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Abstract

 

The psychometric function relates an observer’s performance to an independent variable,

usually a physical quantity of an experimental stimulus. Even if a model is successfully fit

to the data and its goodness–of–fit is acceptable, experimenters require an estimate of

variability of the parameters to assess whether differences across conditions are signifi-

cant. Accurate estimates of variability are difficult to obtain, however, given the typically

small size of psychophysical datasets: traditional statistical techniques are only asymptot-

ically correct and can be shown to be unreliable in some common situations. Here and in

our companion paper (Wichmann & Hill, 2000) we suggest alternative statistical tech-

niques based on Monte Carlo resampling methods. The current paper’s principal topic is

the estimation of the variability of fitted parameters and derived quantities such as

thresholds and slopes: first, we outline the basic bootstrap procedure and argue in favour

of the parametric as opposed to non–parametric bootstrap. Second, we describe how the

bootstrap bridging assumption, on which the validity of the procedure depends, can be

tested. Third, we show how one’s choice of sampling scheme (the placement of sample

points on the stimulus axis) strongly affects the reliability of bootstrap confidence inter-

vals and we make recommendations on how to sample the psychometric function effi-

ciently. Fourth, we show that, under certain circumstances, the (arbitrary) choice of the

distribution function chosen can exert an unwanted influence on the size of the bootstrap

confidence intervals obtained, and we make recommendations on how to avoid this

influence. Finally, we introduce improved confidence intervals (bias corrected and accel-

erated) which improve on the parametric and percentile–based bootstrap confidence

intervals previously used. Software implementing our methods is available.
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Outline

The performance of an observer on a psychophysical task is typically summarized by

reporting one or more response thresholds—stimulus intensities required to produce a

given level of performance—and by a characterization of the rate at which performance

improves with increasing stimulus intensity. These measures are derived from a psycho-

metric function, which describes the dependence of an observer’s performance on some

physical aspect of the stimulus.

Fitting psychometric functions is a variant of the more general problem of modelling

data. Modelling data is a three–step process: First, a model is chosen and the parameters

are adjusted to minimize the appropriate error–metric or loss function. Second, error

estimates of the parameters are derived and, third, the goodness–of–fit between model

and data is assessed. This paper is concerned with the second of these steps, the estima-

tion of variability in fitted parameters and in quantities derived from them. Our compan-

ion paper (Wichmann & Hill, 2000) illustrates how to fit psychometric functions avoid-

ing bias resulting from stimulus–independent lapses and how to evaluate goodness–of–fit

between model and data.

We advocate the use of Efron's bootstrap method, a particular kind of Monte Carlo tech-

nique to the problem of estimating the variability of parameters, thresholds and slopes of

psychometric functions (Efron, 1979; 1982; Efron & Gong, 1983; Efron & Tibshirani,

1991; 1993). Bootstrap techniques are not without their own assumptions and potential

pitfalls: in the course of this paper we shall discuss these, and examine their effect on the

estimates of variability we obtain. We describe and examine the use of parametric boot-

strap techniques in finding confidence intervals for thresholds and slopes. We then

explore the sensitivity of the estimated confidence interval widths to (a) sampling

schemes, (b) mismatch of the objective function and (c) accuracy of the originally fitted

parameters. The last of these is particularly important since it provides a test of the valid-

ity of the bridging assumption on which the use of parametric bootstrap techniques rely.
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Finally we recommend, based on the theoretical work of others, the use of a technique

called bias–correction with acceleration (BCa) to obtain stable and accurate confidence

interval estimates.

Background

The psychometric function

Our notation will follow the conventions we have outlined in Wichmann and Hill (2000).

A brief summary of terms follows.

Performance on K blocks of a constant-stimuli psychophysical experiment can be

expressed using three vectors, each of length K. x denotes the stimulus values used, n

denotes the numbers of trials performed at each point, and y denotes the proportion of

correct responses (in n-AFC experiments) or positive responses (single-interval or "yes/

no" experiments) on each block. We often use N to refer to the total number of trials in

the set, .

The number of correct responses yini in a given block i is assumed to be the sum of ran-

dom samples from a Bernoulli process with probability of success pi. A psychometric

function  is the function that relates the stimulus dimension x to the expected

peformance value p.

A common general form for the psychometric function is: 

. (1)

The shape of the curve is determined by our choice of a functional form for F, and by the

four parameters , to which we shall refer collectively using the parameter vec-

tor . F is typically a sigmoidal function such as the Weibull, cumulative Gaussian, logis-

tic or Gumbel. We assume that F describes the underlying psychological mechanism of

interest: the parameters � and � determine the lower and upper bounds of the curve,

which are affected by other factors. In yes/no paradigms � is the "guess rate" and � the

N ni��

� x( )

� x � � � �,,,;( ) � 1 �� ��( )F x � �,;( )	�

� � � �,,{ , }

�

4



 

F.A. Wichmann 

 

and

 

 N.J. Hill The Psychometric Function II

                                    
"miss rate". In n-AFC paradigms � usually reflects chance peformance and is fixed at the

reciprocal of the number of intervals per trial, and � reflects the stimulus–independent

error rate or “lapse rate”—see Wichmann and Hill (2000) for more details.

When a parameter set has been estimated, we will usually be interested in measure-

ments of the threshold (displacement along the x–axis) and slope of the psychometric

function. We calculate thresholds by taking the inverse of F at a specified probability level,

usually 0.5. Slopes are calculated by finding the derivative of F with respect to x, evaluated

at a specified threshold. Thus we shall use the notation threshold0.8, for example, to mean

, and slope0.8 to mean dF/dx evaluated at . When we use the terms “threshold”

and “slope” without a subscript we mean threshold0.5 and  slope0.5: in our 2-AFC exam-

ples this will mean the stimulus value and slope of F at the point where performance is

approximately 75% correct, although the exact performance level is affected slightly by

the (small) value of �.

Where an estimate of a parameter set is required, given a particular data set, we use a

maximum–likelihood  search algorithm, with Bayesian constraints on the parameters

based on our beliefs about their possible values. For example, � is constrained within the

range [0, 0.06], reflecting our belief that normal, trained observers do not make stimulus-

independent errors at high rates. We describe our method in detail in Wichmann and Hill

(2000).

Estimates of variability: asymptotic versus Monte Carlo methods

In order to be able to compare response thresholds or slopes across experimental condi-

tions, experimenters require a measure of their variability, which will depend on the

number of experimental trials taken and their placement along the stimulus axis. Thus a

fitting procedure must not only provide parameter estimates, but also error estimates for

those parameters. Reporting error estimates on fitted parameters is unfortunately not

very common in psychophysical studies. Sometimes Probit Analysis has been used to pro-

vide variability estimates (Finney, 1952; Finney, 1971). In Probit Analysis an iteratively

F0.8
1�

F0.8
1�
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reweighted linear regression is performed on the data once they have undergone transfor-

mation through the inverse of a cumulative Gaussian function. Probit Analysis relies,

however, on asymptotic theory: maximum–likelihood estimators are asymptotically

Gaussian, allowing the standard deviation to be computed from the empirical distribu-

tion (Cox & Hinkley, 1974). Asymptotic methods assume that the number of data points

is large—unfortunately, however, the number of points in a typical psychophysical data

set is small (between 4 and 10, with between 20 and 100 trials at each) and in these cases,

substantial errors have accordingly been found in the probit estimates of variability (Fos-

ter & Bischof, 1987; Foster & Bischof, 1991; McKee, Klein, & Teller, 1985). For this reason

asymptotic theory methods are not recommended for estimating variability in most real-

istic psychophysical settings.

An alternative method, the bootstrap (Efron, 1979; Efron, 1982; Efron & Gong, 1983;

Efron & Tibshirani, 1991; Efron & Tibshirani, 1993), has been made possible by the

recent sharp increase in the processing speed of desktop computers. The bootstrap

method is a Monte Carlo resampling technique relying on a large number of simulated

repetitions of the original experiment. It is potentially well suited to the analysis of psy-

chophysical data because its accuracy does not rely on large numbers of trials as do meth-

ods derived from asymptotic theory (Hinkley, 1988). We apply the bootstrap to the prob-

lem of estimating the variability of parameters, thresholds and slopes of psychometric

functions, following Maloney (1990), Foster and Bischof (1987; 1991; 1997) and Treut-

wein (1995; Treutwein & Strasburger, 1999).

The essence of Monte Carlo techniques is that a large number, B, of “synthetic” data sets

, … ,  are generated. For each data set , the quantity of interest 
 (threshold

or slope, for example) is estimated to give . The process for obtaining  is the same

as that used to obtain the first estimate . Thus, if our first estimate was obtained by

, where  is the maximum–likelihood parameter estimate from a fit to the orig-

y1
� yB

� yi
�


i
ˆ � 
i

ˆ �


̂


̂ t �̂( )� �̂
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inal data y, so the simulated estimates  will be given by , where  is

the maximum–likelihood parameter estimate from a fit to the simulated data .

Sometimes it is erroneously assumed that the intention is to measure the variability of

the underlying 
 itself. This cannot be the case, however, because repeated computer

simulation of the same experiment is no substitute for the real repeated measurements

this would require. What Monte Carlo simulations can do is estimate the variability

inherent in (i) our sampling as characterized by the distribution of sample points (x) and

the size of the samples (n), and (ii) any interaction between our sampling strategy and

the process used to estimate 
: i.e. assuming a model of the observer’s variability, fitting a

function to obtain  and applying .

Bootstrap data sets: non-parametric and parametric generation

In applying Monte Carlo techniques to psychophysical data, we require, in order to

obtain a simulated data set , some system that provides generating probabilities p for

the binomial variates , … , . These should be the same generating probabilities

that we hypothesize to underlie the empirical data set y.

Efron’s bootstrap offers such a system. In the non–parametric bootstrap method we

would assume p=y. This is equivalent to resampling, with replacement, the original set of

correct and incorrect responses on each block of observations j in y to produce a simu-

lated sample . 

Alternatively, a parametric bootstrap can be performed. In the parametric bootstrap

assumptions are made about the generating model from which the observed data are

believed to arise. In the context of estimating the variability of parameters of psychomet-

ric functions, the data are generated by a simulated observer whose underlying probabili-

ties of success are determined by the maximum–likelihood fit to the real observer's data

( ). Thus where the non–parametric bootstrap uses y, the parametric

bootstrap uses  as generating probabilities p for the simulated data sets.


i
ˆ � 
i

ˆ � t �̂i
�( )� �̂i

�

yi
�

�̂ t �̂( )

yi
�

yi1
� yiK

�

yij
�

y fit � x �̂;( )�

y fit
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As is frequently the case in statistics, the choice of parametric versus non–parametric

analysis concerns how much confidence one has in one’s hypothesis about the underlying

mechanism that gave rise to the raw data as against the confidence one has in the raw

data’s precise numerical values. Choosing the parametric bootstrap for the estimation of

variability in psychometric function fitting appears the natural choice for several reasons.

First and foremost, in fitting a parametric model to the data one has already committed

oneself to a parametric analysis. No additional assumptions are required to perform a

parametric bootstrap beyond those required for fitting a function to the data: specifica-

tion of the source of variability (binomial variability) and the model from which the data

are most likely to come (parameter vector � and distribution function F). Second, given

the assumption that data from psychophysical experiments are generated from Bernoulli

processes, we expect data to be variable (“noisy”). The non–parametric bootstrap treats

every data point as if its exact value reflected the underlying mechanism1. The parametric

bootstrap, on the other hand, allows the data points to be treated as noisy samples from a

smooth and monotonic function, determined by � and F.

One consequence of the two different bootstrap regimes is as follows: Assume two

observers performing the same psychophysical task at the same stimulus intensities x,

and assume that it happens that the maximum–likelihood fits to the two data sets yield

identical parameter vectors �. Given such a scenario, the parametric bootstrap returns

identical estimates of variability for both observers, since it only depends on x , � and F.

The non–parametric bootstrap’s estimates would, on the other hand, depend on the indi-

vidual differences between the two data sets y1 and y2—something we consider uncon-

vincing: a method for estimating variability in parameters and thresholds should return

identical estimates for identical observers performing the identical experiment.2

1Under different circumstances and in the absence of a model of the noise and/or the process from 

which the data stem, this is frequently the best one can do.
8
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Treutwein (1995) and Treutwein and Strasburger (1999) used the non-parametric

bootstrap, and Maloney (1990) used the parametric bootstrap, to compare bootstrap

estimates of variability with real-word variability in the data of repeated psychophysical

experiments. All of the above studies found bootstrap studies to be in agreement with the

human data. Keeping in mind that the number of repeats in the above quoted cases was

small, this is nonetheless encouraging, suggesting that bootstrap methods are a valid

method of variability estimation for parameters fitted to psychophysical data.

Testing the bridging assumption

Asymptotically, that is for large K and N,  will converge towards  since maximum–

likelihood estimation is asymptotically unbiased3 (Cox & Hinkley, 1974; Kendall & Stu-

art, 1979). For the small K typical of psychophysical experiments, however, we can only

hope that our estimated parameter vector  is “close enough” to the true parameter vec-

tor  for the estimated variability in the parameter vector  obtained by the bootstrap

method to be valid. We call this the bootstrap bridging assumption.

Whether  is indeed sufficiently close to  depends, in a complex way, on the sam-

pling, that is the number of blocks of trials (K), the numbers of observations at each

block of trials (n), and the stimulus intensities (x) relative to the true parameter vector .

Maloney (1990) summarized these dependencies for a given experimental design by plot-

ting the standard deviation of  as a function of � and � as a contour plot (Maloney,

1990, Fig. 3, p. 129). Similar contour plots for the standard deviation of , and for bias in

both  and , could be obtained. If, due to small K, bad sampling, or otherwise, our

2This is only true, of course, if we have reason to believe that our model actually is a good model of the 

process under study. This important issue is taken up in the section on goodness–of–fit in our 

companion paper.
3This only holds if our model is correct: maximum–likelihood parameter estimation for two–parame-

ter psychometric functions to data from observers who occasionally lapse, i.e. display non–station-

arity, is asymptotically biased, as we show in our companion paper, together with a method to 

overcome such bias (Wichmann & Hill, 2000).

�̂ �

�̂

� �̂

�̂ �

�

�̂

�̂

�̂ �̂
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estimation procedure is inaccurate, the distribution of bootstrap parameter vectors

, … , —centred around —will not be centred around true . As a result the

estimates of variability are likely to be incorrect unless the magnitude of the standard

deviation is similar around  and  despite the fact that the points are some distance

apart in parameter space.

One way to assess the likely accuracy of bootstrap estimates of variability is to follow

Maloney and to examine the local flatness of the contours around , our best estimate of

. If the contours are sufficiently flat then the variability estimates will be similar, assum-

ing that the true  is somewhere within this flat region. However, the process of local

contour estimation is computationally expensive as it requires a very large number of

complete bootstrap runs for each data set.

A much quicker alternative is the following: Having obtained , and performed a boot-

strap using  as the generating function, we move to eight different points

, … ,  in �–� space. Eight Monte Carlo simulations are performed, using

, … ,  as the generating functions to explore the variability in those parts of the

parameter space (only the generating parameters of the bootstrap are changed: x remains

the same for all of them). If the contours of variability around  are sufficiently flat, as we

hope they are, then confidence intervals at , … ,  should be of the same magnitude

as those obtained at . Prudence should lead us to accept the largest of the nine confi-

dence intervals obtained as our estimate of variability.

A decision has to be made as to which eight points in �–� space to use for the new set of

simulations. Generally, provided that the psychometric function is at least reasonably

well sampled, the contours vary smoothly in the immediate vicinity of , so that the pre-

cise placement of the sample points , … ,  is not critical. One suggested and easy

way to obtain a set of additional generating parameters is shown in Fig. 1.

— Insert Figure 1 here —

�1
ˆ � �B

ˆ � �̂ �

�̂ �

�̂

�

�

�̂

� x �̂;( )

�1 �8

�1 �8

�̂

�1 �8

�̂

�

�1 �8
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Figure 1 shows B=2000 bootstrap parameter pairs as dark filled circles plotted in �–�

space. Simulated data sets were generated from �gen with the Weibull as F and �gen={10,

3, 0.5, 0.01}; the sampling scheme no. 7 (triangles; see Fig. 2) was used and N  set to 480

(ni=80). The large central triangle at (10, 3) marks the generating parameter set; the solid

and dashed line segments adjacent to the x– and y–axes mark the 68% and 95% confi-

dence intervals for � and �, respectively4. In the following we shall use WCI to stand for

width of confidence interval, with a subscript denoting its coverage percentage, i.e. WCI68

denotes the width of the 68 % confidence interval5. The eight additional generating

parameter pairs , … ,  are marked by the light triangles. They form a rectangle

whose sides have length WCI68 in � and �. Typically, this central rectangular region con-

tains approximately 50% of all �–� pairs and could thus be viewed as a crude joint 50%–

confidence region for � and �. A coverage percentage of 50% appears to us a sensible

compromise between erroneously accepting the estimate around , potentially underes-

timating the true variability, and performing additional bootstrap replications too far in

the periphery where variability becomes erroneously inflated due to poor sampling. In

terms of statistical hypothesis testing, we try to balance Type I and II errors: small error

bars increase Type I errors (falsely rejecting a null–hypothesis, H0, that there is no differ-

ence between two experimental conditions), inflated error bars decrease the power of the

test and increase Type II errors (failing to reject H0).

Monte Carlo Simulations

In both our papers we use only the specific case of the 2-AFC paradigm in our examples:

thus � is fixed at 0.5. In our simulations, where we must assume a distribution of “true”

4Confidence intervals here are computed by the bootstrap percentile method: the 95% confidence 

interval for �, for example, was determined simply by , where  denotes 

the 100n–th percentile of the bootstrap distribution .
568% was chosen because this is the approximate coverage of the familiar “standard error bar” denot-

ing one’s original estimate ± one standard deviation of a Gaussian.

�� 0.025( ) �� 0.975( ),[ ] �� n( )

��

�1 �8

�̂
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generating probabilities, we always use the Weibull function in conjunction with the

same fixed set of generating parameters �gen: {�gen=10, �gen=3, �gen=0.5, �gen=0.01}.

In our investigation of the effects of sampling patterns we shall always use K=6 and ni

constant, that is, 6 blocks of trials with the same number of points in each block. The

number of observations per point, ni, could be set to 20, 40, 80 or 160, and with K=6, this

means that the total number of observations N could take the values 120, 240, 480 and

960.

We have introduced these limitations purely for the purposes of illustration, to keep our

explanatory variables down to a manageable number. We have found, in many other sim-

ulations, that in in most cases this is done without loss of generality of our conclusions.

The effects of sampling schemes and number of trials

One of our aims in this study was to examine the effect of N and one’s choice of sample

points x on both the size of one’s confidence intervals for  and their sensitivity to errors

in .

Seven different sampling schemes were used, each dictating a different distribution of

data points along the stimulus axis; they are the same schemes as used and described in

Wichmann and Hill (2000), and they are shown in Fig. 2. Each horizontal chain of sym-

bols represents one of the schemes, marking the stimulus values at which the six sample

points are placed. The different symbol shapes will be used to identify the sampling

schemes in our results plots. To provide a frame of reference, the solid curve shows the

psychometric function used, i.e. , with the 55%, 75% and

95% performance levels marked by dotted lines. 

— Insert Figure 2 here —

As we shall see, even for a fixed number of sample points and a fixed number of trials

per point, biases in parameter estimation and goodness–of–fit assessment (companion


̂

�̂

0.5 0.5F x �gen �gen,{ };( )	
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paper) as well as the width of confidence intervals (this paper), all depend markedly on

the distribution of stimulus values x.

Monte Carlo data sets were generated using our seven sampling schemes shown in Fig.

2 using the generation parameters �gen, as well as N and K as specified above. A maxi-

mum–likelihood fit was performed on each simulated data set to obtain bootstrap

parameter vectors  from which we subsequently derived the x–values corresponding

to threshold0.5 and threshold0.8 as well as to the slope. For each sampling scheme and

value of N a total of nine simulations were performed: one at �gen  and eight more at

points, , … , , as specified in our section on the bootstrap bridging assumption.

Thus, each of our 28 conditions (7 sampling schemes x 4 values of N) required 9 x 2000

simulated datasets, for a total of 304,000 simulations, or 2.268 x 108 simulated 2–AFC tri-

als.

Figures 3, 4 and 5 show the results of the simulations dealing with slope0.5, threshold0.5

and threshold0.8, respectively. The left panel of each figure plots the WCI68 of the estimate

under consideration as a function of N. Data for all seven sampling schemes are shown

using their respective symbols. The right hand panel plots, as a function of N, the maxi-

mal elevation of the WCI68 encountered in the vicinity of �gen , that is 

max{WCI�1/WCI�gen, … , WCI�8/WCI�gen}. The elevation factor is an indication of the

sensitivity of our variability estimates to errors in the estimation of �. The smaller it is,

the better.

— Insert Figure 3 here —

The left panel of Fig. 3 shows the WCI68 around the median estimated slope. Clearly,

the different sampling schemes have a profound effect on the magnitude of the confi-

dence intervals for slope estimates. For example, in order to ensure that the WCI68 is

approximately 0.06, one requires nearly 960 trials if using sampling s1 or s4. Sampling

schemes s3 or s7, on the other hand, require only around 300 trials to achieve similar

�̂�

�1 �8
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confidence interval width. The important difference that makes s3 and s7 more efficient

than s1 and s4 is the presence of samples at high predicted performance values (p≥0.9)

where binomial variability is low and thus the data constrain our maximum–likelihood

fit more tightly. The right panel of Fig. 3 illustrates the complex interactions between dif-

ferent sampling schemes, N, and the stability of the bootstrap estimates of variability as

indicated by the local flatness of the contours around �gen . A perfectly flat local contour

would result in the horizontal line at 1. Sampling scheme s3 is well–behaved for N≥240,

its maximal elevation being below 1.5. For N=120, however, elevation rises sharply to

near 3. Similarly, s5 is well–behaved for N≥ 480, but its bootstrap estimate of the WCI68

around the slope for N = 120 is extremely unreliable. Other schemes, like s1, s2, or s6,

never rise above an elevation of 2 regardless of N. It is important to note that the magni-

tude of WCI68 at �gen  (left panel) is by no means a good predictor of the stability of the

estimate, as indicated by the sensitivity factor (right panel).

— Insert Figure 4 here —

— Insert Figure 5 here —

Figure 4, showing the equivalent data for the estimates of threshold0.5, also illustrates

that some sampling schemes make much more efficient use of the experimenter’s time by

providing WCI68’s a factor of 1.6 more compact than others.

Two aspects of the data shown in the right panel of Fig. 4 are important. First, the sam-

pling schemes fall into two distinct classes: five of the seven sampling schemes are almost

ideally well–behaved with elevations barely reaching 1.4 even for small N; the remaining

two, on the other hand, behave poorly with elevations in excess of 3 for N=240 or below.

The two unstable sampling schemes, s1 and s4, are those that do not include at least a sin-

gle sample point at p ≥0.95 (see Fig. 2). It thus appears crucial to include at least one sam-

ple point at p ≥0.95 to make one’s estimates of variability robust to small errors in ,

even if the threshold of interest, as in our example, has a p of only approximately 0.75.

�̂
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Second, s1 is prone to lead to Type I errors if the sensitivity analysis (or bootstrap bridg-

ing assumption test) is not carried out: the WCI68 is unstable in the vicinity of �gen  even

though WCI68 is small at �gen .

Figure 5 is similar to Fig. 4 except that it shows the WCI68 around threshold0.8. The

trends found in Fig. 4 are even more exaggerated here: The sampling schemes without

high sampling points (s1, s4) are unstable to the point of being meaningless for N<480.

In addition, their WCI68 is inflated relative to that of the other sampling schemes even at

�gen .

The results of the Monte Carlo simulations are summarized in Table 1. The columns of

Table 1 correspond to the different sampling schemes, marked by their respective sym-

bols. The first four rows contain the WCI68 at threshold0.5 for N=120, 240, 480 and 960;

similarly, the next four rows contain the WCI68 at threshold0.8 and the following four

those for the slope0.5. Each entry in the table corresponds to the largest of the WCI68’s

measurements at �gen  and , … ,  for a given sampling scheme and N; in terms of

Figures 3, 4 and 5, it is the product of the value for a given WCI68 in the left panel multi-

plied by the appropriate elevation factor of its right panel. This quantity we denote as

MWCI68, standing for maximum width of the 68% confidence interval. The scheme with

the lowest MWCI68 in each row is given the score 100. The others on the same row are

given proportionally higher scores, to indicate their MWCI68 as a percentage of the best

scheme’s value. The bottom three rows of Table 1 contain summary statistics of how well

the different sampling schemes do across all twelve estimates.

— Insert Table 1 here —

Inspecting Table 1 reveals that the sampling schemes fall into three categories. By a long

way worst are sampling schemes s1 and s4 with mean and median MWCI68>200%. Sec-

ond come three sampling schemes with medians and means between 120% and 140%—

s2, s5 and s6. Each of these has at least one sample at p ≥0.95. s6 clearly demonstrates the

importance of this high sample point. Comparing s1 and s6, s6 is identical to scheme s1

�1 �8
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except that one sample point was moved from 0.75 to 0.95. Still, s6 is superior to s1 on

each of the twelve estimates, and often very markedly so. Finally, there are two sampling

schemes with medians below 106% and means around 110%—very nearly optimal6 on

most estimates. Both these sampling schemes, s3 and s7, have 50% of their sample points

at p ≥0.90 and one third at p ≥0.95.

In order to obtain stable estimates of variability of parameters, thresholds and slopes of

psychometric functions, it appears that we must include at least one, but preferably more,

sample points at large p values. Such sampling schemes are, however, sensitive to stimulus

independent lapses that could potentially bias the estimates if we were to fix the upper

asymptote of the psychometric function (the parameter � in equation (1); see our com-

panion paper, Wichmann & Hill, 2000).

Somewhat counter–intuitively, it is thus not sensible to place all or most samples close

to the point of interest (for example close to threshold0.5, in order to obtain tight confi-

dence intervals for threshold0.5), because estimation is done via the the whole psycho-

metric function which in turn is estimated from the entire dataset. Hence adaptive tech-

niques that sample predominantly around the threshold value of interest, are less efficient

than one might think (c.f. Lam, Mills, & Dubno, 1996).

Influence of the distribution function on estimates of variability

Thus far we have argued in favour of the bootstrap method for estimating the variability

of fitted parameters, thresholds and slopes, since its estimates do not rely on asymptotic

theory. However, in the context of fitting psychometric functions one requires in addition

that the exact form of the distribution function F—Weibull, logistic, cumulative Gaus-

sian, Gumbel or any other reasonably similar sigmoid—has only a minor influence on

the estimates of variability. The importance of this cannot be underestimated since a

strong dependence of the estimates of variability on the precise algebraic form of the dis-

6Optimal here of course means relative to the sampling schemes explored.
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tribution function would call the usefulness of the bootstrap into question because, as

experimenters, we do not know, and never will, the true underlying distribution function

or objective function from which the empirical data were generated. The problem is illus-

trated in Fig. 6; Figure 6(a) shows four different psychometric functions: 1.) ,

using the Weibull as F, and �W ={10, 3, 0.5, 0.01} (our “standard” generating function

). 2.) , using the cumulative Gaussian with �CG = {8.875, 3.278, 0.5,

0.01}. 3.) , using the logistic with �L={8.957, 2.014, 0.5, 0.01} and, finally, 4.)

, using the Gumbel and �G = {10.022, 2.906, 0.5, 0.01}. For all practical pur-

poses in psychophysics the four functions are indistinguishable. Thus, if one of the above

psychometric functions were to provide a good fit to a data set, all of them would despite

that at most one of them is correct. The question one has to ask is whether making the

choice of one distribution function over another markedly changes the bootstrap esti-

mates of variability.7 Note that this is not trivially true: whilst it can be the case that sev-

eral psychometric functions with different distribution functions F are indistinguishable

given a particular dataset—as shown in Fig. 6(a)—this does not imply that the same is

true for every dataset generated from one of such similar psychometric functions during

the bootstrap procedure: Figure 6(b) shows the fit of two psychometric functions

(Weibull and logistic) to a dataset generated from our “standard” generating function

, using sampling scheme s2 with N = 120.

— Insert Figure 6 here —

Slope, threshold0.8 and threshold0.2 are quite dissimilar for the two fits, illustrating the

point that there is a real possibility that the bootstrap distributions of thresholds and

7Of course there might be situations where one psychometric function using a particular distribution 

function provides a significantly better fit to a given data set than others using different distribu-

tion functions. Differences in bootstrap estimates of variability in such cases are not worrisome: 

The appropriate estimates of variability are those of the best fitting function.

�W x �W;( )

�gen �CG x �CG;( )

�L x �L;( )

�G x �G;( )

�gen
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slopes from the B bootstrap repeats differ substantially for different choices of F, even if

the fits to the original (empirical) dataset were almost identical.

To explore the effect of F on estimates of variability we conducted Monte Carlo simula-

tions using  as generating function, and fitted psy-

chometric functions using the Weibull, cumulative Gaussian, logistic and Gumbel as dis-

tribution function to each dataset. From the fitted psychometric functions we obtained

estimates of threshold0.2, threshold0.5, threshold0.8 and slope0.5 as described previously.

All four different values of N and our seven sampling schemes were used, resulting in 112

conditions (4 distribution functions x 7 sampling schemes x 4 N values). In addition, we

repeated the above procedure 40 times to obtain an estimate of the numerical variability

intrinsic to our bootstrap routines8, for a total of 4,480 bootstrap repeats affording

8.960,000 psychometric function fits (4.032 x 109 simulated 2AFC trials).

An analysis of variance (ANOVA) was applied to the resulting data, with the number of

trials N, the sampling schemes s1 to s7, and the distribution function F as independent

factors (variables). The dependent variables were the confidence interval widths (WCI68);

each cell contained the WCI68 estimates from our 40 repetitions. For all four dependent

measures—threshold0.2, threshold0.5, threshold0.8 and slope0.5—not only the first two

factors, the number of trials N and the sampling scheme, were, as expected, significant

( ), but also the distribution function F and all possible interactions: the three

two-way interactions and the three-way interaction were similarly significant at

. This result in itself, however, is not necessarily damaging to the bootstrap

method applied to psychophysical data because the significance is brought about by the

very low (and desirable) variability of our WCI68 estimates: model R2 is between 0.995

and 0.997, implying that virtually all the variance in our simulations is due to N, sam-

pling scheme, F and interactions thereof.

8WCI68 estimates were obtained using bias corrected and accelerated (BCa) confidence intervals, 

described in the next section.

�
1
4
-- �W �CG �L �G	 	 	�

p 0.0001


p 0.0001
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Rather than exclusively focusing on significance, in table 2 we provide information

about effect size, namely the percentage of the total sum of squares of variation accounted

for by the different factors and their interactions. For threshold0.5 and slope0.5 (columns

2 and 4) N, sampling scheme, and their interaction account for 98.63 and 96.39 % of the

total variance, respectively9. The choice of distribution function F does not have, despite

being a significant factor, a large effect on WCI68 for threshold0.5 and slope0.5.

— Insert Table 2 here —

The same is not true, however, for the WCI68 of threshold0.2. Here the choice of F has

an undesirably large effect on the bootstrap estimate of WCI68—its influence is larger

than that of the sampling scheme used—and only 84.36 % of the variance is explained by

N, sampling scheme, and their interaction. Figure 7, finally, summarizes the effect sizes of

N, sampling scheme and F graphically: Each of the four panels of Fig. 7 plots the WCI68

(normalized by dividing each WCI68 score by the largest mean WCI68) on the y–axis as a

function of N on the x–axis; the different symbols refer to the different sampling

schemes. The two symbols shown in each panel correspond to the sampling schemes

which yielded the smallest and largest mean WCI68 (averaged across F and N). The gray

levels, finally, code the smallest (black), mean (gray) and largest (white) WCI68 for a given

N and sampling scheme as a function of the distribution function F. 

— Insert Figure 7 here —

For threshold0.5 and slope0.5 (Fig. 7b and d) estimates are virtually unaffected by the

choice of F, but for threshold0.2 the choice of F has a profound influence on WCI68 (for

9Clearly, the above reported effect sizes are tied to the ranges in the factors explored: N spanned a com-

paratively large range of 120 to 960 observations, or a factor of 8, whereas all of our sampling 

schemes were “reasonable”—inclusion of “unrealistic” or “unusual” sampling schemes, e.g. all x 

values such that nominal y values are below 0.55, would have increased the percentage of variation 

accounted for by sampling scheme. Taken together, N and sampling scheme should be representa-

tive of most typically used psychophysical settings, however.
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example, in Fig. 7a, there is a difference of nearly a factor of two for sampling scheme s7

(triangles) when N = 120). The same is also true, albeit to a lesser extent, if one is inter-

ested in threshold0.8: Figure 7c shows the (again undesirable) interaction between sam-

pling scheme and choice of F. WCI68 estimates for sampling scheme s5 (leftward trian-

gles) show little influence of F, but for sampling scheme s4 (rightward triangles) the

choice of F has a marked influence on WCI68. It was generally the case for threshold0.8

that those sampling schemes that resulted in small confidence intervals (s2, s3, s5, s6 and

s7, see previous section) were less affected by F than those resulting in large confidence

intervals (s1 and s4).

Two main conclusions can be drawn from these simulations: First, in the absence of any

other constraints experimenters should choose as “threshold” and “slope” measures cor-

responding to threshold0.5 and slope0.5, because only then the main factors influencing

the estimates of variability are the number and placement of stimuli, as we would like it

to be. Second, away from the midpoint of F estimates of variability are, however, not as

independent of the distribution function chosen as one might wish, in particular for

lower proportions correct (threshold0.2 is much more affected by the choice of F than

threshold0.8, c.f. Fig.’s 7a and c). If very low (or, perhaps, very high) response thresholds

must be used when comparing experimental conditions, e.g. 60 % (or 90 %) correct in

2AFC, and only small differences exist between the different experimental conditions,

this requires the exploration of a number of distribution functions F to avoid finding sig-

nificant differences between conditions due to the (arbitrary) choice of a distribution

function resulting in comparatively narrow confidence intervals.

Bootstrap confidence intervals

In the existing literature on bootstrap estimates of the parameters and thresholds of psy-

chometric functions, most studies use parametric or non-parametric plug-in estimates10

of the variability of a distribution . For example, Foster & Bischof (1997) estimate

parametric (moment-based) standard deviations � by the plug–in estimate . Maloney

�̂�

�̂
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(1990), in addition to , uses a comparable non-parametric estimate, obtained by scal-

ing plug–in estimates of the interquartile range (IQR) so as to cover a confidence interval

of 68.3%. Neither kind of plug–in estimate is guaranteed to be reliable, however:

moment–based estimates of a distribution's central tendency (such as the mean) or vari-

ability (such as ) are not robust; they are very sensitive to outliers because a change in a

single sample can have an arbitrarily large effect on the estimate (the estimator is said to

have a breakdown of 1/n, because that is the proportion of the data set that can have such

an effect. Non–parametric estimates are usually much less sensitive to outliers and the

median, for example, has a breakdown of 1/2 as opposed to 1 / n for the mean). A

moment–based estimate of a quantity  might be seriously in error if only a single boot-

strap estimate  is wrong by a large amount. Large errors can and do occur occasion-

ally, for example, when the maximum–likelihood search algorithm gets stuck in a local

minimum on its error surface11.

Non–parametric plug–in estimates are also not without problems. Percentile–based

bootstrap confidence intervals are sometimes significantly biased and converge slowly to

the true confidence intervals (Efron & Tibshirani, 1993, ch. 12-14, 22). In the psychologi-

cal literature this problem was critically noted by Rasmussen (1987; 1988).

Methods to improve convergence accuracy and avoid bias have received the most theo-

retical attention in the study of the bootstrap (Efron, 1987; 1988; Efron & Tibshirani,

1993; Hall, 1988; Hinkley, 1988; Strube, 1988; c.f. Foster & Bischof, 1991, p. 158).

10A straightforward way to estimate a quantity 
 which is derived from a probability distribution F by 


=t(F), is to obtain  from empirical data and then use =t( ) as an estimate. This is called a 

plug-in estimate.
11Foster & Bischof (1987) report problems with local minima, which they overcame by discarding 

bootstrap estimates that were larger than 20 times the stimulus range (4.2% of their data points 

had to be removed). Non-parametric estimates naturally avoid having to perform post-hoc data 

smoothing by their resilience to such infrequent but extreme outliers.

F̂ 
̂ F̂

�̂

�̂





i
ˆ �
21



F.A. Wichmann and N.J. Hill The Psychometric Function II
In situations where asymptotic confidence intervals are known to apply and are correct,

bias–corrected and accelerated (BCa) confidence intervals have been demonstrated to

show faster convergence and increased accuracy over ordinary percentile based methods

while retaining the desirable property of robustness. (See in particular Efron & Tib-

shirani, 1993, p. 183, Table 14.2 and p. 184, Fig. 14.3, as well as Efron (1988), Rasmussen

(1987; 1988) and Strube (1988)).

BCa confidence intervals are necessary because the distribution of sampling points x

along the stimulus axis may cause the bootstrap estimates  to be biased and skewed

estimators of the generating values . The same applies to the bootstrap distributions of

estimates  of any quantity of interest, be it thresholds, slopes or whatever. Maloney

found skew and bias particularly problematic for the distribution of the � parameter of

the Weibull,  (N=210, K=7). We also found in our simulations that —and thus

slopes —were skewed and biased for N smaller than 480, even using the best of our

sampling schemes. The BCa method attempts to correct both bias and skew by assuming

that an increasing transformation, m, exists to transform the bootstrap distribution into

a normal distribution. Hence we assume  and  resulting in

, (2)

where

, (3)

and  any reference point on the scale of � values. In equation (3) z0 is the bias correc-

tion term, and a in equation (4) is the acceleration term. Assuming equation (2) to be cor-

rect, it has been shown that an �–level confidence interval endpoint of the BCa interval

can be calculated as

�̂�

�̂

�̂�

�� ��

s�

� m �( )� �̂ m �̂( )�

�̂ ��
k�

----------------- N z0 1,�( )�

k� k�0
a � �0�( )	�

k�0
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, (4)

with CG being the cumulative Gaussian distribution function,  is the inverse of the

cumulative distribution function of the bootstrap replications ,  is our estimate of

the bias, and  is our estimate of acceleration. For details on how to calculate the bias and

the acceleration terms see Efron & Tibshirani (1993), ch. 22 and also Davison & Hinkley

(1997), ch. 5.

For large classes of problems it has been shown that equation (2) is approximately cor-

rect, and that the error in the confidence intervals obtained from equation (4) are smaller

than those introduced by the standard percentile approximation to the true underlying

distribution, where an �–level confidence interval endpoint is simply  (Efron & Tib-

shirani, 1993). While we cannot offer a formal proof that this is also true for the bias and

skew sometimes found in bootstrap estimates from fits to psychophysical data, to our

knowledge it has only been shown that BCa confidence intervals are either superior or

equally good in performance to standard percentiles, but not that they perform signifi-

cantly worse.

Conclusions

In this paper we have given an account of the procedures we use to estimate the variability

of fitted parameters and the derived measures such as thresholds and slopes of psycho-

metric functions.

First, we recommend the use of Efron’s parametric bootstrap technique, because tradi-

tional asymptotic methods have been found to be unsuitable given the small number of

data–points typically taken in psychophysical experiments. Second, we have introduced a

practicable test of the bootstrap bridging assumption or sensitivity analysis which must be

applied every time bootstrap–derived variability estimates are obtained to ensure that

�̂BCa
�[ ] Ĝ

1�
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�( )
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variability estimates do not change markedly with small variations in the bootstrap gen-

erating function’s parameters. This is critical because the fitted parameters  are almost

certain to deviate at least slightly from the (unknown) underlying parameters . Third,

we explored the influence of different sampling schemes (x) on both the size of one’s con-

fidence intervals as well as their sensitivity to errors in . We conclude that only sampling

schemes including at least one sample at p≥0.95 yield reliable bootstrap confidence inter-

vals. Fourth, we have shown that the size of bootstrap confidence intervals is mainly

influenced by x and N if and only if we choose as threshold and slope values around the

midpoint of the distribution function F—particularly for low thresholds (threshold0.2)

the precise mathematical form of F exerts a noticeable and undesirable influence on the

size of bootstrap confidence intervals. Finally, we have reported that the use of bias-cor-

rected and accelerated (BCa) confidence intervals which improve on parametric and per-

centile–based bootstrap confidence intervals, whose bias and slow convergence had pre-

viously been noted (Rasmussen, 1987).

Together with our companion paper (Wichmann & Hill, 2000) we cover the three cen-

tral aspects of modelling experimental data: First, parameter estimation, second, obtain-

ing error estimates on these parameters and, third, assessing goodness–of–fit between

model and data.
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Table Captions
Table 1.  Columns correspond to the seven sampling schemes and are marked by their

respective symbols (see Fig. 2). The first four rows contain the MWCI68 at threshold0.5

for N = 120, 240, 480 and 960; similarly, the next eight rows contain the MWCI68 at

threshold0.8 and slope0.5. (See text for the definition of the MWCI68.) Each entry corre-

sponds to the largest MWCI68 in the vicinity of �gen , as sampled at the points �gen  and

, … , . The MWCI68 values are expressed in percent relative to the minimal

MWCI68 per row. The bottom three rows of Table 1 contain summary statistics of how

well the different sampling schemes perform across estimates.

Table 2.  Summary of ANOVA effect size (sum of squares (SS) normalized to 100 per-

cent). The columns refer to threshold0.2, threshold0.5, threshold0.8, and slope0.5, respec-

tively, i.e. to approximately 60, 75 and 90% correct and the slope at 75% correct during

2AFC. Rows correspond to the independent variables, their interactions and summary

statistics. See text for details.

�1 �8
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Tables
Table 1:

Table 2:

s1 s2 s3 s4 s5 s6 s7

MWCI68 N = 120

at N = 240

x = F0.5
-1 N = 480

N = 960

401 127 134 844 136 100 120

236 121 131 361 135 100 116

129 103 117 175 123 100 111

109 108 125 140 131 100 115

MWCI68 N = 120

at N = 240

x = F0.8
-1 N = 480

N = 960

4137 185 101 2425 112 120 100

2267 138 101 979 117 131 100

457 120 100 464 121 138 105

284 105 100 354 120 142 103

MWCI68 N = 120

of dF/dx N = 240

at N = 480

x = F0.5
-1 N = 960

147 107 123 260 237 104 100

161 118 100 318 166 135 123

174 119 100 269 116 153 108

170 110 100 231 114 167 102

MEAN 723 122 111 568 136 124 109

standard deviation (SD) 1229 22.3 13.8 639 35 24 8

MEDIAN 205 119 101 336 122 126 106

percentage of ANOVA Sum of 
Squares (SS) accounted for by …

threshold0.2 threshold0.5 threshold0.8 slope0.5

the number of trials N 76.24 87.30 65.14 72.86

sampling schemes s1 … s7 6.60 10.00 19.93 19.69

distribution function F 11.36 0.13 3.87 0.92

error (numerical variability in 
bootstrap)

0.34 0.35 0.46 0.34

interaction of N and sampling 
schemes s1 … s7

1.18 0.98 5.97 3.50

sum of interactions involving F 4.28 1.24 4.63 2.69

percentage of SS accounted for 
without F

84.36 98.63 91.5 96.39
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Figure Captions

Figure 1. B=2000 datasets were generated from a 2–AFC Weibull psychometric func-

tion with parameter vector �gen={10, 3, 0.5, 0.01} and then fit using our maximum–like-

lihood procedure resulting in 2000 estimated parameter pairs  shown as dark cir-

cles in �–� parameter space. The location of the generating � and � (10, 3) is marked by

the large triangle in the centre of the plot. The sampling scheme s7 was used to generate

the datasets (see Fig. 2 for details) with N=480. Solid lines mark the 68%–confidence

interval width (WCI68) separately for � and �; broken lines mark the 95%–confidence

intervals. The light small triangles show the �–� parameter sets , … ,  from which

each bootstrap is repeated during sensitivity analysis while keeping the x–values of the

sampling scheme unchanged.

Figure 2. Shows a 2–AFC Weibull psychometric function with parameter vector �={10,

3, 0.5, 0} on semi–logarithmic coordinates. The rows of symbols below the curve mark

the x–values of the seven different sampling schemes, s1 to s7, used throughout the

remainder of the paper.

Figure 3. The left hand panel shows the width of the 68%–confidence (WCI68) interval

around the median estimate of the distribution of slopes of B=2000 fitted psychometric

functions to parametric bootstrap datasets generated from �gen = {10, 3, 0.5, 0.01} as

function of the total number of observations, N. The right hand panel shows the maximal

elevation of the WCI68 in the vicinity of �gen again as function of N (see text for details).

The seven symbols denote the seven sampling schemes as of Fig. 2.

Figure 4. Similar to Fig. 3 except that it shows thresholds corresponding to 

(approximately equal to 75% correct during 2–AFC).

Figure 5. Similar to Fig. 3 except that it shows thresholds corresponding to 

(approximately equal to 90% correct during 2–AFC)

�̂ �̂,( )

�1 �8

F0.5
1�

F0.8
1�
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Figure 6. (a) Shows four 2–AFC psychometric functions plotted on semi–logarithmic

coordinates; each has a different distribution function F (Weibull, cumulative Gaussian,

logistic and Gumbel). See text for details. (b) Shows a fit of two psychometric functions

with different distribution functions F (Weibull, logistic) to the same dataset, generated

from the mean of the four psychometric functions shown in (a) using sampling scheme

s2 with N = 120. See text for details.

Figure 7. The four panels show the width of WCI68 as a function of N , sampling

scheme, as well as the distribution function F. The symbols refer to the different sampling

schemes as of Figure 2; gray–levels code the influence of the distribution function F on

the width of WCI68 for a given sampling scheme and N: black symbols show the smallest

WCI68 obtained, middle gray the mean WCI68 across the four distribution functions

used, and white the largest WCI68. (a) shows WCI68 for threshold0.2 (b) WCI68 for

threshold0.5 (c) WCI68 for threshold0.8 (d) WCI68 for slope0.5.
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Figure 2:

Figure 3:
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Figure 4:

Figure 5:
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Figure 6:
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