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Abstract

We study gender discrimination of human faces using a coatioim
of psychophysical classification and discrimination ekpents together
with methods from machine learning. We reduce the dimeadityrof
a set of face images using principal component analysistterdtrain a
set of linear classifiers on this reduced representatinadlisupport vec-
tor machines (SVMs), relevance vector machines (RVMshétidinear
discriminant (FLD), and prototype (prot) classifiers) wshuman clas-
sification data. Because we combine a linear preprocesshbrliwear
classifiers, the entire system acts as a linear classifiewiab us to visu-
alise thedecision-imageorresponding to the normal vector of the separ-
ating hyperplanes (SH) of each classifier. We predict traféimale-to-
maleness transition along the normal vector for classifirsely mim-
icking human classification (SVM and RVM [1]) should be fastean
the transition along any other direction. A psychophysiiatrimina-
tion experiment using the decision images as stimuli is isterst with
this prediction.

1 Introduction

One of the central problems in vision science is to identify features used by human
subjects to classify visual stimuli. We combine machineresy and psychophysical tech-
nigues to gain insight into the algorithms used by humanesbjduring visual classifica-
tion of faces. Comparing gender classification performari¢eimans to that of machines
has attracted considerable attention in the past [2, 3,.4TB main novel aspect of our
study is to analyse the machine algorithms to make infereabeut the features used by
human subjects, thus providing an alternative to psychsiphyfeature extraction tech-
nigues such as the “bubbles” [6] or the noise classificatioage [7] techniques. In this
“machine-learning-psychophysics research” we first wig tnaachine learning classifiers
on the responses (labels) of human subjects to re-creakeithan decision boundaries by
learning machines. Then we look for correlations betweenhim& classifiers and sev-
eral characteristics of subjects’ responses to the stiruioportion correct, reaction times



(RT) and confidence ratings. Ideally this allows us to findopoeessor-classifier pairings
that are closely aligned with the algorithm employed by thenAn brain for the task at

hand. Thereafter we analyse properties of the machineatlos¢he human—in our case
support vector machines (SVMs), and to slightly lesser éegrelevance vector machines
(RVMs)—and make predictions about human behaviour basedamhine properties.

In the current study we extracta@ecision-imageontaining the information relevant for

classification by the machine classifiers. The decisiorgieht is the image corresponding
to a vectorw orthogonal to the SH of the classifier. The decision-image the same
dimensionality as the (input-) images—in our c256 x 256—whereas the normal vector
lives in the (reduced dimensionality) space after premsiog—in our case i200 x 1
after Principal Component Analysis (PCA). Second, weisé the classifiers to generate
novel stimuli by adding (or subtracting) various “amoun{s?) to a genderless face in
PCA space. The novel stimuli, imagdg)) are generated a§\) = PCA*)\”T“?”. We
predict that the female-to-maleness transition along gators normal to the SHgjsv
andwgryy, should be significantly faster than those along the norreefors of machine
classifiers that do not correlate as well with human subjeétgpsychophysical gender
discrimination experiment confirms our predictions: the#¢e-to-maleness axis of the
SVM and, to a smaller extent, RVM, are more closely alignethwhie human female-to-
maleness axis than those of the prototype (Prot) and a Histear discriminant (FLD)
classifier.

2 Preprocessing and Machine Learning Methods

We preprocessed the faces using PCA. PCA is a good prepoodasthe current con-
text since we have previously shown that in PCA-space stoomngplations exist between
man and machine [1]. Second, there is evidence that the P@regentation may be
biologically-plausible [8]. The face stimuli were takerofin the gender-balanced Max
Planck Institute (MPI) face databassomposed o200 greyscale256 x 256-pixel frontal
views of human faces, yielding a data matiixe R200%256° For the gender discrimina-
tion task we adhere to the following convention for the clatels:y = —1 for females
andy = +1 for males. We consider no dimensionality reduction and kadkp00 com-
ponents of the PCA. This implies that the reconstructiomefdata from the PCA analysis
is perfect and we can writef = XBT < X = EB whereE € R2%0%200 js the mat-
rix of the encodings (each row is a PCA vector in the space diiced dimensionality),
B € R200x256" j5 the orthogonal basis matrix ar¥l the centered data matrix. The com-
bination of the encoding matrik with the true class labelg of the MPI database yields
thetrue dataset, whereas its combination with the class lahglsby the subjects yields
the subject dataset.

To model classification in human subjects we use methodsdrgrarvised machine learn-
ing. In particular, we consider linear classifiers wheressification is done using a SH
defined by its normal vectoif and offsetb. Furthermore the normal vectar of our
classifiers can then be written as a linear combination ofrthat patternsz; with suit-
able coefficientsy; asw = ), a;7;. We define the distance of a pattern to the SH as

§(z) = LD Note that in our experiments thi are the PCA coefficients of the im-

(]l
ages, thatig; € R2°°, whereas the images themselves af@3tf”. For the subject dataset
we chose the mean values@fb andw. over all subjects.

1The MPI face database is locatech#tp://faces.kyb.tuebingen.mpg.de



2.1 Machine Classifiers

The Support Vector MachingSVM, [9, 10]) is a state-of-the-art maximum margin al-
gorithm based on statistical learning theory. SVMs havenauitive geometrical interpret-
ation: they classify by maximizing the margin separatinghbdasses while minimizing
the classification error.

The Relevance Vector Machin®VM, [11]) is a probabilistic Bayesian classifier. It op-
timises the expansion coefficients of a SV-style decisiowefion using a hyperprior which
favours sparse solutions.

Common classifiers in neuroscience, cognitive science apchplogy are variants of the
Prototype classifie(Prot, [12]). Their popularity is due to their simplicityhey classify
according to the nearest mean-of-class prototype; in thelsst form all dimensions are
weighted equally but variants exist that weight the dimensiinversely proportional the
class variance along the dimensions. As we cannot estinesge eariance along all 200
dimensions from only 200 stimuli, we chose to implement tineptest Prot with equal
weight along all dimensions.

TheFisher linear discriminant classifigf-LD, [13]) finds a direction in the dataset which
allows best linear separation of the two classes. This tiineés then used as the normal
vector of the separating hyperplane. In fact, FLD is argyatiore principled whitened
variant of the Prot classifier: Its weight vector can be writass = Sy, (jii; —ji— ), where
Sy is the within class covariance matrix of the two classes, andre the class means.
Consequently, if we disregard the constant oftsete can write the decision function as

(W] F) = (Sy (fiy — ji-)|T) = (S;VI/Q(;Z+ - ﬁ_)|S;V1/2:?:’), which is a prototype classifier
using the prototypeg.. after whitening the space Wilﬁv_vl/Q.

2.2 Decision-Images and Generalised Portraits

We combine the linear preprocessor (PCA)= E B and the linear classifier (SVM, RVM,
Prot, FLD)y (%) = (&|Z) + b to yield a linear classification systeri:= @7 ET + b where

b = b1. We define thelecision-imageas the vectoh effectively used for classification as:
7=WTXT +b. We then havet” ET = WTXT = ¢TB-TXT = WTXT whereB~!

is the pseudo-inverse @. For the last condition, we obtain a definition of the decisio
imageW = B~lw € R?% . In the case of PCA wher8~! = BT, we simply have
W = BTw.

Figure 1 shows the decision-imagééfor the four classifiers, SVM, RVM, Prot and FLD.
The decision-images in the first row are those obtained itthssifiers are trained on the
true dataset; those in the second row if trained on the sublfaset, marked on the right
hand side of the figure by “true data” and “subj data”, respelit Decision-images are
represented by a vector pointing to the positive class andhtes be expected to have male
attributes (the negative of it looks female). Both dark @gbtlregions are more important
for classification than the grey regions. Inspection of theislon-images is instructive. For
the prototype learner, the eye and beard regions are mostiamh. SVM, RVM and FLD
have somewhat more “holistic” decision-images. Equalltrinctive is the comparison of
the optimal decision-images of the machine classifierswane (0 to 1% classification
error for SVM, RVM and FLD) and those trained on the subjebkla in row two (the
average subject error is 16 % when classifying the facesndmhines attempt to re-create
the decision boundaries of the subjects and thus show similsclassification errors).
The decision-images for the subject dataset are slightiserfface-like” and less holistic
than those obtained using the true labels; the eye and megtons are more strongly
emphasised. This trend is true across all classifiers. Tigigest that human subjects base
their gender classification strongly on the eye and moutlonsgof the face—clearly a
sub-optimal strategy as revealed by the more holistic tatastt SVM, RVM and FLD



decision-images.

A decision-image thus represents a way to extract the viaies and features used by hu-
man subjects during visual classification without usngriori assumptions or knowledge
about the task at hand.

SVM RVM Prot FLD trained
on

true
data

subj
data

Figure 1: Decision-imagelzf/ for each classifier for both the true and the subject databet;
images are rescaled {0, 1] and their means set @8 for illustration purposes (different
scalers for differentimages).

We can also defingeneralised portraits Wy. The generalised portraiﬁsf/i can be
seen as “summary” faces in each class reflecting the deaislerof the classifier. They
can be viewed as an extension of the concept of a prototypey dhe the prototype
of the faces the classifier bases its decision on. We note«dthean be written as:
W= 3 06T = D Goen(an=+1 %Ti — D j|sign(as)=—1 || Ti- This allows to define

the generalized portraits &, which are computed by inverting the PCA transformation
on the patterngi,. = M The vectoniy is constrained to be in the convex

i| sign(a;)=+1 %
hull of the respective datg in order to yield a “viewable” fpait. The generalised por-
traits for the SVM, RVM and FLD together with the Prot, whene prototype is the same
as the generalised portrait, are shown in figure 2. We alse thatw can be written as

W= Zz aifi = Zz\ sign(a;)=+1 aifi - Zz\ sign(a;)=—1 |al|fl

The generalised portraits can be associated with the cl:(nI:I/T/Jr are males whereas

W_ are females. The SVM and the FLD use patterns close to the GEldssification
and hence their decision-images appear androgynous, afhBret and RVM tend to use
patterns distant from the SH resulting in more female an@meheralised portraits. Com-
parison of the optimal, true, generalised portraits to¢tmased on the subject labels shows
that classification has become more difficult: generalisadrgits have moved closer to
each other in gender space, narrowing the distance betleatesses and thereby dimin-
ishing the gender typicality of the generalised portraitsdll classifiers.

3 Human Gender Discrimination along the Decision-Image Axg

The decision-images introduced in section 2.2 are basetypam machine learning, albeit
on labels provided by human subjects in the case of the sudgémset. Our previous paper
[1] reported that the subjects’ responses to the faces—eptiop correct, reaction times

2This term was introduced by [14] with the idea in mind that wimined on a set of portraits of
members of a family, one would obtain a “generalized” pdtrteaich captures the essential features
of the family as a superposition of all family members.
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Figure 2: Generalised portrait/i’i for each classifier for both the true and the subject
dataset; all images are rescaled(ol| and their means set @8 for illustration purposes
(different scalers for different images). [Unfortunatéte downsampling (low-pass filter-
ing) of the faces necessary to fit them in the figure makes alfdhes somewhat more
androgynous than they are viewed at full resolution.]

(RT) and confidence ratings—correlated very well with thetatice of the stimuli to their
separating hyperplane (SH) for support and relevance vew@ohines (SVMs, RVMs) but
not for simple prototype (Prot) classifier. If these cortielas really implied that SVM
and RVM capture some crucial aspects of human internal fgmesentation the following
prediction must hold: already for smaN| Isyai (M) andIzyam (M) should look male/female
whereag )| Ip,ot(A) @andIrp(N) should only be perceptually male/female for larger
In other words: the female-to-maleness axis of SVM and RVigusth be closely aligned
to those of our subjects whereas that is not expected to lea#eefor FLD and Prot.

3.1 Psychophysical Methods

Four observers—one of the authors (FAW) with extensive lpsphysical training and
three naive subjects paid for their participation—took paa standard, spatial (left versus
right) two-alternative forced-choice (2AFC) discrimiimat experiment. Subjects were
presented with two face5(—\) and I(\) and had to indicate which face looked more
male. Stimuli were presented against the mean luminanced(&@) of a carefully lin-
earised Clinton Monoray CRT driven by a Cambridge Reseayskeths VSG 2/5 display
controller. Neither male nor female faces changed the me&ambance. Subjects viewed
the screen binocularly with their head stabilised by a hestdThe temporal envelope of
stimulus presentation was a modified Hanning window (a dagisine function with rise
and fall times of 500 ms and a plateau time of 1000 ms). Thegiitity of the female
face being presented on the left was 0.5 on each trial and\a@rsendicated whether they
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Figure 3: a. Shows raw data and fitted psychometric functionene observer (FAW).

b—e.

For each of four observers the threshold elevationferRVM, Prot and FLD

decision-image relative to that of the SVM; results are shdov both 75 and 90% cor-

rect together with 68%-Cls.

f. Same as in b—e but pooled a@bservers.



thought the left or right face was female by touching the egponding location on a Elo
TouchSystems touch-screen immediately in front of theldismo feedback was provided.

Trials were run in blocks of 256 in which eight repetitions @fjht stimulus levels
(A1 ... = Xg) for each of the four classifiers were randomly intermixetie hiaive sub-
jects required approximately 2000 trials before their perfance stabilised; thereafter they
did another five to six blocks of 256 trials. All results pretesl below are based on the
trials after training; all training trials were discarded.

3.2 Results and Discussion

Figure 3a shows the raw data and fitted psychometric furefionone of the observers.
Proportion correct gender identification on the y-axis istgeld against on the x-axis
on semi-logarithmic coordinates. Psychometric functiaese fitted using the psignifit
toolbox for Matlab which implements the constrained maximlikelihood method de-
scribed in [15]. 68%-confidence intervals (Cls), indicabsdhorizontal lines at 75 and
90-% correct in figure 3a, were estimated by the BCa bootstreihod also implemented
in psignifit [16]. The raw data appear noisy because eachptatd is based on only eight
trials. However, none of fitted psychometric functionsddilvarious Monte Carlo based
goodness-of-fit tests [15].

To summarise the data we extracted therequired for two performance levels
(“thresholds”), 75 and 90% correct, together with theiresponding 68%-Cls. Figure 3b—
e shows the thresholds for all four observers normalisedsky; (the “threshold elevation”
re. SVM). Thus values larger than 1.0 for RVM, Prot and FLDidgat¢k that more of the
corresponding decision-images had to be added for the hoivservers to be able to dis-
criminate females from males. In figure 3f we pool the dat@sxpbservers as the main
trend, poorer performance for Prot and FLD compared to SVMRWM, is apparent for
all four observers. The difference between SVM and RVM isl§rgaing along the direc-
tion of both Prot and FLD, however, results in a much "slowtegthsition from female-to-
maleness.

The psychophysical data are very clear: all observers reguarger\ for Prot and FLD;
the length ratio ranges from 1.2 to nearly 3.0, and averapasound 1.7 across observers.
In the pooled data all the differences are statisticallyiicant but even at the individual
subject level all differences are significant at the 90%gqrenfince level, and five of eight
are significant at the 75% performance level. It thus apptbatsSVM and RVM capture
more of the psychological face-space of our human obsetkars Prot and FLD. From
our results we cannot exclude the possibility that someratiiection might have yielded
even steeper psychometric functions, i.e. faster fenmledleness transitions, but we can
conclude that the decision-images of SVM and RVM are clogehé decision-images
used by human subjects than those of Prot and FLD. This iglgxa predicted by the
correlations between proportion correct, RTs and confideatings versus distance to the
hyperplane reported in [1]—high correlations for SVM and\W®Mow correlations for Prot.

4 Summary and Conclusions

We studied classification and discrimination of human fdxth psychophysically as well
as using methods from machine learning. The combinatiome#t preprocessor (PCA)
and classifier (SVM, RVM, Prot and FLD) allowed us to visualisedecision-imagesf

a classifier corresponding to the vector normal to the SHettassifier. Decision-images
can be used to determine the regions of the stimuli most Liafelassification simply

by analysing the distribution of light and dark regions ie thecision-image. In addition
we defined thgeneralised portrait$o be the prototypes of all faces used by the classifier
to obtain its classification. For the SVM this is the weighteetrage of all the support



vectors (SVs), for the RVM the weighted average of all thevahce vectors (RVs), and
for the Prot it is the prototype itself. The generalised rots are, like the decision-images,
another useful visualisation of the categorisation athariof the machine classifier.

However, the central result of our paper is the corrobonatib the machine-learning-

psychophysics research methodology. In the machineitegpsychophysics research we
substitute a very hard to analyse complex system (the humazam) by a reasonably com-

plex system (learning machine) that is complex enough ttucassentials of our human
subjects’ behaviour but is nonetheless amenable to clasgsas From the analysis of

the machines we then derive predictions for human subjelishmve subsequently test
psychophysically.

Given the success in predicting the steepness of the fetmrateale transition of théisyy

-axis we believe that the decision—ima@@m captures some of the essential character-
istics of the human decision algorithm.
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