS students, it may as 
well close its schools. 

And, with this last example, I have reached, imper- 
ceptibly but alas unavoidably, the most hairy part of 
this talk: educational consequences. 

The problem with educational policy is that it is 
hard1.y influenced by scientific considerations derived 
from the topics taught and is almost entirely deter- 
mined by extra-scientific circumstances such as the 
combined expectations of the students, their parents, 
and their future employers, and the prevailing view of 

1402 Communications of the ACM 

the role of the university is the stress on training its 
graduates for today’s entry-level jobs or on providing its 
alumni with the intellectual baggage and attitudes that 
will last them another fifty years? Do we grudgingly 
grant the abstract sciences only a far-away corner on 
campus, or do we recognize them as the indispensable 
motor of the high-technology industry? Even if we do 
the latter, do we recognize a high-technology industry 
as such if its technology primarily belongs tO formal 
mathematics? Do the universities provide for society 
the intellectual leadership it needs or only the training 
it asks for? 

Traditional academic rhetoric is perfectly willing to 
give to these questions the reassuring answers, but I do 
not believe them. By way of illustration of my doubts, 
in a recent article on “Who Rules Canada?,” David H. 
Flaherty bluntly states: 

“Moreover, the business elite dismisses traditional 
academics and intellectuals as largely irrelevant and 
powerless.” 

So, if I look into my foggy crystal ball at the future of 
computing science education, I overwhelmingly see the 
depressing picture of “business as usual.” The universi- 
ties will continue to lack the courage to teach hard 
science; they will continue to misguide the students, 
and each next stage of infantilization of the curriculum 
will be hailed as educational progress. 

I now have had my foggy crystal ball for quite a long 
time. Its predictions are invariably gloomy and usually 
correct. However, I am quite used to that, and they will 
not keep me from giving you a few suggesti’ons, even if 
it is merely an exercise in futility whose only effect is 
to make you feel guilty. 

We could, for instance, begin with cleaning up our 
language by no longer calling a bug “a bug” but by 
calling it an error. It is much more honest because it 
squarely puts the blame where it belongs, viz., with the 
programmer who made the error. The anim.istic meta- 
phor of the bug that maliciously sneaked in while the 
programmer was not looking is intellectually dishonest 
as it is a disguise that the error is the programmer’s 
own creation. The nice thing of this simple change of 
vocabulary is that it has such a profound effect. While, 
before, a program with only one bug used to be “almost 
correct,” afterwards a program with an error is just 
“wrong” (because in error). 

My next linguistical suggestion is more rigorous. It is 
to fight the “if-this-guy-wants-to-talk-to-that-guy” syn- 
drome. Never refer to parts of programs or pieces of 
equipment in an anthropomorphic terminal.ogy, nor al- 
low your students to do so. This linguistical improve- 
ment is much harder to implement than you might 
think, and your department might consider the intro- 
duction of fines for violations, say a quarter for under- 
graduates, two quarters for graduate students, and five 
dollars for faculty members; by the end of the first 
semester of the new regime, you will have collected 
enough money for two scholarships. 

The reason for this last suggestion is that the anthro- 

December 1989 Volume 32 Number 12 



pomorphic metaphor-for whose introduction we can 
blame John von Neumann-is an enormous handicap 
for every computing community that has adopted it. I 
have now encountered programs wanting things, know- 
ing things, expecting things, believing things, etc., and 
each time that gave rise to avoidable confusions. The 
analogy that underlies this personification is so shallow 
that it is not only misleading but also paralyzing. 

It is misleading in the sense that it suggests that we 
can adequately cope with the unfamiliar discrete in 
terms of the familiar continuous, i.e., ourselves, quod 
non. It is paralyzing in the sense that because persons 
exist and act in time, its adoption effectively prevents a 
departure from operational semantics and, thus, forces 
people to think about programs in terms of computa- 
tional behaviors, based on an underlying computational 
model. This is bad because operational reasoning is a 
tremendous waste of mental effort. 

When all is said and done, the only thing com- 
puters can do for us is to manipulate symbols 
and produce results of such manipulations. 

Let me explain to you the nature of that tremendous 
waste, and allow me to try to convince you that the 
term “tremendous waste of mental effort” is not an ex- 
aggeration. For a short while I shall get highly techni- 
cal, but do not get frightened. It is the type of mathe- 
matics that one can do with one’s hands in one’s 
pockets. The point to get across is that if we have to 
demonstrate something about all the elements of a large 
set, it is hopelessly inefficient to deal with all the ele- 
ments of the set individually. The efficient argument 
does not refer to individual elements at all and is car- 
ried out in terms of the set’s definition. 

Consider the plane figure Q, defined as the 8 by 8 
square from which, at two opposite corners, two 1 by 1 
squares have been removed. The area of Q is 62, which 
equals the combined area of 31 dominos of 1 by 2. 
The theorem is that the figure Q cannot be covered 
by 31 such dominos. 

Another way of stating the theorem is that if you 
start with squared paper and begin covering this by 
placing each next domino on two new adjacent 
squares, no placement of 31 dominos will yield the 
figure Q. 

So, a possible way of proving the theorem is by gen- 
erating all possible placements of dominos and verify- 
ing for each placement that it does not yield the figure 
Q: a tremendously laborious job. 

The simple argument, however, is as follows. Color 
the squares of the squared paper as on a chess board. 
Each domino, covering two adjacent squares, covers 
1 white and 1 black square, and, hence, each place- 
ment covers as many white squares as it covers black 
squares. In the figure Q, however, the number of white 
squares and the number of black squares differ by 2- 
opposite corners lying on the same diagonal-and, 

hence, no placement of dominos yields figure Q. 
Not only is the above simple argument many orders 

of magnitude shorter than the exhaustive investigation 
of the possible placements of 31 dominos, it is also es- 
sentially more powerful for it covers the generalization 
of Q by replacing the original 8 by 8 square with any 
rectangle with sides of even length. The number of 
such rectangles being infinite, the former method of 
exhaustive exploration is essentially inadequate for 
proving our generalized theorem. 

And this concludes my example. It has been pre- 
sented because it illustrates, in a nutshell, the power of 
down-to-earth mathematics; needless to say, refusal to 
exploit this power of down-to-earth mathematics 
amounts to intellectual and technological suicide. The 
moral of the story is: deal with all elements of a set by 
ignoring them and working with the set’s definition. 

Back to programming, the statement that a given pro- 
gram meets a certain specification amounts to a state- 
ment about all computations that could take place un- 
der control of that given program. And since this set of 
computations is defined by the given program, our re- 
cent moral says: deal with all computations possible 
under control of a given program by ignoring them and 
working with the program. We must learn to work with 
program texts while (temporarily) ignoring that they 
admit the interpretation of executable code. 

Another way of saying the same thing is the follow- 
ing one. A programming language, with its formal syn- 
tax and with the proof rules that define its semantics, is 
a formal system for which program execution provides 
only a model. It is well-known that formal systems 
should be dealt with in their own right and not in 
terms of a specific model. And, again, the corollary is 
that we should reason about programs without even 
mentioning their possible “behaviors.” 

And this concludes my technical excursion into the 
reason why operational reasoning about programming 
is “a tremendous waste of mental effort” and why, 
therefore, in computing science the anthropomorphic 
metaphor should be banned. Not everybody under- 
stands this sufficiently well. 

I was recently exposed to a demonstration of what 
was pretended to be educational software for an intro- 
ductory programming course. With its “visualizations” 
on the screen, it was such an obvious case of curricu- 
lum infantilization that its author should be cited for 
“contempt of the student body,” but this was only a 
minor offense compared with what the visualizations 
were used for. They were used to display all sorts of 
features of computations evolving under control of the 
student’s program! The system highlighted precisely 
what the student has to learn to ignore; it reinforced 
precisely what the student has to unlearn. Since break- 
ing out of bad habits, rather than acquiring new ones, is 
the toughest part of learning, we must expect from that 

December 1989 Volume 32 Number 12 Communications of the ACM 1403 



Debate 

system permanent mental damage for most students ex- 
posed to it. 

Needless to say, that system completely hid the fact 
that, all by itself, a program is no more than half a 
conjecture. The other half of the conjecture is the func- 
tional. specification the program is supposed to satisfy. 
The programmer’s task is to present such complete con- 
jectures as proven theorems. 

Before we part, I would like to invite you to consider 
the following way of doing justice to computing’s radi- 
cal novelty in an introductory programming course. 

On the one hand, we teach what looks like the predi- 
cate calculus, hut we do it very differently from the 
philosophers. In order to train the novice programmer 
in the manipulation of uninterpreted formulae, we 
teach it more as boolean algebra, familiarizing the 
student with all alg,ebraic properties of the logical 
connectives. To further sever the links to intuition, we 
rename the values (true, false) of the boolean domain 
as (black, white). 

On the other hand, we teach a simple, clean, impera- 
tive programming language, with a skip and a multiple 
assignment as basic statements, with a block structure 
for local variables, the semicolon as operator for state- 
ment composition, a nice alternative construct, a nice 
repetition, and, if so desired, a procedure call. To this, 
we add a minimum of data types, say booleans, inte- 
gers, characters, and strings. The essential thing is that 
for whatever we inlroduce, the corresponding seman- 
tics ar’e defined by i.he proof rules that go with it. 

If I look into my fo#ggy crystal ball at the future 
of computing science education, I overwkelm- 
ingl:y see the depmsing picture of “business 
as mual .‘I 

Right from the beginning and all through the course, 
we stress that the programmer’s task is not just to write 
down a program, but that his main task is to give a 
formal proof that the program he proposes meets the 
equally formal functional specification. While designing 
proofs and programs; hand in hand, the student gets 
ample opportunity to perfect his manipulative agility 
with the predicate calculus. Finally, in order to drive 
home the message that this introductory programming 
course is primarily a course in formal mathematics, we 
see to it that the programming language in question has 
nof been implemented on campus so that students are 
protected from the temptation to test their programs. 
And this concludes the sketch of my proposal for an 
introductory programming course for freshmen. 

This is a serious proposal and utterly sensible. Its 
only disadvantage is that it is too radical for many, 

who, being unable to accept it, are forced to invent a 
quick reason for dismissing it, no matter how invalid. 
I will give you a few quick reasons. 

You do not need to take my proposal seriously be- 
cause it is so ridiculous that I am obviously cc’mpletely 
out of touch with the real world. But that ki-te will not 
fly for I know the real world only too well. The prob- 
lems of the real world are primarily those you are left 
with when you refuse to apply their effective solutions. 
So, let us try again. 

You do not need to take my proposal seriously be- 
cause it is utterly unrealistic to try to teach such mate- 
rial to college freshmen. Would not that be an easy way 
out? You just postulate that this would be far too diffi- 
cult. But that kite will not fly either for the postulate 
has been proven wrong. Since the early 80s, such an 
introductory programming course has succes.sfully been 
given to hundreds of college freshmen each year. (Be- 
cause, in my experience, saying this once does not suf- 
fice, the previous sentence should be repeated at least 
another two times.) So, let us try again. 

Reluctantly admitting that it could, perhaps, be 
taught to sufficiently docile students, yet you reject my 
proposal because such a course would deviate so much 
from what 18-year-old students are used to and expect 
that inflicting it upon them would he an act of educa- 
tional irresponsibility. It would only frustrate the stu- 
dents. Needless to say, that kite will not fly either. It is 
true that the student that has never manipulated unin- 
terpreted formulae quickly realizes that he is con- 
fronted with something totally unlike anything he has 
ever seen before. But fortunately, the rules of manipu- 
lation are, in this case, so few and simple that very 
soon, thereafter, he makes the exciting discovery that 
he is beginning to master the use of a tool that, in all its 
simplicity, gives him a power that far surpasses his 
wildest dreams. 

Teaching to unsuspecting youngsters the effective use 
of formal methods is one of the joys of life because it is 
so extremely rewarding. Within a few months: they 
find their way in a new world with a justified degree of 
confidence that is radically novel for them; within a 
few months, their concept of intellectual cuhure has 
acquired a radically novel dimension. To my taste and 
style that is what education is about. Universities 
should not be afraid of teaching radical novelties; on 
the contrary, it is their calling to welcome the opportu- 
nity to do so. Their willingness to do so is ou:r main 
safeguard against dictatorships, be they of the lproletar- 
iat, of the scientific establishment, or of the corporate 
elite. 

Edsger W. Dijkstra 
Dept. of Computer Sciences 
The University of Texas 
Austin, TX 78712-1188 

1404 Communications of the ACA4 December 1989 Volume 32 Number 12 



Debate 

Colleagues Respond to Dijkstra’s Comments 

There is much in Dijkstra’s statement with which I can 
agree. Since agreement results in dull commentary, I 
shall focus on his vigorous dismissal of the term “soft- 
ware engineering” and his denunciation of software 
testing. 

Most introductory engineering texts define an engi- 
neer as one who uses science and mathematics to pro- 
duce useful products. That definition clearly allows 
programmers to be considered engineers, but profes- 
sional societies and/or government licensing agencies 
add educational requirements and may require an ex- 
amination before one is permitted to use the title 
“Professional Engineer.” In fact, there is much better 
control of the word “engineer” than of the word “math- 
ematician.” Just as some physicists claim to be mathe- 
maticians, other people use the word “engineer” quite 
loosely. The fact that some people write poor papers 
and textbooks under the title “software engineering” 
does not justify abandonment of the hope that, some 
day, programs will be produced by properly educated 
professional engineers. 

Those with training in mathematics or one of the 
physical sciences often have the impression that engi- 
neering involves the use of sloppy, heuristic methods 
and undefined notations. Nothing could be further from 
the truth! Good engineering programs emphasize the 
use of formal methods in exactly the way suggested by 
Dijkstra. 

My own engineering education included more 
courses in the Mathematics Department (taken side-by- 
side with mathematics students) than courses offered 
by the Electrical Engineering Department. Further, 
each of the engineering courses emphasised the use of 
mathematical methods for design and design verifica- 
tion. In exams and homework, we were often deliber- 
ately given the opportunity to apply formulae in situa- 
tions where they were not applicable; in this way, we 
were taught to appreciate the importance of under- 
standing the derivation of all equations and being cer- 
tain that the assumptions made in the derivation were 
valid for the case at hand. We were taught to under- 
stand mathematics, its development, and its use in 
solving engineering problems. Great emphasis was 
placed on the use of mathematics to define precisely 
what we were trying to achieve with a particular de- 
sign and its further use to confirm that our design met 
those requirements. 

Our engineering instructors repeatedly showed us 
the folly of using anthropomorphic analogies. No engi- 
neer talks about “how much the electrons want to get 
to the other side of a capacitor.” Instead, he uses math- 
ematical models to determine the intensity of field at 
all points between the capacitor’s plates, to look for 
points of maximum field intensity, etc. 

Those who graduated from such programs were sol- 
idly grounded in the use of formal methods. They 

would wonder why comments such as Dijkstra’s need 
to be made. They need to be made because the major- 
ity of those in our profession do not have the benefit of 
an engineering education. 

I am just as critical of much of the work done at 
software engineering institutes and presented at soft- 
ware engineering conferences as Dijkstra. Most of US 
who use the term “software engineering” do so, not 
because we think that programming is currently an en- 
gineering profession, but because we think it should 
become one. The ability to use formal methods to de- 
rive and validate designs is one of the essential charac- 
teristics of an engineer. However, an engineering edu- 
cation also teaches students to understand the limits of 
mathematical methods. We were taught methods of 
dealing with problems where exact mathematical 
models were intractable. More important, we were 
taught the importance of testing to (a) provide a check 
on our mathematical analysis and (b) verify that our 
mathematical model was an adequate model of the ac- 
tual devices with which we worked. Anyone can err 
when using mathematics, and it is not uncommon to 
find that devices have characteristics that were not re- 
flected in our mathematical models. 

The situation is no different in software engineering. 
Errors in formal proofs are not uncommon. Further, the 
computers and programs that we must use may not 
have the characteristics implied by the mathematical 
axioms that we use. Testing can reveal both of those 
problems. While careful review can reveal mathemati- 
cal errors, only testing can reveal the failure of a com- 
ponent, software or hardware, to conform to a mathe- 
matical model. 

It is certainly true that, in most practical circum- 
stances, testing cannot show the absence of errors; 
however, properly designed statistical testing can pro- 
vide information about the probability of an error re- 
maining in the code or the probability of a failure oc- 
curring in use. In the imperfect world in which we live 
such data can be very important. 

There is no engineering profession in which testing 
and mathematical validation are viewed as alternatives. 
It is universally accepted that they are complementary 
and that both are required. 

Dijkstra states that the “computer confronts us with a 
radical new intellectual challenge that has no prece- 
dent in our history.” He bases this on two factors: (1) 
the sensitivity of program behavior to minor changes 
and (2) the drastic increase in the “size” of the prob- 
lems. The first of these is not confined to digital tech- 
nologies and it may be possible, in time, to overcome 
the second. The sensitivity to minor changes can also 
be present in older technologies where resonance can 
lead to very steep gradients when frequency is varied. 
Such resonances can cause unexpected structural col- 
lapse or component “burnout.” Dijkstra has led the way 

December 1989 Volume 32 Number 12 Communications of the ACM 1405 



Debate 

in showing us how to master drastic increase in com- 
plexity by application of a divide-and-conquer ap- 
proach. That approach has been used with great suc- 
cess in other engin.eering disciplines. 

Those who are participating in a major upheaval in 
society rarely have the perspective to judge its histori- 
cal importance. Only the passage of time will reveal 
whet her we need a radical new way of thinking or just 
a return to the more careful and disciplined approaches 
used by good engineers in the past. 

David L. Pumas 
Queen’s University 
Kingston, Ontario 
K71 3N6 Canada 

Dijkstra recommends two principal actions concerning 
computer science education which are (1) that impera- 
tive and anthropomorphic thinking be eschewed by all 
programmers and (2) 1 hat formal methods, specifically 
those based on imperative programming languages with 
semantics grounded in first-order predicate logic, be the 
basis for introductory programming courses. To moti- 
vate these recommendations, he makes several 
observations about the nature of computing and soft- 
ware which I summarize roughly as follows: 

1. computing is a “radical novelty” due to the immense 
scaling range it encompasses and due to its discon- 
tinuous nature; radical novelties, like great trage- 
die.s, tend to be denied. 

2. software engineering as a worthy cause is eyewash, 
and the very notion of a “programming tool” is cor- 
rupt. 

3. computer science concerns the interplay of symbol 
ma:nipulation activity by human and by machine. 

The extensive and forceful arguments Dijkstra makes 
in support of these findings are very interesting and 
bear examination. I was surprised that after developing 
these arguments, the overall thrust of Dijkstra’s conclu- 
sion was so benign: 

If we are to have a high level of confidence in the 
software systems we develop, then formal methods 
will have a central role in their development, and 
our teaching of programming should support this 
view from the start. 

While I agree with the overall thrust of Dijkstra’s 
conclu:sion, I do not fully concur with the particulars of 
Dijkstra’s recommendation. There are, of course, nits to 
pick. For example, if scaling is one of the two “radical 
novelties” in computing, why propose teaching the use 
of a programming language that does not provide the 
principal linguistic means for scaling up-namely, com- 
posite data types, date abstraction mechanisms, and 
other means to explicitly represent system interfaces 
and abstraction boundaries. Edinburgh ML demon- 
strates how very simple these language structures can 
be. Also, if operational thinking is to be eschewed, why 
insist on an imperative programming language? 

More significantly, I am troubled by the suggestion of 
the first recommendation that certain mode:: aof think- 
ing be avoided in problem solving. A successful prob- 
lem solver will have a broad array of means at hand to 
tackle problems (many of which are enumerated by 
Polya in his books) together with the maturity to make 
choices of which means are appropriate to circum- 
stances. For the programmer, one of the means avail- 
able is the use of informal operational intuition. Of 
course, this does not excuse failures to think. intension- 
ally when appropriate (as in the case of the cbecker- 
board example, which, indeed, is often used in AI 

If we are to have a high level of confidence in 
the software systems we develop, then fbrmal 
methods will have a central role in their devel- 
opment, and our teaching of programming 
should support this view from the start. 

courses, too, for the same purpose). It also does not 
excuse failure to come to grips with under1yin.g compu- 
tational models, as in parallel systems. Even visualiza- 
tion has a role-mathematicians make use of visualiza- 
tion, for example, in the illustration of solutions for 
fluid flow equations. 

But, let us set aside Dijkstra’s recommendations for 
the moment and consider his motivating observations, 
an analysis of which suggests to me that bolder recom- 
mendations are called for. 

Concerning the first observation: I agree with Dijkstra 
that, while large scaling ranges and discontinuous be- 
havior do exist in other human-engineered systems, 
few have the uniformity of structure over a broad range 
of scale that exists in computing technology. I do take 
exception, however, to Dijkstra’s implication that soft- 
ware systems are unremittingly discontinuous and 
should be managed as such. While this staternent is 
obviously true in principle, designers of large s,ystems 
(such as a workstation application environment) delib- 
erately seek a kind of continuity property at -the higher 
levels of scale. The idea is to lower risks for both cus- 
tomers and developers by making it possible to obtain 
incremental improvments in capability for incremental 
investments. This amounts to a notion of “coarse conti- 
nuity,” which has been well approximated in many 
clever software engineering designs (such as UNIX and 
GNU Emacs). Of course, the appearance of continuity at 
one level of abstraction may, in fact, be obtai:ned only 
through gross redesign of a subcomponent. There is, 
nonetheless, a kind of continuity at the higher level 
of abstraction. “Software maintenance” is, thus, the 
(attempted) incremental adaptation of large systems in 
response to small changes in requirements folr which 
this “coarse continuity” property holds. 

Concerning Dijkstra’s second observation: most large 
software problems involve complexity and detail that 
exceeds the capacity of one person to develop solutions. 

1406 Communications of the ACM December 1989 Volume 32 Number 12 



Debate 

In these cases, major decisions must be made under 
circumstances where all the details cannot be pre- 
sented to all parties involved since there are too many 
details. The numbers of people involved and the lack of 
perfect knowledge create the software engineering 
challenges of estimation of costs and risks, the imple- 
mentation of procedures to enable management of the 
process, the development of automation to assist, the 
need to design systems that can be readily adapted, and 
so on. Basic automation support can include object 
management, version and configuration management, 
process and administrative support, and consistency 
support for both formal and informal documentation. 
These needs are real, even if many products are indeed 
“snake oil.” 

Concerning the third observation: one of the greatest 
difficulties in software development is formalization- 
capturing in symbolic representation a worldly compu- 
tational problem so that the statements obtained by fol- 
lowing rules of symbol manipulation are useful state- 
ments once translated back into the language of the 
world. The formalization problem is the essence of re- 
quirements engineering, an area left largely untouched 
in Dijkstra’s position statement. Concerning symbol 
manipulation, at the level both of specific problem do- 
mains and of programming itself, it is important to have 
fluidity in shifting various aspects of the symbol manip- 
ulation task between humans and machine and to have 
linguistic means to organize large problems to facilitate 
this. 

More can be said about Dijkstra’s observations and 
the arguments supporting them, but the above remarks 
are enough, I believe, to suggest a set of conclusions 
concerning formal methods that more effectively ad- 
dresses Dijkstra’s observations, particularly concerning 
the “radical novelties” of scaling and non-continuity. 

My first conclusion is that we should distinguish the 
necessary qualities of the result of the programming 
process from the means by which the results are ob- 
tained. The software practitioner should be able to 
bring all intellectual and mechanical tools to bear on 
devising a software system as long as certain con- 
straints concerning the structure and presentation of 
the result are satisfied. The “theorem” Dijkstra refers to 
is, thus, really part of a larger result, which is more 
likely a documentation record that links together im- 
plementation, specification, design and interface deci- 
sions, informal rationale, and formal proof, all in their 
several versions and configurations. The intent is that 
this documentation-record supports adaptation, reuse 
(of appropriate assets), and analysis by capturing infor- 
mation ordinarily lost (or, worse, never present) during 
conventional software development, including the 
means, formal and informal, by which confidence is 
raised concerning consistency of specification and 
implementation. 

The second conclusion is that an appropriate means 
must be found to incorporate formal-methods tech- 
niques into software engineering practice and tools in 
order to provide a “scalable” approach to applying for- 

mal methods to larger systems. Specifications and docu- 
mentation can involve formal and informal compo- 
nents. Formal methods can, thus, be used to establish 
certain key properties while informal (and less reliable) 
means are used to increase confidence with respect to 
other system properties. The effect is of proving small 
theorems about large systems rather than large theo- 
rems about (inevitably) small systems. This “scalable” 
approach has the advantage of drastically moderating 
adoption risks for software managers. 

The final conclusion concerns education. In many 
curricula, as Dijkstra has noted, we are already teach- 
ing formal methods at the earliest levels. My experi- 
ence is that the principal difficulties in teaching formal 
methods do not have to do with symbol manipulation 
skills, but rather, with formalization issues-represent- 
ing symbolically and providing structure for actual 
computational problems from the world-and with 
metatheoretic issues-understanding, from example, 
what sorts of assurance can be provided by proofs in a 
given formal deductive system. It is even more chal- 
lenging to create an appreciation for the extent of the 
scaling range of computing (as Dijkstra has noted) along 
with techniques for addressing scaling problems, 
particularly abstraction mechanisms for programs 
and specifications. 

W.L. Scherlis 
Carnegie Mellon University 
Dept. of Computer Science 
Pittsburgh, PA 15213-3890 
scherlis@vax.darpa.mil 

I agree that the proposed program derivation course is 
more valuable than the other courses in a typical com- 
puter science curriculum. In the following, I explain 
that such a course should not be taught purely as exer- 
cises in symbol manipulation and that the ability to 
derive a program from a formal derivation only solves a 
minor part of the problems we are having with soft- 
ware. 

People who know neither programming nor mathe- 
matics (i.e., almost everyone) take for granted that pro- 
gramming is like mathematics. Yet, it turns out that 
English majors are as likely to be as successful at pro- 
gramming as mathematics graduates are. In practice, 
the worlds of mathematics and programming are just 
about disjoint. Dijkstra argues that this should not be 
the case, that mathematics is a formal game of symbol 
manipulation and that programming should become 
one. I must confess that the role of symbol manipula- 
tion in mathematics has me thoroughly confused. 

On the one hand, it is clear that symbolism is ex- 
tremely powerful in a positive way. To see that, try to 
do something simple, say long division, in English. The 
most powerful, single experience I had in my university 
education was getting a grip on ghostly things like grav- 
itational or electromagnetic fields with formulas using 
div, grad, curl, and, possibly, other operators long for- 
gotten. 

December 1989 Volume 32 Number 12 Communications of the ACM 1407 



Debate 

On the other hand, what makes all this so appealing 
is that there is an :intuition behind it. Axiomatization 
and formalization, by themselves, do not make a theory 
into mathematics; they only mark its maturity. To be 
mathematics, the theory has to be significant, to appeal 
to the intuition. The experts do not agree: one mathe- 
matician may denounce another’s paper as empty for- 
malbm, devoid of mathematical content. This sounds 
fuzzy, and it is. 

Hilbert is famous for viewing mathematics as a game 
with symbols, devoid of meaning. What he must have 
meant (and probably also said) is that the meaning is 
irrelevant to the validity of a formal argument. But to 
make the formal game worth playing, it better have 
meaning. Even games have meaning, at least the ones, 
like chess, that get played. It is easy to make up a 
system that formally is a two-person game. It is hard to 
make it such that people will want to play it. Successful 
games have a meanin.g to their players. 

Wh.y am I saying all this? I think the course described 
by Dijkstra, where students derive programs from logic 
specifications into an unimplemented language, is a 
great idea. However, it will only work if the symbols 
manilpulated have meaning for the players. And I do 
not see where that meaning can come from other than 
having messed around with programs that run or fail 
to. But, perhaps that should be another, earlier course 
so that the program derivation course can be kept pure. 

I agree with Dijkstra that great improvements can be 
made by using a formal specification and by proving 
that the program conforms to it. Should such proofs be 
formal, i.e., valid deductions in a sound formal system? 
I suggest not to wait till this is technically possible for 
interesting programs. The analogy with mathematics is 
valid: theorems worth believing are not believed be- 
cause of formal proofs which probably do not even 
exist. Because this is the current state of affairs, it does 
not follow that things will always be this way. It may 
be that the enterprise started with Automath ultimately 
continues to success. If so, formal derivations of inter- 
esting programs will also be possible. In this way, pro- 
gramming may become like mathematics, even though 
it is different from both programming and from mathe- 
matics in their present form. 

Suppose we reach the stage of always formally speci- 
fying our programs and proving them correct. Then we 
will only have eliminated the minor part of the prob- 
lems we are having with software. The big problem is 
that it is hard to say precisely what we want. It is hard 
to do so in C; it is not as hard to do so in predicate 
calctdus, but it is still hard. 

The reason why it is so hard to say what we want is 
that we do not really know what we want (at least not 
in a complex system, which is where the problems are). 
One way of discovering what we want is to draw up a 
formal specification, derive a program conforming to it, 
and run it. Often, we will discover that the specifica- 
tion is wrong, or, rather, we discover that we want 
something different than what we thought we did. I 
would like to teach that also to the students. I would 

also like to teach students that it is necessary to run the 
programs, not to debug the programs, but to debug the 
specifications. But, perhaps, that should be another, 
later course so that the program derivation course can 
be kept pure. 

M. H. van Emden 
Dept. of Computer Science 
University of Victoria 
Victoria, B.C. 
V8W 2Y2 Canada 

The early papers of Dijkstra are gems polished by the 
hand of an expert lapidary. I first became ac:quainted 
with his work in the early 1960s. He had then pub- 
lished a paper on a stack machine model for the inter- 
pretation of Algol 60: a landmark in the desjgn and 
implementation of block-structured languages. Follow- 
ing that work, there were two major contributions by 
Dijkstra which appeared in Communications. A short ar- 
ticle (“Go-To’s Considered Harmful”) gave us ample 
food for thought about writing readable progr,ams. The 
third, a concise article on synchronization of parallel 
processes, introduced the concept of semaphores and 
paved the way for the current work on programming 
parallel computers. 

These early articles and papers have made an im- 
plicit revolution in computer science. The statement 
appearing in this issue explicitly advocates a revolution 
and, in my view, presents a somber, often sarcastic 
view of our field; it offers disappointingly few construc- 
tive suggestions. 

First, let me attempt to summarize Dijkstra’s state- 
ment to bring out its true purpose (without i-he embel- 
lishments and inconsistencies of the author). ‘The scien- 
tific community is unprepared to understand the “radi- 
cal novelty” brought up by computers because of (1) the 
sheer speed of these machines and their vast range of 
computing and storing power and (2) the fact’that they 
are digital, which implies that a minuscule change in a 
program may elicit the most unexpected of responses. 
Remedy: (1) teach the new generation of scientists one 
way of dealing with this problem and (2) choose the 
simplest (imperative) language and use logic (predicate 
calculus) to ascertain that a program really works for 
all its intended data. Dijkstra presented this message in 
detail in the book A Discipline of Programmin,g which 
provides convincing arguments for this approach. 

My initial comments about the statement have to do 
with inconsistencies. For example, economics is re- 
ferred to as “the miserable science”; yet, the author 
proceeds to guess the enormous daily econolmic costs of 
introducing redundancy or error correction into com- 
puter hardware and software. In another instance, he 
claims that the problems that computer scient.ists have 
to face make the application of “the average mathemat- 
ical theory [look] almost flat.” Yet, he later ar:gues in 
favor of “the power of down-to-earth mathematics.” 

Unfortunately, the tone of the statement is uniformly 

1408 Commwkations of the ACM December 1989 Volume 321 Number 12 



Debate 

negative. The quotations include a view from one math- 
ematician about the limitations of the brain, a remark 
by the rector of a university reassuring the King of 
Spain of its faculty’s conservativeness, the statement of 
a technocrat from an oil company comparing the vir- 
tues of Fortran and Pascal, and so forth. These quota- 
tions may render the statement colorful, but they do 
not provide evidence for its message. It is hard to imag- 
ine that these specific views are espoused by a major- 
ity. The same holds true when all practitioners of artifi- 
cial intelligence and software engineering are lumped 
together as evil groups. There is no doubt in my mind 
that there is high-quality work being done in these 
areas! Hackers are also unfairly treated in Dijkstra’s 
statement. In my view, we owe them a great deal for 
their creativity and for the interesting new paths they 
have suggested. 

Dijkstra feels that analogue models (i.e., those with 
gradual changes) are inadequate to cope with the exist- 
ence of digital machinery. In a way, he wishes that the 
scientific community and society would react digitally 
(i.e., by step functions) to face the problems posed by 
digital machines. As I see it, gradual changes are inher- 
ent to human nature and human societies, and even 
the revolutions we have had in history actually took 
place at a relatively gradual pace, the definition of 
“gradual” being necessarily vague (e.g., consider the 
current views about the French revolution.) Dijkstra’s 
statement also conveys the message that the dictum “to 
err is human” is hardly acceptable. 

The example on covering a given chessboard with 
dominos and the arguments used by Dijkstra in favor of 
simple proofs instead of exhaustive searches are to be 
taken with a grain of salt. There are many instances in 
which such searches are unavoidable and constitute 
the only hope of finding solutions to interesting prob- 
lems. For example, the proof of the four-color conjec- 
ture using a large search space is definitely a valid 
approach, even if some mathematicians may yearn for a 
simpler proof (just in case it exists). 

I agree with Dijkstra that computer programs should 
be considered as symbolic formulas. What is not yet 
established and is constantly evolving is the kind of 
formulas (i.e., the level of languages) which will allow 
us to perform convenient manipulations, minimize the 
possibilities of errors, and yield efficient code. As com- 
puters become more powerful, it is likely that very- 
high-level languages will play an important role in ex- 
pressing programs as increasingly more concise formu- 
las. This situation parallels the one which occurred 30 
years ago when the first programming languages re- 
placed assembly languages. After all, as believers in 
computer science, we should be among the first to ex- 
ploit the advantages of computers. 

This response gives me an opportunity to express my 
own views as an educator in computer science. Our 
goal should be to provide not one but several ap- 
proaches in teaching our students how to reason about 
programs. Dijkstra’s approach is one of them. Among 
the others are the functional and logic programming 

paradigms. They all share a common denominator: urge 
the student to have a healthy respect for the craft of 
programming. By offering a menu of approaches, the 
students will be better prepared to face whatever “radi- 
cal novelties” may appear in the future. I also feel that 
learning the foundations for writing sound programs 
ought to be fun and there should be a genuine sense of 
accomplishment when a student actually runs a pro- 
gram, finds unexpected errors, and corrects them. This, 
of course, requires inspired, broad-minded teachers; 
forming them is a problem for any field of endeavor, 
not only computer science. 

To summarize: on one hand, it is distressing to see 
the lack of realistic constructiveness in a statement by 
a pioneer in our field; on the other hand, the airing of 
the issues stemming from Dijkstra’s statement should 
make computer science a better, more mature disci- 
pline. 

Jacques Cohen 
Zayre/Feldberg Professor 

Department of Computer Science 
Ford Hall 
Brandeis University 
Waltham. h4A 02254 

Perhaps it is best to begin by recalling that long ago 
Dijkstra led a crusade for the total abolition of the 
GOT0 instruction. Currently, it is widely believed that 
the GOT0 instruction is used much too often but that it 
also has its place in programming. The present state- 
ment by Dijkstra is another example of Moses laying 
down the law to us sinners in programming. As before 
it is both very right and very wrong. 

Unfortunately, in his statement, there is much 
“sound and fury” and non sequiturs, the extensive use 
of color words, a gratuitous swipe at the military, and, 
often, little content beyond his assertions; you can de- 
tect the extent of this if you try to rewrite his state- 
ment, as I did, in simple language and clear reasoning. 

Just as in the GOT0 article, there is much truth in 
this statement. I agree wholeheartedly that we should 
replace the word “bug” with the word “error” and sup- 
press all anthropomorphic words as being misleading to 
the beginners. 

The major trouble is, I think, that Dijkstra believes 
that programming should resemble mathematics and 
believes that mathematics is what one is taught 1 la 
Euclid. One first lays down postulates, makes a few 
appropriate definitions, states theorems, and then 
proves them-after all, that is how mathematics is typi- 
cally taught. He refuses to recognize that often the pos- 
tulates follow from the theorems, as do many of the 
definitions, and often the theorems follow from the 
proofs we are able to generate-they are then called 
“proof driven theorems.” Furthermore, Dijkstra, in his 
sober moments, well knows that human proofs in 
mathematics are unreliable, that many famous proofs 
have been repeatedly “patched up” by subsequent gen- 

December 1989 Volume 32 Number 12 Communications of the ACM 1409 



Debate 

erations; hence, even if we tried to use his idea that 
programs should be “proved” by humans before they 
are run, the proofs alre fallible, and, in any case, are 
merely paper problems run on a paper machine. It is 
this that I believe is behind much of the statement. 

One of Dijkstra’s major points is that the rapid 
growth of computers represents a unique change of 
mag,nitude so large that no one can comprehend it; but 
largfe changes are more common than he thinks, for 
example, the bandwidth available for signalling. The 
unique features h.e attributes to computer science occur 
in other fields of ‘human activity: 

particle accelerators have similarly increased in size 
and power con.sumption 
the complexity of the telephone system of intercon- 
nected central offices was around long before the 
first of the electronic computers and is still probably 
more complex than any computer 
the claim of unique vulnerability to a single error is 
c’ertainly shared by our common languages. 

Dijkstra excoriates “software engineering” by deliber- 
ately comparing it to his conception of mathematics 
rather than to, say, “effective writing” which I feel is a 
far better analogy. I also doubt that it is always wise to 
equate a program to a mathematical formula as he does. 

Dijkstra uses the well-known example of trying to 

Di’kstm flatly asserts that he knows “reality” 
and his opponents do not, but I put about as 
muck faith in this as in the statement, “I am 
Napoleon .I’ 

cover with dominos a checker board, without the diag- 
onal corners, to illustrate the value of the mathemati- 
cal, analytical approach and concludes immediately 
that all programs ,will similarly benefit--the reasoning 
is fal.lacious and, from him, shocking! 

Dijkstra flatly asserts that he knows “reality” and his 
opponents do not, but I put about as much faith in this 
as in the statement, “I am Napoleon.” Indeed, in my 
opinion he comes to grief simply because his “reality” is 
so far from most other people’s, which he admits. 

Dijkstra objects to measuring programming by lines 
of code, conveniently forgetting that authors are often 
paid by the word. In both cases, it is ridiculous at times 
to do so, but he offers no other practical measure of 
programming (or writing) effort. 

Dijkstra willfully misunderstands “software mainte- 
nance,” pretending that it means repairing parts that 
have failed rather than what everyone else under- 
stands, mainly, altering the current software to meet 
changing needs and environments; hence, contrary to 
his sneer, software that is not maintained is apt to be of 
much less value to the user than software that is. 

Dijkstra seems to identify programming languages 
with “imperative languages” and deigns not to notice 

1410 Communications of the ACM 

“object-oriented” and “functional” programKing, to 
mention two other approaches--after all, he is Moses, 
and he knows what programming is. 

Returning to the main theme OF this reply, his desire 
to map software onto his conception of mathematics is 
foolish. His idea that a program be “proved” CO be cor- 
rect before running it applies, as noted befclre, to a 
paper program on a paper machine and not to reality. 
When you have to make a compiler for a new mathe- 
matically defined language, this approach i.3 both very 
reasonable and valuable, but in many, if not most, engi- 
neering cases where the design criteria arise from what 
you are able to do this approach simply does not work 
very well (as can be seen from the government procure- 
ment policy in action). Even more than in mathematics, 
in engineering, there is a “give and take” between the 
design proposal and what can be done in current prac- 
tice; hence, his desire to start with an exact description 
for the program that is to be written works mainly in 
his “reality.” 

Anyone who reads the above objections to mean that 
what Dijkstra writes can be safely ignored is a fool. I 
have documented some of the errors that his extre- 
mism has produced, but there is much truth in his 
statement. Apparently, reformers must often be ex- 
treme in what they say and do if they are tl3 achieve a 
reformation. Read with charity, Dijkstra’s statement is a 
valuable contribution; Moses has indeed led us a bit 
further out of our wilderness. 

R. W. Hamming 
Naval Postgraduate School 
Monterey, CA 93943 

In the space available it would be impossible to com- 
ment on all the provocative suggestions in :Dijkstra’s 
statement. Instead, I shall confine myself to challenging 
two of his basic premises: that computing science can 
be equated with the very large scale applic,ation of logic 
and that the programmer’s main task should be to give 
a formal proof that the program he proposes meets the 
equally formal functional specification. I will also take 
issue with his proposal that the introductory program- 
ming course should primarily be a course i:n formal 
mathematics and that students should be protected 
from the temptation to test their programs. I believe 
that the wide acceptance of these ideas would be dam- 
aging to the field of computer science. 

Dijkstra’s dangerous recommendations stem from a 
misunderstanding of the role of formal logic in mathe- 
matical reasoning. It is, indeed, a fundamental insight 
that, in principle, a mathematical proof can. be reduced 
to the manipulation of uninterpreted strings of symbols 
according to formal syntactic rules. But, as irnportant as 
this insight may be for the foundations of mathematics, 
it has little bearing on the way mathematical truths are 
discovered or communicated in practice. 

The discovery of mathematical truth is invariably an 
unsystematic, trial-and-error process that leans on 

December 1989 Volume .32 Number 12 



Debate 

models, pictures, analogies, examples, counterexam- 
ples, and intuitions about time, space, and number that 
have little relation to the rearrangement of symbols 
according to formal rules. Once a mathematical truth is 
discovered, the “proofs” used to communicate it from 
one human to another are never formalized completely, 
if only because such formalization is a hideously tedi- 
ous process and because the resulting formal proofs 
would be opaque to human readers. The proofs that are 
communicated between humans are best viewed as 
persuasive arguments which, although not entirely 
complete or airtight, are often remarkably effective in 
transmitting mathematical insights from the mind of 
their discoverer to the minds of their readers. 

One might argue that inasmuch as computer pro- 
grams are nothing more than formal expressions and 
their execution is nothing more than the application of 
formal transformation rules, computer scientists must 
inevitably work in the arena of formal methods. Indeed, 
it seems to me that formal proof can play an indispen- 
sable role in certain special situations such as the vali- 
dation of short, logically intricate programs involving 
the coordinated action of several processors. But I am 
convinced that, for the great majority of programming 
problems, the modalities of thought and expression that 
are most useful are very similar to those that prevail in 
other areas of mathematical work. The mass of tedious 
detail that is involved in a formal correctness proof of 
even a moderately complex algorithm is beyond the 
limits of human toleration; and, alas, at the present 
state of the art of automatic theorem proving, the pros- 
pects of obtaining correctness proofs automatically or 
semi-automatically are rather bleak. 

Of course, it is possible to reject formal correctness 
proofs and still embrace the use of formal program 
specifications. However, a major impediment to the use 
of formal specifications is the inevitable intertwining of 
software development with specification. This point has 
been well made by two of my colleagues who have 
extensive experience in the design of large software 
systems: 

“I do not view the process of programming, espe- 
cially programming in the large, as that of discover- 
ing an algorithm to a prespecified and unalterable 
logic. It is more often a process of discovery and 
adaptation, as various relevant components of 
a problem are examined in turn, and a goal, 
initially specified incompletely, is reached.” 
[Richard Fateman] 

“In my view, large computer programs tend to be 
inherently unspecifiable, in the sense that there is 
not even a clear notion of how the programs 
“should” behave. In such systems, many of the most 
subtle bugs occur because our view of how the sys- 
tem “should” behave turned out to be wrong (we’ve 
spent a lot of time over the last couple of years 

fixing bugs like this in Sprite). In such an environ- 
ment, it seems to me that formal logic is unlikely to 
root out the problems . . . Dijkstra would probably 
claim that we have no business building a system 
until we understand exactly how it should behave, 
but I think this is impossible in any new engineering 
domain.” [John Ousterhout] 

I am led to the conclusion that formal proof and for- 
mal specification are not among the most promising 
avenues toward getting useful and dependable results 
from computers. Instead, I would advocate increased 

It would be ironic if Dijkstra’s prescriptions for 
introductory computer science education were 
to gain acceptance and the next generation of 
students were to be denied the thrill of seeing 
their programs come to life on the CRT screen. 
The result would be a fiasco unmatched since 
the introduction of the New Math. 

research on debugging methods, on the use of modern 
programming environments including work stations, 
revision control aids, editors, and high-level pro- 
gramming languages, and on the development of 
special-purpose software packages, such as database 
systems and spreadsheet programs, that enable even 
non-programmers to use computers productively. 

Computers are becoming indispensable in nearly all 
fields of endeavor. For example, despite Dijkstra’s 
claims to the contrary, they play an increasingly impor- 
tant role in mathematical research, where they are 
used to simplify algebraic expressions, to explore exam- 
ples, and to generate graphical representations of com- 
plex geometric objects. In view of this trend, it would 
be ironic if Dijkstra’s prescriptions for introductory 
computer science education were to gain acceptance 
and the next generation of students were to be denied 
the thrill of seeing their programs come to life on the 
CRT screen. The result would be a fiasco unmatched 
since the introduction of the New Math. 

Nevertheless, many of the concepts behind Dijkstra’s 
approach, if leavened with a bit of common sense, are 
well worth conveying. It is important for our students 
to gain facility with the elegant notation of set theory 
and the predicate calculus since these notations are 
useful in informal proof as well as formal proof. Our 
students should certainly be taught to give reasonably 
precise informal specifications of what their programs 
are intended to do and what their data structures are 
intended to represent before plunging into writing code. 
And the discipline of maintaining loop invariants and 
satisfying preconditions and postconditions for subrou- 

December 1989 Volume 32 Number 12 Communications of the ACM 1411 



Debate 

tines. (even if these conditions are not stated in a formal 
language) is highly valuable to any programmer. But, it 
is even more important that the next generation of 
computer science students be exposed, as early as pos- 
sible, to the practical art of constructing large programs, 
with its intertwined processes of specification, program- 
ming, testing, and documentation. 

Richard M. Karp 
Dept. of Computer !jcience 
571 Evans Hall 
Univ. of California 
Berkeley, CA 94720 

Behind Dijkstra’s bravado and invective there lurks a 
coherent argument about the nature of computer sci- 
ence education. Coherent and interesting, but wrong, 
becau.se it is based on faulty premises. To start out 
with, Dijkstra is wrong about what computers do, 
wrong about what programmers do, and wrong about 
what engineers do. 

The problem begins with his definition of computers: 
“When all is said and done, the only thing computers 
can do for us is to manipulate symbols and produce 
results of such manipulations.” In my vicinity of the 
“real world,” I see computers doing lots of other things. 
They issue payroll checks, control the motions of 
metal-working machines, format and print architectural 
drawings and newsletters, and keep my car’s brakes 
from locking. In do:ing all this, they may manipulate 
symbols (and also manipulate electrical and magnetic 
fields), but that is instrumental-the means to an end. 

Now Dijkstra may object that computers are not 
doing all those things--I am talking about devices that 
employ computers in their functioning. Fine, let us not 
quibble over terms. Let us call this thing on my desktop 
a “computing device” which employs a computer in 
helping me with editing, formatting, and printing this 
response. As a profession, we are concerned with the 
overall education of people who will be responsible for 
specifying and implementing such devices (the software 
and hardware) in such a way that they will work effec- 
tively--not just perform symbol manipulations validly, 
but actually print a paycheck with the legal deductions, 
put the specified headings at the top of newsletter 
pages, and produce the desired machine part. 

The second error is in his vision of what program- 
mers do: “The programmer’s task is . . . to give a formal 
proof that the program he proposes meets the equally 
formal functional specification.” This is a noble goal, 

but it presupposes that someone else has done all the 
hard work by managing to create a formal functional 
specification that is appropriate to the task at hand. 
Dijkstra must face the unpleasant truth that it is the job 
of someone (again to avoid quibbling, let us call this 
person a “computing professional” rather than a “pro- 
grammer”) to produce a collection of instruct.ions that 
allow the computing device to function appropriately in 
practice. In some cases, this might be best done by 
producing a full formal specification and then convert- 
ing that into code, but that methodology is debatable, at 
best, and far from universally applicable. 

In all his carping about the sad state qf com- 
puter education, Dijkstra seems not to have 
noticed that a huge number of complex pro- 
grams DO work. . . 

Dijkstra’s idealized view of programming shows its 
inadequacy immediately when I try to imagine a formal 
functional specification of the drawing program I use. 
He says, “deal with all the elements of a set by ignoring 
them and working with the set’s definition.” Consider 
the set of different ways in which the motions of the 
mouse and its buttons are used to create and modify 
images on the screen. He says, “we should rceason about 
programs without even mentioning their possible ‘be- 
haviors’.” How can we do this and consider what is to 
happen if I drag the cursor outside of the window while 
in the process of specifying a rectangle? In other words, 
once we recognize that we are engaged in the design of 
operational computing devices, we must train people to 
think well in operational terms. 

The third error is in his peculiar view of “software 
engineering” and his pronouncement that its goal is 
self-contradictory. Engineering disciplines are con- 
cerned with the construction of devices that can be 
relied upon to perform a function. The success of such 
disciplines derives from the fact that past experience 
can help us avoid future breakdowns. By drawing on 
the accumulated experience of the profession, an engi- 
neer approaches a design task with a collection of tech- 
niques, tools, and previous designs which make it possi- 
ble to create reasonably reliable devices at reasonable 
cost with a reasonable amount of effort. The key word 
in this is “reasonable,” not “optimal” or “perfect.” There 
are indeed failures. Sound engineering is not a guaran- 
tee of perfect results. And there are times when a radi- 
cal departure is required to achieve a new design, but 
this is the rare exception, not the work of the everyday 
practitioner. 

In all of his carping about the sad state of computer 
education, Dijkstra seems not to have noticed that a 

1412 Communications of the .AC,M December 1989 Volume 32 Number 12 



Debate 

huge number of complex programs DO work, not al- 
ways, and not necessarily in the most elegant way, but 
in an incredible variety of circumstances and without 
the benefit of formal proof. Furthermore, we are able to 
make more and more complex programs work, as we 
learn from the experience of past successes and fail- 
ures. The goal of systematizing the knowledge gained 
from this experience is hardly self-contradictory, unless 
one has unrealistic or idealized expectations. 

There are, indeed, important differences between 
computing devices and other kinds of devices, for the 
reasons that Dijkstra points out. It would be foolish to 
expect the methods of other engineering disciplines to 
apply without change. On the other hand-despite 
Dijkstra’s grandiose statements about “a radically new 
intellectual challenge that has no precedent in our his- 
tory” and his questionable analogies with quantum 
physics and non-euclidean geometry-the alleged “rad- 
ical novelty” of computers is not so earth-shattering as 
to justify throwing away past experience in order to 
gain the pristine virtue of the “blank mind.” 

This is not to say that everything done under the 
banner of “software engineering” is good or that all of 
Dijkstra’s criticisms are wrong. Occasionally, one of his 
errant fusillades hits a deserving target, and I find my- 
self agreeing with the content of one of his remarks, if 
not with the ill-tempered style. But it would be just as 
wrong to condemn software engineering for the occa- 
sional stupidities of people who claim to be doing it as 
it would be to condemn all of mathematics for the occa- 
sional stupidities of mathematicians. 

From the fact that Dijkstra’s premises are false, it 
does not logically follow that his conclusions are false, 
so let us examine them separately. He mixes two argu- 
ments, one of which is appealing and the other of 
which is misguided. 

The primary subtext of his diatribe is a complaint 
about the lack of rigor in computer science education. I 
fully support his pleas that as educators we demand 
rigorous thinking, teach the beauty of mathematics, and 
encourage the virtue of facing uncomfortable truths. 
But, he confuses this with the claim that the essential 
part of computing education lies in the ability to ma- 
nipulate formal abstractions, detached from considera- 
tions of operational devices, their behaviors, or their 
embedding in a world of people and activities. If he 
deludes his students into thinking this, they are in for a 
rude awakening when they try to function as comput- 
ing professionals. 

If he is talking about the education of “computer sci- 
entists” in the narrow sense of theoreticians of formal 
computation, there is a bit of sense to his claim. Much 

of what he says may be applicable, for example, to the 
training of theoretical physicists who at times need to 
engage in purely formal manipulations without precon- 
ceptions in order to allow for radical novelty. But, it 
does not apply to the people who apply physical princi- 
ples to designing bridges, airplanes, or disk-drives. Al- 
though they should certainly be proficient in mathe- 
matics, they would fail miserably at their tasks if they 
did not have a substantial knowledge of a very different 
kind. I take Dijkstra’s argument not to be just about the 
training of the small elite cadre of theoreticians, but, 
rather, about his hundreds of freshmen-the broad 
population of people who work with computing 
devices. 

Their education should include a solid grounding in 
formal methods, but this is just one piece of the prepar- 
atory background. To be educated, they need a ground- 
ing in the experience of the profession-the examples, 
methods, and practices. They need more than just a 
description of these. Effective learning comes from the 
experience of developing the skills they will be em- 
ploying in their work, with observation and coaching 
from those who have expertise. This experience should 
go beyond the building and testing of small program- 
ming exercises to include working with larger-scale 
systems and the design considerations that come from 
their embedding in situations of use. 

In this last question-the relation between mecha- 
nism and use-the current vision of “software engi- 
neering” is too narrow and needs to be expanded into a 
vision of design. A building is created by a combination 
of people including both engineers and architects. The 
architect’s skill includes knowledge of materials and 
building techniques, but has a primary focus on func- 
tion. The key questions go beyond construction to 
“What will make the building be appropriate to its 
uses? What will function as a good design when people 
move in?” We need to develop effective (and rigorous) 
training that builds the skills to answer these questions 
in designing computing systems. 

It may well be that in the future there will be spe- 
cialized professions within computing, and that there 
will be different kinds of training for its architects, en- 
gineers, and theoreticians. It would be foolish to ignore 
the value of the abstract mathematical skills Dijkstra 
advocates, but it would be even more foolish to indulge 
the fantasy that they offer some magic that allows stu- 
dents to escape the hard work of learning about real 
computing. 

Terry Winograd 
Dept. of Computer Science 
Univ. of California at Stanford 
Stanford, CA 93439 

December 1989 Volume 32 Number 12 Communications of the ACM 1413 



Debate 

Dijkstra’s Repl:y To Comments 

Dear Colleagues, 

Since your comments are not disjoint, allow me to ad- 
dress you collectively in principle. 

Of course, there is more to digital system design than 
the formal derivat.ion of programs from their equally 
formal specifications; accordingly, I expect a full-blown 
computer science curriculum to comprise more than 
“an introductory programming course for freshman.” 
Please remember that my modest proposal only per- 
tained to the latter. 

Th.e choice of functional specifications-and of the 
notation to write them down in-may be far from ob- 
vious, but their role is clear: it is to act as a logical 
firewall between two different concerns. The one is the 
“pleasantness problem,” i.e., the question of whether an 
engine meeting the specification is the engine we 
wou1.d like to have; the other one is the “correctness 
problem,” i.e., the question of how to design an engine 
meeting the specification. I firmly believe that when- 
ever we succeed in erecting such a firewall, the effort 
will :pay off handsomely. The reason for this belief of 
mine is that the two concerns deserve separation be- 
cause the two problems are most effectively tackled by 
totally different techniques. (They are currently psy- 
chology and experimentation for the pleasantness prob- 
lem and symbol manipulation for the correctness prob- 
lem.) 

Several of you h.ave voiced a wider concern, viz., 
serious doubts about the viability of a much more for- 
malized mathematics. I can understand your concern 
because, for many years, I shared your doubts. Over the 
last decade, however, those doubts have largely evapo- 
rated., to the extent that I expect, say 50 years from 
now, the mathematic:al informality of today definitely 
to be a thing of the past. (I realize that this is a some- 
what gratuitous statement because, if my expectation 
will not be fulfilled, I: will not be there to be confronted 
with my mistake. But, I cannot help having expecta- 
tions beyond my lifelime.) The expectations are based 
on the experiences a:nd observations collected since I 
started to explore the extent to which the experience 
gathered in programming methodology could be trans- 

ferred to mathematical methodology in general. I shall 
indicate them briefly. 

The presumed dogma that calulational proofs are an 
order of magnitude too long to be practical has not 
been confirmed by my experience. On the contrary, 
well-chosen formalisms provide a shorthand with 
which no verbal rendering can compete. 

Through most of this century, mathematical logic 
has primarily been used for soul-searching. As a tool 
for daily, practical proof design it has hardly been 
given a fair chance. To realize its potent:ial, it seems 
essential to view the purpose of logic not as mimick- 
ing human reasoning but as providing a calcula- 
tional alternative to it. 

In proof design, strong heuristic guidancl? can be ex- 
tracted from a syntactic analysis of the theorem and 
from (baby) proof theory. Both possibilities require 
formalization of the proof structure for their exploi- 
tation. 

While informal mathematics, with its ties to elusive 
entities such as “intuition” and “the huma.n mind,” 
is a hard topic to teach explicitly, symbol manipula- 
tion is tangible. The effective techniques of symbol 
manipulation are well within the teachable domain, 
hence my estimate of 50 years. 

The possible future of mathematics that I envisage is 
very different from what the dyed-in-the-wool member 
of the mathematical guild of today is used and probably 
attached to. My dream could very well be his night- 
mare. So be it. I cannot consider such discrepancy my 
fault. If you have a technical argument-why my ex- 
pectation of the future of mathematics cannot come 
true-please let me know, for it would save me a lot of 
work and a lot of animosity. 

Finally, allow me to express my appreciation for the 
care with which you phrased your comments. I end 
with my greetings and best wishes to you all. 

E. D. 

1414 Communications of the ACM December 1989 Volume 32 Number 12 


