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EFFECT SIZE  
More to life than statistical significance 

Reporting effect size 

STATISTICAL SIGNIFICANCE 

¢ Turns out a lot of researchers do not know 
what precisely p < .05 actually means 
�  Cohen (1994) Article: The earth is round (p<.

05) 

¢ What it means: "Given that H0 is true, 
what is the probability of these (or more 
extreme) data?” 

¢ Trouble is most people want to know 
"Given these data, what is the probability 
that H0 is true?" 

ALWAYS A DIFFERENCE 

¢ With most analyses we commonly define the null 
hypothesis as ‘no relationship’ between our 
predictor and outcome(i.e. the ‘nil’ hypothesis) 

¢ With sample data, differences between groups 
always exist (at some level of precision), 
correlations are always non-zero. 

¢ Obtaining statistical significance can be seen as 
just a matter of sample size 

¢ Furthermore, the importance and magnitude of 
an effect are not accurately reflected  because of 
the role of sample size in probability value 
attained 

WHAT SHOULD WE BE DOING? 

¢ We want to make sure we have looked hard 
enough for the difference – power analysis 

¢ Figure out how big the thing we are looking for is 
– effect size 

CALCULATING EFFECT SIZE 

¢ Though different statistical tests have different 
effect sizes developed for them, the general 
principle is the same 

¢ Effect size refers to the magnitude of the impact 
of some variable on another 

TYPES OF EFFECT SIZE 

¢ Two basic classes of effect size 
¢ Focused on standardized mean differences for 

group comparisons 
�  Allows comparison across samples and variables with 

differing variance 
¢  Equivalent to z scores 

�  Note sometimes no need to standardize (units of the 
scale have inherent meaning) 

¢ Variance-accounted-for 
�  Amount explained versus the total 

¢  d family vs. r family 
¢ With group comparisons we will also talk about 

case-level effect sizes 
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COHEN’S D (HEDGE’S G) 

¢ Cohen was one of the pioneers in advocating 
effect size over statistical significance 

¢ Defined d for the one-sample case 

Xd
s
µ−

=

COHEN’S D 

¢ Note the similarity to a z-score- we’re talking 
about a standardized difference 

¢ The mean difference itself is a measure of effect 
size, however taking into account the variability, 
we obtain a standardized measure for comparison 
of studies across samples such that e.g. a d =.20 
in this study means the same as that reported in 
another study 

COHEN’S D 

¢ Now compare to the one-sample t-statistic 

¢ So 

¢ This shows how the test statistic (and its observed p-
value) is in part determined by the effect size, but is 
confounded with sample size 

¢ This means small effects may be statistically 
significant in many studies (esp. social sciences) 

XXt s
N

µ−
=

tt d N and d
N

= =

COHEN’S D – DIFFERENCES 
BETWEEN MEANS 

¢ Standard measure for independent samples t test 

¢ Cohen initially suggested could use either sample 
standard deviation, since they should both be equal 
according to our assumptions (homogeneity of 
variance) 
�  In practice however researchers use the pooled variance 
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EXAMPLE 

¢ Average number of times graduate 
psych students curse in the presence 
of others out of total frustration over 
the course of a day 

¢ Currently taking a statistics course 
vs. not 

¢ Data: 
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EXAMPLE 

¢ Find the pooled variance and sd 
�  Equal groups so just average the two variances such 

that  and sp
2 = 6.25 

13 11 .8
6.25

d −
= =
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COHEN’S D – DIFFERENCES 
BETWEEN MEANS 
¢ Relationship to t 

¢ Relationship to rpb 
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P and q are the proportions of the total each group makes up. 
If equal groups p=.5, q=.5 and the denominator is d2 + 4 as you will see  
in some texts 

GLASS’S Δ 

¢ For studies with control groups, we’ll use the 
control group standard deviation in our formula 

¢ This does not assume equal variances 
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COMPARISON OF METHODS DEPENDENT SAMPLES 

¢ One option would be to simply do nothing 
different than we would in the independent 
samples case, and treat the two sets of scores as 
independent 

¢ Problem:  
�  Homogeneity of variance assumption may not be 

tenable 
�  They aren’t independent 

DEPENDENT SAMPLES 

¢ Another option is to obtain a metric with 
regard to the actual difference scores on 
which the test is run 

¢ A d statistic for a dependent mean 
contrast is called a standardized mean 
change (gain) 

¢ There are two general standardizers:  
�  A standard deviation in the metric of the  

¢ 1. difference scores (D) 
¢ 2. original scores  

DEPENDENT SAMPLES 

¢ Difference scores 
¢ Mean difference score divided by the standard 

deviation of the difference scores 

D

Dd
s
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DEPENDENT SAMPLES 

¢  The standard deviation of the difference scores, unlike the 
previous solution, takes into account the correlated nature of the 
data 
�  Var1 + Var2 – 2covar 

¢  Problems remain however 
¢  A standardized mean change in the metric of the difference scores 

can be much different than the metric of the original scores 
�  Variability of difference scores might be markedly different for 

change scores compared to original units 
¢  Interpretation may not be straightforward 
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DEPENDENT SAMPLES 

¢ Another option is to use standardizer in the 
metric of the original scores, which is directly 
comparable with a standardized mean difference 
from an independent-samples design  

¢  In pre-post types of situations where one would 
not expect homogeneity of variance, treat the 
pretest group of scores as you would the control 
for Glass’s Δ  
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DEPENDENT SAMPLES 

• Base it on substantive theoretical 
interest 

•  If the emphasis is really on change, 
i.e. the design is intrinsically 
repeated measures, one might 
choose the option of standardized 
mean change 

•  In other situations we might retain 
the standardizer in the original 
metric, such that the d will have 
the same meaning as elsewhere 

Which to use? 

CHARACTERIZING EFFECT SIZE 

¢ Cohen emphasized that the interpretation of 
effects requires the researcher to consider things 
narrowly in terms of the specific area of inquiry 

¢ Evaluation of effect sizes inherently requires a 
personal value judgment regarding the practical 
or clinical importance of the effects 

HOW BIG? 
¢  Cohen (e.g. 1969, 1988) offers some rules of thumb 

�  Fairly widespread convention now (unfortunately) 

¢  Looked at social science literature and suggested 
some ways to carve results into small, medium, and 
large effects 

¢  Cohen’s d values  (Lipsey 1990 ranges in 
parentheses) 
�  0.2 small  (<.32) 
�  0.5 medium  (.33-.55)                  
�  0.8 large   (.56-1.2)          

¢  Be wary of “mindlessly invoking” these criteria 
¢  The worst thing that we could do is subsitute d = .20 

for p = .05, as it would be a practice just as lazy and 
fraught with potential for abuse as the decades of 
poor practices we are currently trying to overcome 

SMALL, MEDIUM, LARGE? 
¢  Cohen (1969)  
¢  ‘small’ 

�  real, but difficult to detect 
�  difference between the heights of 15 year old and 16 year 

old girls in the US 
�  Some gender differences on aspects of Weschler Adult 

Intelligence scale 

¢  ‘medium’ 
�  ‘large enough to be visible to the naked eye’ 
�  difference between the heights of 14 & 18 year old girls 

¢  ‘large’ 
�  ‘grossly perceptible and therefore large’  
�  difference between the heights of 13 & 18 year old girls 
�  IQ differences between PhDs and college freshman 
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ASSOCIATION 

¢ A measure of association describes the 
amount of the covariation between the 
independent and dependent variables  

¢ It is expressed in an unsquared 
standardized metric or its squared value
—the former is usually a correlation*, the 
latter a variance-accounted-for effect size  

¢ A squared multiple correlation (R2) 
calculated in ANOVA is called the 
correlation ratio or estimated eta-squared 
(η2) 

ANOTHER MEASURE OF EFFECT SIZE 

¢ The point-biserial correlation, rpb, is the 
Pearson correlation between membership 
in one of two groups and a continuous 
outcome variable  

¢ As mentioned rpb has a direct relationship 
to t and d 

¢ When squared it is a special case of eta-
squared in ANOVA 
�  An one-way ANOVA for a two-group factor: 

eta-squared = R2 from a regression approach 
= r2

pb 

ETA-SQUARED 

¢ A measure of the degree to which variability 
among observations can be attributed to 
conditions 

¢ Example: η2 = .50 
�  50% of the variability seen in the scores is due to the 

independent variable. 
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ETA-SQUARED 

¢  Relationship to t in the two group setting 
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OMEGA-SQUARED 

¢ Another effect size measure that is less biased 
and interpreted in the same way as eta-squared 
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PARTIAL ETA-SQUARED 

¢  A measure of the degree to which variability among 
observations can be attributed to conditions controlling 
for the subjects’ effect that’s unaccounted for by the 
model (individual differences/error) 

¢  Rules of thumb for small medium large: .01, .06, .14 
¢  Note that in one-way design SPSS labels this as PES but 

is actually eta-squared, as there is only one factor and no 
others to partial out 

2partialη treat

treat error

SS
SS SS

=
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COHEN’S F 

¢ Cohen has a d type of measuere for Anova called 
f 

¢ Cohen's f is interpreted as how many standard 
deviation units the means are from the grand 
mean, on average, or, if all the values were 
standardized, f is the standard deviation of those 
standardized means 
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RELATION TO PES 

Using Partial Eta-Squared 
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GUIDELINES 

¢ As eta-squared values are basically r2 values 
the feel for what is large, medium and small 
is similar and depends on many contextual 
factors 

¢ Small eta-squared and partial eta-square 
values might not get the point across (i.e. look 
big enough to worry about) 
�  Might transform to Cohen’s f or use so as to 

continue to speak of standardized mean differences 
�  His suggestions for f are: .10,.25,.40 which 

translate to .01,.06, and .14 for eta-squared values 

¢ That is something researchers could overcome 
if they understood more about effect sizes 

OTHER EFFECT SIZE MEASURES 

¢ Measures of association for non-
continuous data 
�  Contingency coefficient 
�  Phi 
�  Cramer’s Phi 

¢ d-family 
�  Odds Ratios 

¢ Agreement 
�  Kappa 

¢ Case level effect sizes 

CONTINGENCY COEFFICIENT 

¢ An approximation of the correlation between the 
two variables (e.g. 0 to 1) 

¢ Problem- can’t ever reach 1 and its max value is 
dependent on the dimensions of the contingency 
table 

2

2C
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χ
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PHI 

¢ Used in 2 X 2 tables as a correlation (0 to 1) 
¢ Problem- gets weird with more complex tables 

2

N
χ

φ =
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CRAMER’S PHI 

¢ Again think of it as a measure of association from 
0 (weak) to 1 (strong), that is phi for 2X2 tables 
but also works for more complex ones. 

¢ k is the lesser of the number of rows or columns 

2

( 1)c N k
χ

φ =
−

ODDS RATIOS 
¢  Especially good for 2X2 tables 
¢  Take a ratio of two outcomes 
¢  Although neither gets the majority, we could 

say which they were more likely to vote for 
respectively 

¢  Odds Clinton among Dems= 564/636 = .887 
¢  Odds McCain among Reps= 450/550 = .818 
¢  .887/.818 (the odds ratio) means they’d be 

1.08 times as likely to vote Clinton among 
democrats than McCain among republicans 

¢  However, the 95% CI for the odds ratio is: 
�  .92 to 1.28 

¢  This suggests it would not be wise to predict 
either has a better chance at nomination at 
this point. 

¢  Numbers coming from 
�  Feb 1-3 
�  Gallup Poll daily tracking. Three-day 

rolling average. N=approx. 1,200 Democrats 
and Democratic-leaning voters nationwide. 

�  Gallup Poll daily tracking. Three-day 
rolling average. N=approx. 1,000 
Republican and Republican-leaning voters 
nationwide.  

Yes No Total 
Clinton 564 636 1200 
McCain 450 550 1000 

KAPPA 
¢  Measure of agreement (from Cohen) 
¢  Though two folks (or groups of 

people) might agree, they might 
also have a predisposition to 
respond in a certain way anyway 

¢  Kappa takes this into consideration 
to determine how much agreement 
there would be after incorporating 
what we would expect by chance 
�  O and E refer to the observed and 

expected frequencies on the diagonal 
of the table of Judge 1 vs Judge 2 

∑
∑∑

−

−
=

D

DD

EN
EO

K

Judge 1 Totals 

Judge 2 1 2 3 

1 10 (5.5) 2 0 12 

2 1 5 (3.67) 2 8 

3 0 1 3 (.88) 4 

11 8 5 24 

%57
95.13
95.7

==K

Judgements by clinical psycholgists 
on the severity of suicide attempts by clients. 
At first glance one might think (10+5+3)/24 = 
75% agreement between the two. 
However this does not take into account 
chance agreement. 

CASE-LEVEL EFFECT SIZES 

¢  Indexes such as Cohen’s d and eta2 estimate 
effect size at the group or variable level only  

¢ However, it is often of interest to estimate 
differences at the case level  

¢ Case-level indexes of group distinctiveness are 
proportions of scores from one group versus 
another that fall above or below a reference point  

¢ Reference points can be relative (e.g., a certain 
number of standard deviations above or below 
the mean in the combined frequency distribution) 
or more absolute (e.g., the cutting score on an 
admissions test)  

CASE-LEVEL EFFECT SIZES 

¢ Cohen’s (1988) 
measures of distribution 
overlap:  

¢ U1 
�  Proportion of nonoverlap 
�  If no overlap then = 1, 0 if 

all overlap 
¢ U2 

�  Proportion of scores in 
lower group exceeded by 
the same proportion in 
upper group 

�  If same means = .5, if all 
group2 exceeds group 1 
then = 1.0 

¢ U3 
�  Proportion of scores in 

lower group exceeded by 
typical score in upper 
group 

�  Same range as U2 

OTHER CASE-LEVEL EFFECT SIZES 
¢  Tail ratios (Feingold, 1995): 

Relative proportion of scores 
from two different groups that 
fall in the upper extreme (i.e., 
either the left or right tail) of 
the combined frequency 
distribution  

¢  “Extreme” is usually defined 
relatively in terms of the 
number of standard 
deviations away from the 
grand mean  

¢  Tail ratio > 1.0 indicates one 
group has relatively more 
extreme scores  

¢  Here, tail ratio = p2/p1:  
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OTHER CASE-LEVEL EFFECT SIZES 

¢ Common language effect size (McGraw & 
Wong, 1992) is the predicted probability 
that a random score from the upper group 
exceeds a random score from the lower 
group  

¢ Find area to the right of that value 
�  Range .5 – 1.0 

1 2
2 2
1 2
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CONFIDENCE INTERVALS FOR 
EFFECT SIZE 

¢ Effect size statistics such as Hedge’s 
g and η2 have complex distributions 

¢ Traditional methods of interval 
estimation rely on approximate 
standard errors assuming large 
sample sizes 

¢ General form for d 
( )cv dd t s±

CONFIDENCE INTERVALS FOR 
EFFECT SIZE 
¢ Standard errors 
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PROBLEM 

¢ However, CIs formulated in this manner are only 
approximate, and are based on the central (t) 
distribution centered on zero 

¢ The true (exact) CI depends on a noncentral 
distribution and additional parameter 
�  Noncentrality parameter 
�  What the alternative hype distribution is centered on 

(further from zero, less belief in the null) 

¢  d is a function of this parameter, such that if ncp 
= 0 (i.e. is centered on the null hype value), then 
d = 0 (i.e. no effect) 
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1 2
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CONFIDENCE INTERVALS FOR 
EFFECT SIZE 

¢ Similar situation for r and eta2 effect 
size measures 

¢ Gist: we’ll need a computer program 
to help us find the correct 
noncentrality parameters to use in 
calculating exact confidence 
intervals for effect sizes 

¢ Statistica has such functionality 
built into its menu system while 
others allow for such intervals to be 
programmed (even SPSS scripts are 
available (Smithson)) 

LIMITATIONS OF EFFECT SIZE 
MEASURES 
¢ Standardized mean differences:  

�  Heterogeneity of within-conditions variances across 
studies can limit their usefulness—the unstandardized 
contrast may be better in this case  

¢ Measures of association:  
�  Correlations can be affected by sample variances and 

whether the samples are independent or not, the design 
is balanced or not, or the factors are fixed or not  

�  Also affected by artifacts such as missing observations, 
range restriction, categorization of continuous variables, 
and measurement error (see Hunter & Schmidt, 1994, 
for various corrections)  

�  Variance-accounted-for indexes can make some effects 
look smaller than they really are in terms of their 
substantive significance  
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LIMITATIONS OF EFFECT SIZE 
MEASURES 
¢  How to fool yourself with effect size estimation: 

¢  1. Examine effect size only at the group level  

¢  2. Apply generic definitions of effect size magnitude 
without first looking to the literature in your area  

¢  3. Believe that an effect size judged as “large” according to 
generic definitions must be an important result and that a 
“small” effect is unimportant (see Prentice & Miller, 1992)  

¢  4. Ignore the question of how theoretical or practical 
significance should be gauged in your research area  

¢  5. Estimate effect size only for statistically significant 
results 

LIMITATIONS OF EFFECT SIZE 
MEASURES 
¢  6. Believe that finding large effects somehow lessens the need for 

replication  

¢  7. Forget that effect sizes are subject to sampling error  

¢  8. Forget that effect sizes for fixed factors are specific to the 
particular levels selected for study  

¢  9. Forget that standardized effect sizes encapsulate other 
quantities such as the unstandardized effect size, error variance, 
and experimental design  

¢  10. As a journal editor or reviewer, substitute effect size 
magnitude for statistical significance as a criterion for whether a 
work is published 

¢  11. Think that effect size = cause size 

RECOMMENDATIONS 

¢ First recall APA task force suggestions 
�  Report effect sizes 
�  Report confidence intervals 
�  Use graphics 

RECOMMENDATIONS 

¢ Report and interpret effect sizes in the context of 
those seen in previous research rather than rules 
of thumb 

¢ Report and interpret confidence intervals (for 
effect sizes too) also within the context of prior 
research 
�  In other words don’t be overly concerned with whether 

a CI for a mean difference doesn’t contain zero but 
where it matches up with previous CIs 

¢ Summarize prior and current research with the 
display of CIs in graphical form (e.g. w/ Tryon’s 
reduction) 

¢ Report effect sizes even for nonsig results 

RESOURCES 

¢ Kline, R.  (2004) Beyond significance 
testing. 
�  Much of the material for this lecture came 

from this 
¢ Rosnow, R & Rosenthal, R. (2003). Effect 

Sizes for Experimenting Psychologists. 
Canadian JEP 57(3). 

¢ Thompson, B. (2002). What future 
Quantitative Social Science Research 
could look like: Confidence intervals for 
effect sizes. Educational Researcher.  


