
March 13, 2011

1

Discussion on Dijkstra's paper (1988)

"On the cruelty of really teaching computing science"

Steve Draper, Glasgow University

For the slides, references, etc. see:

http://www.psy.gla.ac.uk/~steve/educ/dijk.html

CCSE 14 Jan 2019

By way of setting the scene, here are a few salient positions on how it should be done.

•  Dijkstra: all pencil and paper; produce proofs don't execute code.

•  John O'Donnell: Learn the semantics of a language: how exactly it translate
down via assembler to a physical electronic machine.

•  Graham Woan: no teaching. Require learners to teach themselves (as GU
compSci graduates do by the end of their degree).

•  Pedro: introduce each thing strictly in terms of its immediate benefit to the
learner.

•  Steve: teach bug-fixing as a separate part of the course.

Positions on how to learn/teach
programming

Discussion

We now have about 35 mins. until turning to my final point
around 1:45pm.
If shared equally, that is about 2 mins per person: no waffling.

Ideally, the person who has the least to say (but does have
something) should go first.

May or may not be useful. Also on the paper handout; and online.

A. Radical novelty

A1. General arguments pro and con "radical novelty"
A2. Historical evidence
A3. Two novelties of computing equipment
A4. Why these novelties are also radical

B. Consequences, scientific and educational
 B1. The scientific consequences
 B2. Educational consequences

B2a.General educational consequences
B2b.No progress in education
B2c.Why the anthropomorphic metaphor is misleading
B2d.Back to the programming
B2e.Dijkstra's course design
B2f.Your objections to his course design because of your blindness ...

Table of contents for Dijkstra paper

Bug-fixing as a course section
Largely accept Dijkstra; teach programming using pen and paper.

Use reading, discussing, writing, not experimenting to learn.

Teach "bug-fixing" as a separate section of the course.

Should teach it.

Should assess it.

Must decide which 25-33% of the course to drop to make room.

My own Response to Dijkstra

March 13, 2011

2

•  Show students the difference between RDW and "bug-fixing",
and how they relate / contrast.

•  The argument about RDW ! and perhaps now RDW+B

•  It is a graduate attribute – general life skill.

•  [my garage job] Many things we can, and must, succeed
without understanding why.

"Bug fixing" (2) : the basic reasons

My desktop Mac was nagging me to install software updates.
I believed it was OS patches, but was an update to iTunes.

On reboot, my Safari browser said "this app cannot be opened"

<flailed around. Googled about how to reinstall Safari. Long time.

Didn't fix it.
Consulted my friend Joe. He googled around; but more

successfully.
Online was a 3 line fix that took about 3 mins and was completely

successful (and didn't need a reboot).

It was a bug in iTunes, which I don't use; but which disabled

something I rely on.

"Bug fixing" (3): an example

Much of the report on the case is the view with hindsight.
But when the bug manifests, you often have no idea what it is,
where it is, and where to look for a solution.

Asking a friend AND consulting google/the web were THE key
techniques.

Addressing "bugs" is full of estimates about trustworthiness.

And estimates of what approach to use in looking for a fix.

And estimates of whether an applied fix is good enough for you.

Where in CompSci are these, or even this issue, formally taught
and assessed?

"Bug fixing" (4): Features of the case

A place to stop

For the slides, handout etc. see:

http://www.psy.gla.ac.uk/~steve/educ/dijk.html

