
The cover of Rolls and Deco’s book
Computational Neuroscience of Vision depicts a
painting of J.W. Waterhouse surrounded by a
diagram of the visual system modelled by neural
networks. The picture shows Pandora opening the
infamous box. This promotes a common
misconception of who actually opened Pandora’s
box. 

According to Greek mythology Pandora was
fashioned from clay at the request of Zeus. She
was blessed with every gift the gods could grant
and Zeus endowed her with a box scheming to
destroy Prometheus’ creation of man. Realising that
Prometheus would be too wise to accept the box as
a dowry Zeus conducted Pandora to his less
cautious brother Epimetheus. Pandora was so
beautiful and irresistible Epimetheus simply could
not refuse. He opened the box thereby unleashing
all the evils and diseases to afflict human life ever
since. Only Hope lingered at the bottom of the box
to console mankind in his troubles. 

The desire to open the black box, that is to
understand the functioning of the human brain, has
been at the heart of neuroscience. Rolls and Deco
seek understanding through neural computation but
did they manage to open the black box? If so were
they less cautious than other neuroscientists even
releasing bad spirits that will haunt computational
neuroscience for eternity? In the following we will
give a brief outline of the book before we critically
assess their approach.

The title of the book suggests a broad
introduction to computational neuroscience of
vision but the early stages of encoding are only
touched upon: the optics of the eye, colour,
contrast, spatial and temporal filtering, disparity
and motion are mentioned in passing. These topics
are widely regarded as the foundations of vision
(e.g., Palmer, 1999; Wandell, 1995) whereas object
recognition and visual attention are at the high-end
of visual processing. In fact Rolls and Deco are
mainly concerned with high-level performances
that carry a considerable cognitive load. 

The first six chapters describe physiological
aspects of cell activation and the anatomical
structure and function of many of the cortical areas
involved in visual processing, including visual
areas in the temporal lobe where objects are
represented. They introduce important
physiological constraints and hypotheses that are
exploited later. Chapter 7 gives a comprehensive
account of neural network models together with

some of their basic properties. Readers who are
familiar with Rolls and Treves (1998) can quickly
browse through this chapter to recall different
architectures. Their effort to explain the different
architectures has to be applauded. Layout and
figures are generally of high standard but some
equations, the Hebb learning rule and the activation
rule in particular make too many appearances
throughout the book. Redundancy can be helpful
but a more stringent organisation of the theoretical
backbone would be preferred. Chapters 8 to 12
describe applications of various network
architectures to the problem of visual object
recognition and visual attention. In object
recognition, the visual system has to establish a
representation of objects that allows recognition
independent of location, size, orientation, contrast,
illumination etc. In Chapter 8 VisNet, a feature-
hierarchy network model, is introduced which
consists of four hierarchically connected
competitive networks. Representation of objects is
achieved from spatial convergence and feature
integration by forward connections between
hierarchically organised layers, and from
redundancy removal within each layer. After
training of each layer VisNet exhibited translation
and view invariance in a face-recognition task. In a
variant of the model the network was extended to a
recurrent attractor network that is influenced by
top-down bias. In Chapter 9 it is illustrated how
the interaction between object and spatial
processing implemented by back-projections from
the ventral and dorsal stream to an early
topologically organised visual area can account for
many properties of visual attention. Effects of
attention on single cell and fMRI recordings as
well as psychophysical performance are simulated.
In Chapter 10 the model is extended and aspects of
visual search and attention are simulated. The
system essentially works in parallel but due to the
different latencies of its dynamics two
experimentally observed modes of visual attention
can be modelled: Serial focal attention and parallel
spread of attention over space. The binding
problem in conjunction search requires additional
feature maps  (i.e., size and colour). Confing the
model in different ways a variety of dysfunctions
associated with visual neglect are simulated in
Chapter 11. In Chapter 12 the focus is on outputs
of IT via perihinal and entorhinal cortex to the
hippocampus as well as the orbitofrontal cortex and
amygdala. These structures are used to model
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phenomena of short- and long-term memory,
emotion, reward and punishment, visual search and
attention. The achievements of various
implementations in the book are summarized in the
last chapter.

Many of the goals of machine intelligence are
accomplished within biological nervous systems,
by using strategies, architectures and hardware (or
rather ‘wetware’) radically different from the
common serial computer (von Neumann
architecture). For example, in living neural systems
there are no formal or numerical representations,
communication media are stochastic, events are
asynchronous, components are unreliable and
widely distributed, connectivity does not obey
precise blueprints, and processing speeds are much
slower. Yet the performance of natural systems in
real-time tasks entailing perception, learning, and
motor control, in complex environments, remains
unrivalled. A central goal of computational
neuroscience is therefore to understand how this is
possible, and to exploit and incorporate the
underlying computational principles within new
artificial systems.

Originally neural networks were relatively
simple input-output devices with two layers of
interconnected neurons. The Perceptron, Adeline,
the Boltzmann machine, and the Hopfield model
are prominent examples. At the time they competed
with serial computers showing some striking
advantages. It is well known that neural networks
work in parallel with distributed representations,
they learn from past experience, can handle noise
and incomplete data, and once trained neural
networks respond to new input almost instantly.
Also the same neural software can be applied to a
number of different problems (see also, Aleksander,
1989; Bishop, 1995; Haykin, 1994). 

As a consequence of their universality and
omnipotence the input to neural networks is
crucial. This is not at all trivial for visual input. It
needs to be decided whether images should contain
colour, disparity, and motion for example, and how
they are standardised or sampled along various
dimensions such as position, size, luminance,
contrast, illumination, viewpoint, etc.  

According to folklore in computer science the
Pentagon commissioned in the 80s a costly
research program to build a system that could
quickly detect whether a natural image contained a
tank or not. A set of images with and without tanks
was split into half and a neural network was
trained on half of the images. After training the
system performed perfectly on the first half. When
the untrained second set of images was employed
the system still performed perfectly. Apparently it
could detect features of tanks in natural scenes.
Only when the system was put to the test with a
new set of images it failed miserably. What had
happened? The original set of images
systematically differed in their illumination with

tanks photographed on a cloudy day while the
images without tanks on a sunny day. The network
had classified the images accordingly. Relevant
features were superseded by the irrelevant
illumination cue that did not generalise. 

This anecdotal evidence illustrates one of the
problems with neural networks. A trained network
with more than a few dozen neurons is difficult to
analyze and understand. A neural network,
especially in a complex architecture and trained
with complex input, cannot explain its output. It
essentially remains a black box. One of the dangers
of using multi-layer architectures and unsupervised
learning is this lack of insight. The system may
perform perfectly well with a given training set but
the experimenter remains ignorant of the
discriminating features. Problems only transpire
when generalisation does not occur with novel
input (e.g., Hecht-Nielson, 1991; Hertz et al.,
1991).

The problems associated with computational
models of vision are comparable to the general
problems encountered in Artificial Intelligence:
Specific implementations lack the general
capabilities of the human visual system. As a
consequence the field has become more
specialised, focussing on separate modules and
functions with little emphasis on an integrated
framework. In this respect Rolls and Deco present
a refreshing alternative. They employ neural
networks as modules in various architectures to
model aspects of object recognition, visual
attention and beyond. 

There are, however, disadvantages inherent to
neural networks that remain virulent in more
complex architectures. The ‘curse of
dimensionality’ for example refers to the problem
that the quantity of training trials can grow
exponentially with the number of input variables. A
related problem is overfitting. Due to the
substantial amount of free parameters the system
may not only learn relevant features but noise as
well. The consequence is suboptimal performance
as the system looks not only for relevant features
but also for irrelevant noise patterns in novel
images. 

The problem of dimensionality and overfitting
has implications for studies reported in Chapter 8.
Discrimination performance is illustrated for
relatively few objects: 3 line stimuli in 9 locations,
7 faces in 9 locations, 3 faces from 7 different
views. VisNet has 1024 output units in the fourth
layer alone to establish an object representation. It
would be interesting to see how the system learns
and performs as it approaches at least half of its
theoretical capacity. The authors are suspiciously
unconcerned about training trials and phenomena
linked to perceptual learning. 

When VisNet was trained with 7 face stimuli
presented on a blank background and tested on a
cluttered background discrimination performance
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was good. Performance was poor however when
the faces were first learned on a cluttered
background and then tested on a blank background
(Stringer and Rolls, 2000). The authors concede
that segmentation through depth, motion and colour
is required as well as attention to perform well in
this task and refer to later chapters. But evidence
for recognition in cluttered scenes remains scarce
(see their Fig. 9.8 on page 342). 

Various network architectures are suggested that
can model high-level functions of object
recognition and attention (hierarchical feed-forward
competitive networks, recurrent attractor networks,
networks with top-down influence, inhibitory
pools, back-projections, etc). This brings about
additional complexity and degrees of freedom. It is
not surprising that these networks can perform with
very few objects after suitable training but what
can be generalised to novel input. How can we
falsify a particular architecture? The authors
occasionally derive predictions and conduct
simulations but mostly they illustrate the
capabilities of their network models without
thoroughly testing their systems.

The assumption that processing is confined to
spatial features is only a first step. In early stages
of processing the human visual system uses a
variety of dedicated receptors and filters. Different
cell types in LGN and V1 are known to extract not
only spatial information and colour but also
temporal aspects (DeAngelis et al.,1995). It has
been suggested that in addition to the ‘what’ and
‘where’ stream the medial temporal cortex
(MT/MST) constitutes a ‘when’ stream because it
mediates between dorsal and ventral stream (e.g.,
Kourtzi et al., 2001). The representation of moving
objects with features defined in space and time is
neglected in their models. Representation of
moving objects is limited to snapshots contiguous
in time. It seems reasonable to assume that motion
as well as depth processing contributes to
translation and view-invariance in object
recognition as the visual system is capable of
encoding and storing dynamic information of
complex moving objects such as biological motion. 

The book is inspiring and well written. Without
a doubt the cross talk between neuroscience and
computational modelling will continue and
advances in neurophysiology and the design of
neural networks will help to develop a more
unified architecture. Whether piecing together
modules of neural networks is sufficient to create

an integrated model of the visual system remains
questionable. It is an ambitious goal and
worthwhile to pursue but its limitations closely
resonate the deep problems encountered in artificial
intelligence. 

We do believe that Rolls and Deco opened the
black box to some extent. A number of
controversial ideas have been released which are
likely to stay with us for some time but not for
eternity. Even though network models can be
something of a black box themselves, the
combination of parallel and hierarchical processing
is probably the only way to overcome the
physiological constraints of an integrated visual
system. Rolls and Deco successfully demonstrate
how versatile neural network models can be and
how many puzzling phenomena of object
recognition and visual attention could be solved in
a general framework. This does not automatically
secure Rolls and Deco a place in the pantheon of
immortal neuroscientists but there is always Hope
at the bottom of the black box.  

Martin Lages and Alexander Dolia
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