
March 13, 2011

1

Bug-fixing as a course section
Largely accept Dijkstra; teach programming using pen and paper.

Use reading, discussing, writing, not experimenting to learn.

Teach "bug-fixing" as a separate section of the course.

Should teach it.

Should assess it.

Must decide which 25-33% of the course to drop to make room.

My own Response to Dijkstra

•  Show students the difference between RDW and "bug-fixing",
and how they relate / contrast.

•  The argument about RDW ! and perhaps now RDW+B

•  It is a graduate attribute – general life skill.

•  [my garage job] Many things we can, and must, succeed
without understanding why.

"Bug fixing" (2) : the basic reasons

My desktop Mac was nagging me to install software updates.
I believed it was OS patches, but was an update to iTunes.

On reboot, my Safari browser said "this app cannot be opened"

<flailed around. Googled about how to reinstall Safari. Long time.

Didn't fix it.
Consulted my friend Joe. He googled around; but more

successfully.
Online was a 3 line fix that took about 3 mins and was completely

successful (and didn't need a reboot).

It was a bug in iTunes, which I don't use; but which disabled

something I rely on.

"Bug fixing" (3): an example

Much of the report on the case is the view with hindsight.
But when the bug manifests, you often have no idea what it is,
where it is, and where to look for a solution.

Asking a friend AND consulting google/the web were THE key
techniques.

Addressing "bugs" is full of estimates about trustworthiness.

And estimates of what approach to use in looking for a fix.

And estimates of whether an applied fix is good enough for you.

Where in CompSci are these, or even this issue, formally taught
and assessed?

"Bug fixing" (4): Features of the case

