
An Adaptive Novelty Detection Approach to Low Level 
Analysis of Images Corrupted by Mixed Noise 

Alexander N. Dolia1, Martin Lages1, Ata Kaban2 

1 Department of Psychology, University of Glasgow, 58 Hillhead Street, 
Glasgow G12 8QB, United Kingdom  

{a.dolia, m.lages}@psy.gla.ac.uk  
2 Computer Science Department, University of Birmingham, Edgbaston,  

Birmingham B15 2TT, United Kingdom 
A.Kaban@cs.bham.ac.uk 

http://www.cs.bham.ac.uk/~axk/  

Abstract. We propose a new adaptive novelty detection based algorithm for the 
primary local recognition of images corrupted by multiplicative/additive and 
impulse noise. The purpose of primary local recognition or low level analysis 
such as segmentation, small object and outlier detection is to provide a repre-
sentation which could be potentially used e.g. in context based classification or 
nonlinear denoising techniques. The method is based on the estimation of mix-
ing parameters (priors) of probabilistic mixture models along a small sliding 
window. A novelty score is defined by the mixing parameters and this is util-
ized by the procedure for determining the corresponding class of image patch 
with the aid of a lookup table. Numerical simulations demonstrate that the pro-
posed method is able to improve upon previously employed techniques for the 
same task. In addition, the computational demand required by the proposed 
method is clearly inferior to some of the recently applied techniques as expert 
systems or neural networks. 

1   Introduction 

A number of methods of novelty detection have been proposed using nonparametric 
[1,2], semi-parametric and parametric [2,3] statistical approaches, support vector 
techniques [4,5] and neural networks [6]. 

The main idea behind these approaches is to estimate either the unconditional 
probability density function or directly the support of the data distribution from a 
training set. Then based on this information it is tested to what extent the new data do 
fit to the model by calculating some measure or score of novelty. If the score exceeds 
some previously set threshold then the corresponding test samples are considered as 
outliers or novelty [1-6]. 

Note however that in practice data could be inhomogeneous and so the location of 
the support of the data distribution may change. In these cases the support of the data 
is rather a local feature as the global support becomes meaningless. 

The approach proposed in this paper provides a solution by adapting the parame-
ters of the model to small space-time domains. This is achieved by local analyses of 



the image with small sliding windows and by updating a parameter of the novelty 
model itself. We also show real-world examples where the proposed method is useful 
for low level analysis of images such as segmentation, small object and outlier detec-
tion. 

The paper is organized as follows. The image models are described in Section 2. A 
new adaptive novelty detection method is proposed in Section 3. Simulation results 
are presented in Section 4. And conclusions are provided in Section 5. 

 2 Models of Noisy Images 

Two main noise models have been considered in the image processing literature: a) 
an image obtained by Ka-band side look aperture radar (SLAR) is corrupted by a 
mixture of Gaussian multiplicative noise and outliers [7]; b) an image is influenced 
by a mixture of Gaussian additive noise and outliers. The main difference between 
these two models is that in the first case the noise is multiplicative or data-dependent 
while in the second case the noise is additive or signal-independent [7,8].  

Let index n denote both the index of the pixel under consideration and the location 
of the central pixel in the scanning window. With the probability of the occur-
rences of outliers  the model of SLAR image  corrupted by outliers can be 
written as  and in the other cases  is corrupted by signal dependent noise, 

, [7,8,9] where , denotes the value of the n-th 

pixel of the image without noise. Further, ξ  denotes standard Gaussian noise, σ  is 
the relative variance of the multiplicative noise with mean equal to 1,  
denote the different intensity levels,  is the number of different intensity levels in 
the noise-free image. The multiplicative noise can be easily transformed to additive 
noise using an appropriate homomorphic transformation, e.g., the natural logarithm 
[8,9]. 
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 Then the transformed image model can be written as , where 

,  and µ . Further, ,  are the n-th pixels of 

,  after homomorphic transform, respectively; s is a scaling parameter - in our 
experiments we set s  for our convenience (in this case x ). In the 
above approximation we have made use of the Taylor expansion of the natural loga-

rithm function i.e., 
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linear term. Observe that after the homomorphic transform the probability density 
function  of the image  can be approximated by the mixture of Gaussians 

with shared variance , mixing parameters  and means µ , 

 where and  [10]. Thus we now 
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have a model with  unknown parameters ( ,  and ) which could be 
estimated using a gradient-like method or Expectation-Maximization (EM) algorithm 
[10]. However, this still does not provide any information about the local changes of 
intensity (what Marr has called as ‘primal sketch’ [11]). The next section is con-
cerned with developing a method for this purpose. 
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3 Locally Adaptive Novelty Detection Method 

Our algorithm is based on the following intuitive idea. If an observer is trained to see 
just one homogeneous region at a time with different light intensity or texture then it 
is unusual for him to see: 1) two large homogeneous regions (edge) at a time; or 2) 
small objects or outliers with a homogeneous region in the background.  

Similar to [9,12,13], we consider six classes for primary local recognition: 1) ho-
mogeneous region (H); 2) edge neighborhood between large objects or two homoge-
neous regions (E); 3) neighborhood of a spike (outlier) - by this we mean that there is 
one or no more than 3 spikes elsewhere than in the central pixel (NS); 4) spike in the 
central pixel of the scanning window (S); 5) the central pixel belongs to a small sized 
object (a small sized object is characterized by compactness of pixels belonging to it 
as well as by homogeneity of the pixel values) (O); 6) neighborhood of a small sized 
object (NO). 

Because the scanning window should be small enough to ensure locality of the 
analysis (e.g., 5x5 pixels) and also for keeping our model as simple as possible [4] 
then it is reasonable to assume that there are not more than two Gaussian components 
appearing in the scanning window. Therefore, we will model the image fragment in 
each small scanning window as a mixture of two Gaussians with the mixing parame-
ters  and  ( , )  for the i-th and  j-th component of the 
mixture distribution 
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The model (1) has only 5 free parameters but it is necessary to estimate these pa-
rameters for each location of the scanning window. Therefore, for the entire image we 
end up having as many models as pixels in the image. Because we employ small 
scanning windows and because the image is contaminated by outliers, it would be 
inefficient to apply a statistical estimation such as an EM algorithm, for example.  

Obviously, for knowing one of mixing parameters we can find another one 

( ) and a small reduction in the number of free parameters is possible. Note 

that there are three distinct possibilities: 1) ; 2) ; 3) . There-
fore, we can find a Gaussian component that has a mixing parameter that is not less 
than the other one. All we need to do then is to estimate  for each 
location of the scanning window.  
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In order to estimate  we will employ a well-known technique, the so-called 3-
sigma rule, which states that with probability 0.997 the random value  will lie 
within the interval [  if it belongs to the Gaussian distribution with 
mean  and standard deviation σ ,  [14]. We introduce a 

new notation here, let  denote the number of pixels of the scanning window in the 
neighbourhood of  which are inside the interval [ . For grey-scaled 
images with 255 grey levels . 
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In summary, the proposed algorithm will consist of two steps: 1) calculate  

where the estimate of  is equal to the maximal value of  given the location of 

the scanning window and an estimate of  divided by the number of points in the 
scanning window L  (e.g., if the size of the scanning window is 5x5 then L=25 and, 

); 2) based on the estimate of  (or  or novelty 

score ) and on the information about either the central pixel being 

inside of the selected interval [  corresponding to  look up the 
class from the table (e.g., see Table 1). The method is locally adaptive because an 
estimate of the dominant mixing parameter of the mixture model  is calculated 
for each position of the small scanning window but not for the entire image. 
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For 5x5 scanning window when , e.g., the first row of Table 1 corresponds 
to , the second (third) one relates to  ( max ). 
Similar tables were proposed for the classification of noise-free images in order to 
obtain a target image using a genetic algorithm to correct misclassifications (see Ta-
ble 1,2 in [13]). Thus, if the image fragment in the scanning window is not novel, 
then we get a novelty score . If the image fragment is not just one homoge-
neous region or is unusual to the observer then . In practice  is never 
exactly equal to one because even if pixels are uniformly distributed in [0,255] then 

 is equal at least 1 (1  and ).  
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4 Experiments 

In this section, we demonstrate the performance of the proposed algorithm for both an 
artificial image corrupted by Gaussian multiplicative noise (Fig.1,a) and a real Ka-
band SLAR image (see Fig.2,a). We start with a noise-free image containing small 
and large objects with intensity levels from the set { }160,120,80,20,15,10  i.e., six 
different positive and negative contrasts and a background of 40. This image was then 
corrupted by multiplicative (data-dependent) noise with a mean equal to 1 and rela-
tive variance  = 0.003 (see Fig.1,a). 2σ
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Table 1. Example of novelty score table to select class based on  

 A central pixel of scanning 
window belongs to the   

interval   

A central pixel of scanning 
window does not belong to the 

interval [  

0..0.04 H H 

0.04..0.08 NS S 

0.08..0.16 NS O 

0.16..0.32 NO O 

0.32..0.64 E E 

0.64..1.0 O NO 
  
r applying the homomorphic transform to the noisy test image and setting the 
 factor ( ) the variance of the additive noise be-
σ . We use this setting to compare three different methods: 1) 
thod of supervised primary local recognition based on radial basis neural net-
NN) with 10 inputs (features are the bins of modified histograms of the image 
mall scanning window, see [8] for details), 50 nodes in the hidden layer, and 6 
 (6 classes). We will refer to this method as NN-Hi; 2) the second method uses 
ar NN except that the number of inputs has been reduced to 6 local statistical 
ters which have been calculated for each position of the scanning window (see 
This method will be referred to as NN-SP; 3) finally we will refer to our new 
 as ND. An equal window size of 5x5 has been chosen for all three methods in 

mparison.  

46=s
348.6=σs  ≈ 222

s

ults are shown in Table 2. The analysis of this table highlights that the pro-
method produced a superior recognition performance for all the main classes 
,NO) when compared to NN-Hi and NN-SP. In addition, our simulations dem-
e that the superiority of the proposed method holds also for images with differ-
trasts than those utilized in the training process for NN-Hi and NN-SP. Fig.1,b 
the novelty scores  for noisy test image pixels: pixels in black color 
 to homogeneous regions (not novel) while the white pixels are edges or highly 
In Fig.1,c we can see that if the central pixel belongs to the interval 

 this information is useful in classifying patches like S and O. 
 shows how the information presented in Fig.1,b,c can be combined to recog-

l classes (we use different colours to represent different classes). 

scoreN
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2,a depicts results for a real Ka-band SLAR image where Fig.2,b,c,d corre-
to Fig1,b,c,d, respectively. The size of the scanning windows was 5x5 and the 
 variance was equal to 0.004. These values have been chosen according to a 

 expert analysing the homogeneous regions of the real image (see Fig.2,a). 
inspection also demonstrates that the proposed method presents encouraging 



performance and is able to distinguish between important components of the image 
such as edges, small objects, outliers and homogeneous regions.  

5 Conclusions 

In this paper we have proposed a locally-adaptive novelty detection method for the 
primary local analysis in image data corrupted by mixed noise. The recognition re-
sults have outperformed those obtained with an RBF classifier on both artificial im-
ages and real Ka-band SLAR images.  
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Table 2. Results of correct image classifications by NN-Hi, NN-SP and ND 

 Recognized classes 
Methods H E O NO 

ND 99.94 % 99.99 % 99.99 % 99.99 % 
NN-Hi 99.5 % 93.6 % 99.6 % 90.6 % 
NN-SP 99.1 % 91.8 % 94.7 % 85.8 % 

 

             
                  a)                            b)                              c)                             d) 

Fig. 1. Illustrations of primary image recognition for the artificial image: a) the artificial Ka-
band SLAR image; b) novelty score mapping; c) central pixel mapping; d) classification map-
ping 
 

             
a)                        b)                       c)                         d) 

Fig. 2. Real radar image processing: a) real Ka-band SLAR image; b) novelty score mapping; 
c) central pixel mapping; d) classification mapping 


