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Threshold models of temporal-order judgments
evaluated by a ternary response task

ROLF ULRICH
Psychologisches Institut der Universitit Tibingen, Tiibingen, Federal Republic of Germany

This article examines various predictions of temporal-order judgment models (triggered-moment,
attention-switching, and perceptual-moment models). These model tests are based on a ternary
response-category approach: In each trial two stimuli (e.g., a tone and a light) are presented at
times t; and t,, respectively. The time difference d = t,—t, was varied for each trial. After each
presentation the subject selected one of three possible responses (“tone and light simultaneously,”
“tone first,” or “light first”). Two psychometric functions can be generated from these response
categories. It is shown that several models of temporal-order judgments constrain the relation-
ship between these two functions. It was examined for different data sets whether the predicted
relationships are satisfied. Several violations of the predicted relationships were observed, provid-
ing strong evidence against perceptual-moment models, triggered-moment models, and certain
versions of attention-switching models. The proposed tests for each model do not depend on specific
distributional assumptions of perceptual latencies. A modified attention-switching model with

dwell times depending on stimulus properties might account for the present findings.

The judgment of temporal order of two nearly simul-
taneous stimuli, such as the onsets of a tone and a light,

is a very old and still unsolved problem in experimental

psychology. Individual differences in the determination
of stellar transit times with the eye-and-ear method evoked
interest in the psychological nature of temporal-order
judgments (TOJs) (Boring, 1950; Frohlich, 1929). As-
tronomers and psychologists in the 19th century inves-
tigated the sources of errors of TOJs. Why does the judged
temporal order of a pair of stimuli often not correspond
to the actual order? Why are two stimuli judged as being
successive even when they were presented simultane-
ously? Although this is an old problem, it still attracts
many neurophysiologists and psychologists.

Several models about TOJs have been proposed in the
last three decades to account for the source of judgment
errors (see Sternberg & Knoll, 1973, for an excellent
review). Although the basic concepts of these TOJ models
are quite different, they are difficult to discriminate em-
pirically. This difficulty arises because the standard TOJ
paradigm with binary response categories (for example,
““light before tone’’ vs. ‘‘tone before light’’) does not yield
powerful data to invalidate untrue models.

Allan (1975a) elaborated the standard TOJ paradigm
to yield more powerful data. Her subjects were required
to judge the order of two stimuli and to rate them as suc-
cessive versus simultaneous. In this manner four response
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categories were generated. Data from these response
categories were used to establish three psychometric func-
tions. Allan (1975a, p. 31) noted that perceptual-latency
models require these three psychometric functions to be
parallel if order and successiveness judgments are based
on the same internal event. However, her finding of sys-
tematically nonparallel functions invalidated perceptual-
latency models. This finding parallels reaction time results
that also invalidate this model (Heath, 1984). Heath found
a decrease of mean response times of TOJs as the inter-
stimulus interval increased. He showed that perceptual-
latency models are inconsistent with this finding. (His
deduction is based on the subsidiary assumption that the
perceptual latencies of the two stimuli are independent and
identical exponential random variables.)
Perceptual-latency models assume that the perceived
order is due to the central arrival order of the sensory
volleys elicited by each stimulus at the periphery (Gib-
bon & Rutschman, 1969). Imperfect TOJs are attributed
solely to the variability of the arrival latencies. Another
class of models—termed here threshold models—assumes
that the interval between the central arrivals of the two
sensory volleys is a further source for imperfect TOIls.
The present paper pursues Allan’s (1975a) approach to
developing various tests for threshold models of TOJs.
The present paper is not the first to pursue Allan’s ap-
proach. In an unpublished theoretical paper, Sternberg,
Knoll, and Mallows (1975) made precise several impli-
cations for TOJ models within the framework of Allan’s
multiple-function approach. They considered the predic-
tions of perceptual-latency models, which assume that the
subject partitions the continuum of the arrival-latency
difference into nonoverlapping regions for response gener-
ation. Sternberg et al. (1975) showed that the shape differ-
ences among the psychometric functions provide impor-
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Figure 1. Functions Y} and Y for 3 subjects (T.M., A.J., and B.P.) of Allan’s (1975a) ex-
periment. The left function is Y} and the right one Y. Subjects judged the temporal order
of a light and a tone offset. A negative value of time difference d indicates that the tone offset
occurred before the light offset. Yx(d) = Pr{“light offset before tone offset”|d} and Yy (d) =

1—-Pr{“tone offset before light offset”|d}.

tant tests for TOJ models. Likewise, in this paper, I use
this shape difference approach for testing threshold
models.

The organization of this paper is as follows: (1) The
proposed tests for threshold models require a specific ap-
proach, which is described first. (2) The concept of a
general model class—the general threshold model—is de-
veloped. (3) The predictions for special cases of this
model class are derived. (4) Finally, the derived predic-
tions are checked against data reported in the literature
and against the data of my own experiment. Whenever
possible, I have adopted the notation and terminology sug-
gested by Sternberg and Knoll (1973), as some readers
may already be familiar with their work.

THE TERNARY TOJ APPROACH

On each experimental trial, the stimuli Sx and Sy (e.g.,
a tone and a light onset) are presented at times x and #y
= tx+d, respectively. The time difference d =y~ may
be positive, zero, or negative; d is randomly varied from
trial to trial. After each presentation, the subject judges
whether both stimuli appeared to occur simultaneously (re-
sponse si), or whether Sy appeared to occur before Sy (re-
sponse xy) or after Sy (response yx). In this way the three
response probabilities Pr{si|d}, Pr{xy|d}, and
Pr{yx|d} are generated for each value of d. From studies
that have used ternary TOJ designs, one can see that
Pr{xy|d} increases with d from zero to one, Pr{yx|d}
decreases with d from one to zero, and Pr {si |d} obtains
a maximum value at about d = 0 msec (Allan, 1975a’;
Benussi, 1913).

For the remainder of this work only the two functions
Yi(d) = 1-Pr{yx|d} and Yr(d) = Pr{xy|d} will be
required (indices L and R stand for left and right position
in the function plot, respectively). Testable relationships

between i and Y will be derived from general and
specific assumptions of threshold models. Figures 1 and
2 illustrate empirical functions of ¥ and Yx for Allan’s
(1975a) and Benussi’s (1913) experiments, respectively.

THE GENERAL THRESHOLD
MODEL OF TOJs

The general threshold model of TOJs is shown in
Figure 3. Stimuli Sx and Sy are presented at times x and
ty. Stimulus Sy (Sy) elicits a sensory message myx (my),
which reaches some point in the brain after an arrival
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Figure 2. Functions Y; and Yy from Benussi’s (1913,
pp- 363-368) experiment. The left function is Yy and the right one
Yg. Subjects judged the temporal order of a pair of visual stimuli
(a left-hand and a right-hand flash). A negative time difference d
indicates that the right flash occurred prior to the left flash. Yg(d)
= Pr{“left flash before right flash”|d} and Y¥;(d) = 1—Pr(“right
flash before left flash”|d}. There were 256 observations at
d = 0 msec and 128 observations at each value of d different from
zero.
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latency, Ly (Ly). The arrival times of my and my are
denoted by Ax = Lx+tx and Ay = Ily+ty = Ly+tx+d:
respectively.? Neurophysiological findings (e.g., Esch-
weiler, Popp, Rauschecker, & Schrader, 1984; Levick,
1973; Mocks, Gasser, & Pham, 1984; Mocks, Gasser,
Pham, & Kohler, 1987; Rauschecker, Popp, & Esch-
weiler, 1986; Zacks, 1973) and reaction time studies (e.g.,
Meijers & Eijkman, 1974; Ulrich & Stapf, 1984) sug-
gest that latencies Ly and Ly vary considerably from trial
to trial. Therefore it is assumed that Ly and Ly represent
random variables.

How the responses xy, yx, and si are generated by
threshold models can be stated with two assumptions:

AsSUMPTION 1. Assume that my arrives first and my
second, that is, Ay > Ay (see Figure 3, upper panel). If
the interval between the two arrivals is smaller than
threshold value Cyy (0 < Cyy), then perceived simul-
taneity results and response si is elicited. However, if the
interval is greater than this threshold value, that is, if
Ay > Ax+Cyy holds, then the arrival order is perceived
and response xy results.
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Figure 3. General threshold model of temporal-order judgments.
Stimulation times of S, and Sy are t, and ¢, respectively. The un-
hatched boxes represent transmission times L, and L, of the sen-
sory messages m, and m, elicited by Sy and Sy, respectively. A, and

represent the central arrival times of m, and my, respectively.

e hatched boxes represent thresholds C,, (upper panel) and C,,
(tower panel). Order perception is possible only if the interval be-
tween the arrivals of the sensory messages is greater than the
threshold value. Perceived simultaneity results if this interval is
smaller than the threshold value. Thresholds (C,(y VS. Cy,) may de-
pend on the arrival order of the sensory messages. Upper panel:
Sensory signal m, arrives at the central mechanism before m,. Per-
ceived simnultaneity is produced as the arrival-time difference is
smaller than threshold C,,. Lower panel: Perceived order “Sy pre-
cedes S,” results as arrival-time difference is greater than threshold

Cpee

ASSUMPTION 2. Now assume that my arrives first, that
is, Ax > Ay (see Figure 3, lower panel). As before, if
the interval between the two arrivals is smaller than
threshold value Cyx (0 < Cyy), then the arrival order can-
not be registered and response si results. Otherwise, if
Ax > Ay+Cy, then the arrival order of mx and my is
registered and response yx results.

Thresholds Cyy and Cyx may vary from trial to trial.
Hence C,y and Cyy are treated as random variables,
each having its own distribution. (The case that both
thresholds are constants is automatically included.)

One may conceive the thresholds Cry and Cyx as refrac-
tory periods of a central order-decision mechanism. If the
two sensory messages arrive in fast succession, this
mechanism cannot disentangle their arrival order. Specific
threshold models (see below) make explicit assumptions
as to how this limited time resolution might be produced
by the central mechanism. It will be shown that all of these
specific models differ only with regard to the distribu-
tions of the thresholds Cyxy and Ciyx.

Remark on the Derivations to Come

The more general a theory, the smaller its number of
testable consequences (cf. Bunge, 1983, p. 30; Coombs,
1984). Because of this tradeoff between generality and
testability, only a few testable consequences can be de-
rived from the general threshold model. Hence most of
the following testable derivations are based on more spe-
cific threshold models. Nonetheless, the general threshold
model provides a useful framework to work out the simi-
larity of alternative models.

Remark on Terminology

In this paper the term threshold model has a broader
meaning than in the TOJ literature (e.g., Allan, 1975a;
Sternberg et al., 1975). A clarification of the different
usages is necessary to avoid confusion. According to Al-
lan (19754, p. 32), a threshold decision model assumes
that the observer bases his/her decisions on the value of
the arrival time difference Ax—Ay on each trial. There
is an interval centered around Ax—Ay = 0 within which
different values of Ax—Ay cannot be discriminated. Let
[c1, c2] denote this interval, where ¢ and c, are fixed
values on the Ay —Ay axis with ¢; < 0 < cz. As the ob-
server is required to make one of three responses (xy, yx,
or si), he/she responds with xy if Ax—Ay < ci, with yx
if Ax—Ay = ¢z, and with siif c1 < Ax—Ay < 2. In
my terminology, Allan’s model is a specific threshold
model, because it can be derived from the general
threshold model with the two additional assumptions
C.y=|c1] and Cyx=c3. Generally, if welet G = {A1,42}
be the above assumptions of the general threshold model,
then a specific threshold model M; is defined as the union
of the sets G and {Ay;, ..., An }, where the latter set con-
tains n additional assumptions for M; withn = 1. Accord-
ing to this definition, a TOJ model is called a specific
threshold model if it contains G as a proper subset. Thus
Allan’s model is a specific threshold model, because it



contains G as a proper subset. An extreme example is the
attention-switching model (discussed below): As will be
evident later, this model is also a specific threshold model,
because it contains G as a proper subset.

General Predictions

We now turn to the basic predictions regarding the func-
tions Y1, and Yg, which must hold for each specific thresh-
old model. The main prediction is summarized in
Theorem 1.

THEOREM 1. Define the sums Dr=U+Cy and
DL=U—-Cy, where U=Ly—Ly denotes the arrival-
latency difference. If the distributions of the random vari-
ables Dy and Dy do not depend on time difference d, then
Y1 and Yr can be conceived as cumulative distribution
functions (CDFs) of Dy and Dy, respectively:

Yr(d) = Pr{Dr < d} (1a)
Yo(d) = Pr{Dy = d}. (1b)

(The proof of Theorem 1 is contained in Appendix A.)

This simple but powerful result forms the basis of all
further considerations. Two testable properties for
threshold models follow from Theorem 1.

Monotonicity property. Yz and Y1 must be non-
decreasing functions of d, as both functions can be con-
ceived as CDFs of the random variables Dr and Dy,
respectively, which vary along the d-axis. This property
requires that the distributions of the sums U+Cyy and
U—Cyx do not depend on time difference d. All existing
specific threshold models satisfy this shape-invariance as-
sumption. Note that this property must hold whether or
not U, Cyy, and Cyx are correlated.

Dominance property. As the mean E(Dg) = E(U) +
E(Cyy) of Dr must be greater than the mean E(DL) =
E(U)—E(Cyy) of Dy, the function Y1 must be displaced
more to the left-hand side and the Yr more to the right-
hand side on the d-axis. One might therefore intuitively
assume that ¥y and Yx should not cross. However, this
need not be true. For example, if the variance of Cyy is
large compared with the variance of Cyx, then it may hap-
pen that ¥ and Yr intersect. Nevertheless, several models
(discussed below) predict that such an intersection can-
not occur. These models can be characterized by an addi-
tional assumption:

COROLLARY 1. (a) If thresholds Cyxy and Cyx do not
differ, that is, Cxy=Cyx=C, and (b) if the bivariate dis-
tribution of C and U does not vary with time difference
d, then the following dominance property must hold for
each value of d:

L(d) = Yr(d). )

Note that condition (b) is automatically satisfied if U and
C are stochastically independent. (The proof of Equation 2
is contained in Appendix B.)

For the data shown in Figures 1 and 2, the dominance
property is satisfied in each case but the monotonicity
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property is not. However, in small samples, random vari-
ability may produce nonmonotonous shapes of Yr and Y
even if threshold models are true. Therefore, one should
not overvalue this violation at the present stage until more
empirical evidence is available.

PREDICTIONS OF SPECIFIC
THRESHOLD MODELS

In this section, specific threshold models (triggered-
moment models, perceptual-moment models, and attention-
switching models) of TOJs are discussed. It is shown that
each model can be viewed as a special case of the general
threshold model. The distributions of C,y and Cyx are de-
rived for each specific model. These distributions con-
strain the relationship of the functions Y3 and Yg, and
hence provide useful empirical tests for these specific -
models.

Triggered-Moment Models

Triggered-moment models assume that the central ar-
rival of the first sensory message triggers a moment of
duration C (C > 0). This assumption may be viewed as
a special case in which Cyy = Cyx = C. If the second
arrival occurs within this moment, then the arrival order
cannot be detected and perceived simultaneity results
(Efron, 1967; Poppel, 1970; Sternberg & Knoll, 1973,
Section TIC, Model 3; Venables, 1960). If | Ax~Ay| > C,
the arrival order is detected and the corresponding
response (yx or xy) is elicited; however, if | Ax—Ay|< C,
no discrimination is possible and response si results.

It is usually assumed that C does not fluctuate from trial
to trial (e.g., Baron, 1971). In the following section, this
restriction is abolished and C is treated as a random vari-
able that is independent of arrival-latency difference U.
The special case, that C is a constant, is considered in
a subsequent section.

Predictions if C is a random variable. As C does not
depend on arrival order, we have Dr = U+C and Dy
= U—C. This leads immediately to four predictions:
(1) The two random variables Dg and Dy must have the
same variance, as

var(Dr) = var(U+C) = var(U)+var(C)
var(Dy) = var(U—-C) = var(U)+var(C).

Consequently, Yy and Yg should have the same disper-
sion.? (2) The third central moment E{[C~E(C)}*} of
C mediates the relationship between the third central mo-
ments of D and Dr:

E{[Dx—E®pP’} = 2E{[C-EC)}*}
+ E{[D.-E@F}. O
(Proof of Equation 3 is contained in Appendix C.) From
Equation 3 it follows that E{[Dx—EDwr)1’} >
E{[DL—E(Dy) ]’} must hold if the distribution of C is

skewed to the right, that is, if C has a positive third mo-
ment. The inequality sign must be reversed if the distri-
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bution of C is skewed to the left, that is, if C has a nega-
tive third moment. Hence the skewness relationship of
Y; and Yr sheds light on the unobservable distribution
of C, that is, whether this distribution is skewed to the
left or to the right. As latency distributions are usually
skewed to the right, one should expect that
E{[Dx—E®Dr)’} > E{[(DL—EMDy)F’} holds. (3) If C
has a symmetrical distribution, then Y& and Y1 must have
identical shapes. That is, Y& and Y1, must be parallel func-
tions differing only by horizontal translation. This follows
as the distributions of the sums U+C and U—C must have
identical shapes as long as C has a symmetrical distribu-
tion. (4) The difference E(Dr)~EDr) = 2-E(C) does
not depend on perceptual latencies. This property also
holds if the means E(Cxy) and E(Cyy) differ. In this case
one obtains E(Mr)—EML) = E(Cxy)+E(Cy).
Predictions if C is constant. If C is a constant, say
C=c (c > 0), then the variability of Dy=U—c and
Dr=U+c s solely determined by arrival-time difference
U. Therefore, Di and Dr must have identical distribu-
tions but different means. Consequently, Yr and ¥y, should
be parallel functions coinciding only by horizontal trans-
lation along the d-axis; the distance would be 2c¢. This
prediction was used by Allan (1975a) and by Sternberg
et al. (1975, Section 6) to test perceptual-latency models.

Perceptual-Moment Hypothesis

More than 100 years ago the biologist Karl Ernst von
Baer (1862) introduced the concept of the perceptual mo-
ment, which was reactivated by Stroud (1955) as a
hypothesis about the structure of psychological time. Since
Stroud’s work, the perceptual-moment hypothesis has had
a considerable influence on psychology (see Breitmeyer,
1984; Fraisse, 1978, 1984; Neumann, 1984; Poppel,
1978; Uttal, 1981).

This hypothesis postulates that the psychological time
scale is not continuous but is partitioned into disjunctive
equal intervals (moments), and that two arrivals of sen-
sory messages can be ordered only if they fall in differ-
ent moments. If the two arrivals occur during the same
moment, then perceived simultaneity results. The gener-
ation of moments is thought to be independent of the time
of occurrence of an external signal (Harter, 1967;
Kristofferson, 1967a; Stroud, 1955).

It is usually assumed that each moment has the same
duration. I abolish this assumption and treat the moment
duration as a nonnegative random variable M with CDF
Fy; that is, the psychological time scale is conceived as
a sequence of intervals that differ in length. The length
of an interval is distributed according to CDF Fu, and
its length is uncorrelated with the lengths of the preced-
ing intervals. (Constant moment durations are automati-
cally included as a special case.)

Predictions if M is a random variable. Assume that
the first sensory message arrives during moment i. Now
let R be the time (residual-moment duration) measured
from the arrival of the first sensory message to the end

of the current moment . The arrival of my and my is de-
tected if | Ax—Ay| > R; otherwise, if | Ax—Ay| < R,
perceived simultaneity is produced and response si results.
Hence, analogously to triggered-moment models, one ob-
tains Dy=U—-R and Dr=U+R, implying again that
var(Dy) = var(Dg). Consequently, Y1 and Yr should
reflect the same dispersion.

An interesting further prediction regarding the skew-
ness relationship of Y1 and Yr derives from a distribu-
tional property of R. It is known from renewal theory (see
Cox & Isham, 1980, pp. 8-9) that the density fr of R is
given by

fr@®) = [1-Fu(@®VEM),

where Fy and E(M) denote the CDF and the mean of M,
respectively. Note that Fi is a nondecreasing function of
t. Consequently, fr must be a nonincreasing function of
t; that is, fr is J-shaped with a unique mode at t=0. As
a J-shaped distribution is skewed to the right, the third
central moment of R must be positive. Therefore, one ob-
tains from Equation 3 the following testable skewness
relationship:

E{D:—E@»)F’} > E{D.-EDLF}.

This prediction must hold for each distribution of the mo-
ment duration.

Finally, the difference E(Dr)—E(Dy) = 2 * E(R) is in-
dependent of any sensory component.

Predictions if M is constant. If M is a constant, say
m, then R is uniformly distributed over the interval [0,m).
Both sums, Dy, =U-R and Dr=U+R, must have identi-
cal shapes, because R has a symmetrical distribution. Con-
sequently, Y1 and Yr should have identical shapes but
different locations.

Remark. It was assumed that the generation of mo-
ments is independent of stimulus input. However, several
authors (Allport, 1968; Efron & Lee, 1971; Harter &
White, 1967; Latour, 1967; Poppel, 1970) assume that
the moments can become synchronized with stimulus in-
put. As noted by Poppel (1970), this synchronization could
arise in at least two different ways: (1) An incoming
stimulus may trigger an oscillatory central response that
generates a sequence of ‘‘processing periods’’ (Efron,
1967), that is, a sequence of moments. (2) Alternatively,
a stimulus may reset rather than initiate this oscillatory
response (Latour, 1967). The present approach cannot dis-
tinguish empirically between these two interpretations.
However, the above predictions of the triggered-moment
model can be applied to both interpretations.

Attention-Switching Models

The attention-switching model was originally formu-
lated within the framework of Kristofferson’s (1967a,
1967b) time quantum theory and was elaborated by Al-
lan and Kristofferson (1974) and by Allan (1975a). The
attention-switching model applies to pairs of stimuli that
cannot be simultaneously attended at one time.



Assumptions. The basic assumptions may be summa-
rized as follows:

1. Attention can be directed to channel x only or to
channel y only but not to both simultaneously. Before the
first sensory message arrives, attention is directed to chan-
nel x (y) with probability px (py = 1—px).

2. An internal timing mechanism generates a sequence
of time points. Only at these time points can attentional
switches from one channel to another be accomplished.
The generation of time points is independent of stimulus
input. The interval between two successive time points
represents a nonnegative random variable Q—called fime
quantum. (The above authors assume Q to be a constant,
q; this case is automatically included in the following
analysis.)

3. The arrival of a sensory message in either an un-
attended or an attended channel triggers attentional
switches until all sensory messages are registered.

4. A sensory message is registered only when it has ar-
rived and attention is directed to its channel. To detect
the arrival order of my and my it is necessary to register
the arrival of one sensory message, switch attention to
the channel of the second, and then register the arrival
of the second sensory message. If the second arrival has
already occurred before an attentional switch to its chan-
nel, then perceived simultaneity is produced and response
si is elicited.

Distributions of C,y and Cyx. Let R be the time mea-
sured from the arrival of the first sensory message to the
time point when attention is directed to the initially un-
attended channel, that is, the residual time of Q. First it
is assumed that my arrives before my. Then the density
Je,, of Cxy is easily obtained if one takes into account the
initial state of attention: If attention is initially directed
to channel x, then Cyy corresponds to the distribution of
R; however, if it is initially directed to channel y, then
C,y corresponds to the distribution cf the sum R+Q.
Therefore, fc,, represents a mixture distribution
produced by sampling probabilistically from the two ba-
sis distributions fk and fr+q with probabilities px and
1—px, respectively:

fo,, @ = px - fr@® + (1=p9) ~ far®)-  (42)

An analogous reasoning leads to the distribution of f. |
of Cyx:

fcy,(t) = (1-px) " fr@® + Px * freq(®). (4b)

Predictions if Q is a random variable. From Equa-
tion 4 it is easily seen that the distributions of Cxy and

C,x are identical if attention is initially directed to chan- -

nel x or channel y with equal probabilities, that is, if
px=py=0.5. In this case the variances of Cxy and Cyx
would be equal and therefore var (D) = var (Dg). How-
ever, the distributions of Dy and Dg may differ extremely
if px and py are unequal. Without making specific sup-
plementary assumptions about the distribution of Q, no
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constraining relationships of the functions ¥y and Y are
obvious.

However, a quite general distribution-free prediction
is available if one considers the difference E(Dr)—E(Dv).
It is shown in Appendix D that this difference does not
depend on perceptual latencies or on py:

EMDr) — EMDL) =2 - ER) + EQ). (5

Therefore, if one proceeds from attentional-switching
models, E(Dr)—E (D) should remain constant if the in-
tensities of the stimuli Sx and Sy are varied or if atten-
tional demands are varied experimentally. Such a test re-
quires only that U and Q be independent in mean (see
Sternberg, 1969).

Predictions if Q is constant. Assume that Q is a non-
negative constant, say q (Allan, 1975a; Allan & Kristof-
ferson, 1974; Kristofferson, 1967a, 1967b). In this case
R would be uniformly distributed over the interval [0,q)
and the sum R+Q uniformly over the interval [¢,2-q).
Therefore the densities f_and f¢_ correspond to mix-
ture distributions of these two rectangular distributions
(Figure 4).

It can be seen in Figure 4 that the distribution of Cxy
must always be the reflection of the distribution of Cyx,
irrespective of probability px. Thus the relation

Pr{ny < t} = Pl‘{ny =>2- q—t}
= PI'{Z : q_ny < t}

DENSITY OF Cyy
>—
=
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w
=)
> .
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5 q q
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0 qQ 29
TIME

Figure 4. Probability density of C,, (upper panel) and of Cyy
(lower panel), assuming a constant time quantum ¢ and p, > py.
Note that the density of Cy, corresponds to the reflection of the den-
sity of C,,. Therefore the equation Pr{C,, < ¢} = Pr{C,, >2q—t}
must hold for each value ¢ in the interval [0,24) and for each value
of p,.
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must hold, and hence one may conceive the two random

variables Cy, and Cjx = 2-g—C,y as being equivalent;

that is, Cyx and Cjy have identical distributions.
Now, the sum D, = U—Cyx can be rearranged as

follows:

DL = U-Cx
= U-Cy«
= U-Q2-9—-Cyy)
= U+Cy—2-¢q
= Dr—2-q.

The last expression shows that the shapes of the distribu-
tions of Dy and Dg must be identical: Dy, is shifted by
the distance 2 - g to the left, relative to Dr. Consequently,
Yy and Yx must be parallel functions.

Remarks on the Predictions

Almost all tests discussed so far constrain the relation-
ship of the functions Y and 1. It should be emphasized
that these tests do not depend on the distribution of arrival-
latency difference U. Therefore, no ancillary assumptions
about perceptual latencies—assumptions about latency
distributions—are needed to apply these tests. This demon-
strates the advantage of the ternary-response-task ap-
proach over the traditional one.

Sternberg and Knoll (1973) showed for the traditional
approach that order-decision components cannot be sepa-
rated from perceptual latencies without making additional
specific assumptions about Ly and Ly. Some authors have
assumed that the latencies have no trial-to-trial variabil-
ity. For example, Baron’s (1971) rejection of the
perceptual-moment model was based on this ancillary as-
sumption. However, a rejection of such a strong model
need not invalidate its basic concept: It is possible that
the ancillary assumption was wrong and therefore pro-
duced the rejection (for a similar argument, see Vorberg,
1985). In sum, the present approach enables more direct
tests of the various concepts of the central order-decision
components. Moreover, it is possible to isolate effects of
the central-order mechanism by determining the differ-
ence E(Dr)—E(DL) without making ancillary assump-
tions regarding the perceptual latencies.

THRESHOLD MODELS AND
CONFIDENCE-RATING DATA

Although we investigated the predictions of threshold
models within the ternary-response task, our analysis can
be extended to confidence-rating tasks. In this section I
investigate the predictions of the general threshold model
for Allan’s (1975b) confidence-rating data and Allan’s
(1975a) successiveness/order data. ,

Allan (1975b) reported data from a TOJ task in which
the subject was required to rate his/her confidence about
his/her order response in each trial. There were four

response categories: (1) certain that Sx appeared before
Sy (response: xyc); (2) certain that Sy appeared before Sx
(response: yxc); (3) uncertain that S, appeared before Sy
(response: xyy); and (4) uncertain that Sy appeared be-
fore Sy (respomse: yxy). Let Pr{xyc|d}, Pr{yxc|d},
Pr{xyu|d}, and Pr{yxy|d} be the corresponding
response probabilities of xyc, yxc, xyu, and yxu, respec-
tively, measured at time difference d. Allan (1975b) used
these response probabilities to generate the following fa-
mily of psychometric functions: Yp(d) = 1 -
Pr{yxc|d}, Yu(d) = Pr{xyc|d}+Pr{xyu|d}, and
Yr(d) = Pr{xyc|d}.

Allan (1975a) reported similar data under the succes-
siveness/order condition of her experiment. Subjects made
a successiveness decision followed by an order decision
on each trial. They judged whether Sx and Sy were suc-
cessive (response: SU) or simultaneous (response: SI)
and then whether Sy preceded Sy (response: xy) or whether
Sy preceded Sy (response: yx). Thus there were four
response categories: xysu, yXsu, Xys1, and yxsi. Because
time difference d was varied, three psychometric
functions—Y¥1.(d) = 1 — Pr{yxsuld}, Ym@d) =
Pr {xysuld} +Pr{xysi|d}, and Ya(d) = Pr{xysu|d}—
were generated (¥y, and Yy are shown in Figure 1). This
set of functions is remarkably similar to the set gener-
ated by the confidence-rating task.

I will show below how the general threshold can be ap-
plied to such data.

Response Mapping

According to threshold models, the central arrival order
of myx and my is either registered (perceived order is
produced) or not (perceived simultaneity is produced).
Thus threshold models assume that one of the following
perceptual states is produced on each trial: S, precedes
S,, S, precedes S,, and S, and S, are simultaneous. As
the perceptual states do not directly correspond to the
response categories in Allan’s (1975a, 1975b) studies,
additional assumptions are needed about the function that
carries the perceptual states to the responses. I adopt the
response mapping proposed by Allan (1975a, p. 32;
1975b, p. 371) and by Sternberg et al. (1975, p. 13): If
state S, precedes S, is produced, the observer responds
with xy. (xysu); if state S, precedes S. is produced, the
observer responds with yx. (yxsu); if state S, and S, are
simultaneous is produced, no order information is avail-
able and the observer makes an xyy (xysy) response with
probability 8 and a yxu (yxsi) response with probability
1-8.

Predictions

Theorem 2 summarizes the main result of the general
threshold model for Allan’s (1975a, 1975b) multifunc-
tion approach.

THEOREM 2. If the general threshold model and the
above response mapping hold, then the psychometric func:
tions Y1, Ym, and Yr are given by



Yi(d) = Pr{D.<d}
Yu(d) = Pr{Dy=d} = B-Pr{DL=d}+(1—p)-Pr{Dr=d}
Yr(d) = Pr{Dr=<d},

where 8, Dr, and Dy are defined above. (The proof for
YL and Yr is identical to that for Theorem 1. Appendix E
contains the proof for Yu.)

The results for Yr and Y;, are identical with the above
results for ternary TOJs: Y3 and Yr are the CDFs of
DL = U-Cyx and Dr = U+C,y, respectively. Conse-
quently, all results regarding the relationship of Yr and
Y1 can be applied to Allan’s (1975b) confidence-rating
task and to Allan’s (1975a) successiveness/order task.

Theorem 2 shows an interesting property of Yum: This
function can be conceived as a mixture distribution
Pr{Dm < d} produced from the basis distributions
PR{Dy, < d} and Pr{Dx =< d}. The relevance of this ob-
servation is straightforward because it enables several
testable predictions for Ywm:

1. Monotonicity of Ym: Ym should be an increasing
function because it can be conceived as a CDF.

2. Bounds for Yu: Because Ym(d) can be regarded as
the mean of Yr(d) and Yr(d), and if the dominance
property Yi(d) = Yr(d) holds (see Corollary 1), it fol-
lows that the relationship Y1.(d) = Ym(d) = Yr(d) must
hold for all values of d. Allan’s (1975a, 1975b) data are
consistent with predictions 1 and 2.

The central moments of Du can be predicted from the
central moments of Dy and Dg. Let pM, uF, and uf* denote
the ith central moment of Dy, Dr, and Dy, respectively.
From the axioms of conditional probability theory, one
obtains:

3. Mean of Dm:

Wt = B-pr+(1-p)-ut.
4. Variance of Dm:
W' = B +(1-P)-p% + BA-B)r—pi).
Derivations of p} and p3* can be found in Meyer, Yan-
tis, Osman, and Smith (1985, pp. 507-509).

5. Skewness of Dy: The third central moment p' is
given by

WM = B-pE+(1-B) 5 +B(1—B)(pr—pY)
Bs - -28)(ur —p1)1.

This formula is derived in a manner analogous to the for-
mula for pt.

Predictions 3, 4, and 5 will be tested in a later section.
We shall proceed as follows: (1) The central moments of
Dy, Dy, and Dr can be estimated from Allan’s (1975a,
1975b) data by a method introduced below. (2) An esti-
mate for 3 is provided by Best. = Niy,/Nu, where Niy,
and Ny denote the total number of xyy and uncertain
responses, respectively. (3) The estimated central mo-
ments of Dy, and Dg along with B, are used to predict
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the first three central moments of Dy via the equations
introduced above. If predicted and observed values agree,
then both the general model and the assumed response
mapping would be validated.

Summary of Predictions

All predictions for ternary TOJs and confidence-rater
data are briefly summarized for later reference.

1. Monotonicity property: Must hold for each threshold
model.

2. Dominance property: Y1.(d) = Yr(d), for all values
of d. Must hold if (1) Cxy = Cyx = Cand 2) Cand U
are stochastically independent. Applies to triggered-
moment models, perceptual-moment models, all attention-
switching models with px=0.5, all attention-switching
models with a constant time quantum.

3. Equal dispersion property: var(Dp) = var(Dg).
Most hold if (1) Cxy = Cyx = C and (2) C and U are
uncorrelated. Applies to triggered-moment models,
perceptual-moment models, all attention-switching models
with px=0.5, all attention-switching models with a con-
stant time quantum.

4. Skewness property: The third central moment of Dg
must be greater than that of Dy, if (1) Cy = Cyx = C,
(2) C and U are uncorrelated, and (3) C has a positive
third central moment. Applies to perceptual-moment
models with a variable moment duration, triggered-
moment models.

5. Parallelism property: Y, and Yr should coincide by
a horizontal shift of one toward the other (for a more for-
mal definition, see Falmagne, 1985, p. 157). Applies to
triggered-moment models and perceptual-moment models
with a constant moment duration, attention-switching
models with a constant time quantum.

6. Property of Ym: For Allan’s (1975a, 1975b) data,
YM can be regarded as a mixture distribution formed from
the basis distributions of Dg and Dy. If the assumed
response mapping holds, then this property must hold for
all threshold models. This property enables the predic-
tion of mean, variance, and skewness of Dy.

These predictions are tested using the data reported by
Allan (1975a, 1975b) and by Benussi (1913) along with
the data produced by the following experiment.

EXPERIMENT

A ternary TOJ approach was utilized for the present
experiment. The two stimuli, Sx and Sy, were spatially
separated light flashes. The purpose of this experiment
was twofold.

First, it replicated the study of Benussi (1913). This
replication was necessary because Benussi (1913) reported
only group averages. Averaging of individual psychomet-
ric functions can lead to several artifacts (see Section X,E
in Sternberg & Knoll, 1973). An average function may
show features that are nonexistent in individual functions
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(Estes, 1956). Therefore, the data set for each subject was
analyzed separately in the present study.

The second purpose was to test whether the difference
E[DRr) — E(Dy) would be affected by stimulus intensity.
Two intensity conditions were used—the intensity of the
flash pair was either high or low. If the central order-
decision process does not depend on stimulus properties,
then the difference E(Dr) — E(DL) = E(Cyy) + E(Cyx)
should not vary with stimulus intensity (cf. also Equa-
tion 5). This prediction must hold for perceptual-moment
models, triggered-moment models, and attention-
switching models. Note that nothing has to be assumed
about the dependencies among the variables Cxy, Cyx, Ly,
and Ly to test this prediction.

Method

Subjects. Three right-handed subjects, G.U., M.P., and U.D.
(staff members of our psychology department with no known visual
deficiencies), participated in the experiment. Their ages were 29,
33, and 31 years, respectively. They were paid 8 DM (approxi-
mately $2.50) for each experimental session, which lasted about
45 min.

Apparatus. All sessions were conducted in a sound-attenuated
chamber. Two yellow light-emitting diodes (OPCOA, LSM-28L-
A1) were located in front of the subject, who viewed the diodes
from a chinrest at a distance of 60 cm. The diodes were situated
above and below a central fixation diode, which was green and was
located at eye level. The distance between the top and bottom di-
odes was 10 cm (9.6° visual angle); both diodes were equidistant
from the central fixation diode. The top and bottom diodes were
6 mm (0.57°) and the fixation diode was 3 mm (0.25°) in diameter.
The luminosities of both the bottom and the top diode were approx-
imately 0.50 and 8.0 mcd in the low- and high-intensity conditions,
respectively. For each subject and each intensity level, the bottom
and top diodes were adjusted in such a way that both appeared
equally intense. All intensities were above detection threshold.

The response panel consisted of one start button and three response
buttons, located 5 cm to the left, 5 cm to the right, and 5 cm be-
hind the start button. The left, right, and rear buttons were assigned
to the three response categories ‘‘bottom first’” (br), “‘top and bot-
tom simultaneously’’ (si), and *‘top first’’ (tb), respectively. The
sequence of trial events was controlled by a microcomputer, which
was situated in a different room.

Procedure. The beginning of an experimental trial was signaled
by the lighting of the fixation diode. The subject started the trial
by pressing the start button with his/her right hand. After a 2-sec
period the first stimulus light (top or bottom diode) was illuminated.
The second stimulus was illuminated after one of five possible in-
tervals of d (0, 25, 50, 75, or 100 msec). For convenience, d is
defined to be negative when the bottom light was presented first,
and positive when the top light was presented first. Both stimulus
durations were 5 msec, and the intensity of the stimulus pair was
either low or high with equal probability. After each trial, the sub-
ject indicated his/her guess by pressing one of the three response
buttons. As soon as the subject pressed a response button the cen-
tral fixation light was terminated. After an intertrial interval of 3 sec
the fixation diode was lighted again and the subject was free to ini-
tiate the next trial.

At no time during the experiment was the subject given any in-
formation regarding his/her performance, other than verbal infor-
mation related to consistency and stability.

An experimental session consisted of 240 trials with a 5-min rest
after 120 trials. In half of the trials the intensity of the stimulus
pair was high, whereas in the other half it was low. For each inten-

sity condition and each time difference |d| > 0 msec (d=0 msec)
there were 10 (40) trials; that is, d was with equal probability nega-
tive, positive, or zero on each trial. Each session was preceded by
a 5-min darkness-adaptation period.

All subjects received 5 practice sessions followed by 10 ex-
perimental sessions. Only 1 session per day was run for each subject.

Results

Only the data obtained in the experimental sessions were
used for data analysis. For each subject and intensity con-
dition the relative frequencies of the responses bt, si, and
tb are shown in Table 1. A two-sample chi-square test
was used to compare the response frequencies in both in-
tensity conditions for each subject; separate chi-squares
were determined for each d value, with the individual chi-
square values and dfs then summed (U.D.: x*(18) = 353,
p < .001; M.P.: *(18) = 71, p < .001; G.U.: x*(18)
= 37, p < .01). Strong intensity effects resulted for M.P.
and U.D., whereas moderate effects were obtained for
G.U.

Figures 5, 6, and 7 show estimates of the functions
Yr(d) = Pr{tb|d} and Yi.(d) = 1—Pr{bt|d} for each
subject and each intensity level. These functions suggest
nonmonotonous shapes—an observation that agrees with
the data reported by Allan (1975a) and Benussi (1913).
Again the dominance property is satisfied in each case.

An evaluation of whether the difference E(Dr)—E (Dr)
varied with stimulus intensity will follow after the method
for estimating the moments of Dy and Dg has been intro-
duced in the next section.

Estimating the Moments of D and Dr
The empirical functions of Y1 and Yr can be conceived
as estimates of the CDFs Pr {Dy, < d} and Pr{Dg =<d},

Table 1
Response Proportions as a Function of Stimulus Intensity and
Time Difference d for Each Subject

Time Difference d (msec)
-100 =75 -50 -25 0 25 50 75 100

Subject Response

Part 1: High Intensity

U.D. bt .99 .89 .61 .50 .28 .24 .11 .06 .03
si 00 .01 .08 .23 .27 .20 .04 .02 .00
th 01 .10 31 .27 45 .55 .85 .92 .97
M.P. bt 98 91 .62 .43 22 .27 26 21 .10
si 00 .01 26 .42 .64 .51 .22 .05 .01
th 02 .08 .12 .15 .14 22 .52 .74 .89
G.U. bt 99 98 73 .25 .08 .11 .15 .15 .03
si .00 .00 .19 .70 .88 .82 .29 .01 .00
th .01 .02 .08 .05 .04 .07 .56 .84 .97
Part 2: Low Intensity
U.D. bt 92 .79 .64 38 .34 32 .37 .35 .27
si 06 .10 27 .53 .50 47 36 25 .18
th 02 .11 .09 .09 .16 .20 .26 .40 .56
M.P. bt 93 75 48 .31 .17 22 .16 .19 .09
si 02 .10 22 43 .57 47 29 25 .05
th 05 .14 30 .26 .26 .30 .55 .56 .86
G.U. bt 98 94 61 .27 .05 .06 .06 .09 .04
si 01 .03 28 .67 .90 .82 .51 .10 .02
th .01 .03 .11 .06 .05 .12 43 .81 .94
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respectively. The problem is the following: How can one
use this information to derive estimates of the central mo-
ments of Dy and Dr?

A usual technique in psychophysics to solve this
problem is to fit a smooth function from a certain para-
metric family of CDFs. The desired moments are then
derived from the fitted function. However, the predictions
developed in this paper are distribution-free; specifying
a certain family of CDFs limits the conclusions to this
family. Furthermore, there is at present no rationale be-
hind choosing a particular family of CDFs. Therefore,
a distribution-free approach is given preference.

The Spearman-Kirber (S-K) method (Spearman, 1908)
and its elaboration (Epstein & Churchman, 1944; Stern-
berg, Knoll, & Zukofsky, 1982) provides a distribution-
free solution to this problem. The S-K method treats the
empirical CDF as a cumulative grouped frequency dis-
tribution from which the ‘‘original’’ grouped frequency
distribution is reconstructed. This reconstructed grouped
frequency distribution is then used to compute relatively
directly the desired moments.

Recently, Sternberg et al. (1982, pp. 234-236) reported
a modified S-K estimator. This estimator provides the rth
raw moment m’! of the random variable D, which is
assumed to underlie the function Y:

N+1
m = ;l (pi—pi1) - {(@*=ar)/(r+1)- (d;-d,.l)]}, (6)

where p; denotes the estimate of Y(d,),i =0, ..., N+1;
{d, < d,, ..., < dy} is the set of time differences used
in the experiment; do and d., are chosen in such a way
that one can assume Y(d,) =0 and Y(dy+1) = 1.4

The function Y is regarded as a CDF; consequently,
it must be a nondecreasing function. As the empirical
functions do occasionally violate this restriction, a monot-
onizing procedure was applied to the set of proportions
{p:i=1, ..., N} to obtain a set of nondecreasing
proportions {pi:i=1, ..., N and p: <pt.}. The
monotonizing procedure yields a maximum-likelihood es-
timate of the assumed underlying CDF of D (see Ayer,
Brunk, Ewing, Reid, & Silverman, 1955). The set of non-
decreasing proportions was used to compute the desired
raw moments via Equation 6. (See also Sternberg et al.,
1982.)

Finally, the raw moments m;, m;z, and m; are used to
estimate the mean (M), the standard deviation (SD), and
the skewness (SK) of the random variable D:

M=m
SD = [mj—mj-m{J*"
SK = [my—3-mj-mi+2 - (m)*]">.

SK denotes the third root of the third central moment of
D. This monotonous transformation yields more manage-
able numbers, as the numerical values of the third cen-
tral moment may be very large.
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Table 2
Estimates of Mean, Standard Deviation,
and Skewness of D; and Dy

Table 2 (Continued)

Central Moments (msec)

Central Moments (msec)

Subject Variable M SD SK Subject Variable M SD SK
Part 1: Benussi (1913) Part 5: Low Intensity (Present Study)
D 45 35 -39 yp. Dx 65 64 -7
Do -34 65 68 DL -3 84 63
DiffErence 79 "‘9 - 127 Difference 69 _20 - 135
SE of Difference 3 3 6 SE of Difference 3 3 5
Part 2: Allan (1975a)—Successiveness/Order Task M.P. Dr 31 73 —65
_ DL -31 67 69
T-M. Dz _53 o & Difference 61 7 —134
D 36 53 55 .
Difference %0 -2 ~115 SE of Difference 3 2 4
SE of Difference 3 3 5 G.U. Dr 49 41 —49
_ Dy -36 4 53
A Dz _40 67 68 Difference 85 -1 -102
DL 24 68 64 £ Diff: 3
Difference 64 -1 -132 SE of Difference 3 >
SE of Difference 3 2 4  Note—All values are rounded to the nearest millisecond. SK = skewness.
B.P. Dr 44 74 -76
Die Dy ",zlg 7; _ 1§§ The above procedure was used to estimate My, SDy,
irerence and SK;, of Dy, from the empirical function of Y1; and the
SE of Difference 3 3 5 N .
estimates Mg, SDg, and SKx of Dr from the empirical
Part 3: Allan (1975b)—Confidence-Rating Task function of Yg. Table 2 summarizes these estimates for
V.R. Dr 42 57 —58  the data sets of Benussi (1913), Allan (1975a, 1975b),
D —46 50 49 and the present experiment.
SE of g:g::g‘c’: sg ; - 102 Table 2 provides also the differences Mgr—My,
SDg—S8Dy., and SKr —SKy for each data set. As these
LM. g" _ig gg 'g; differences are especially important in order to evaluate
Difference 88 16 ~117  the above predictions, the corresponding standard errors
SE of Difference 3 3 4  (SEs) were estimated by the bootstrapping procedure (see
V.V, Dy 23 83 -4 Diaconis & Efron, 1983; Efron & Gong, 1983). In es-
Dy -23 74 65 sence, the bootstrapping procedure takes the observed
Difference 46 8 —-129  response proportions of xy, si, and yx as estimates for the
SE of Difference 2 2 4 probabilities Pr{xy|d;}, Pr{si|d,}, and Pr{yx|d.},
B.M. Dr 71 74 -91 i=1, ..., N. (1) These estimates are used to simulate
. D —57 60 69 the experiment again, yielding a bootstrap sample. (2) The
Difference 128 15 -160
. data of the bootstrap sample are used to compute the so-
SE of Difference 2 3 4 Y . . .
N.C D 45 31 o7 called bootstrap replications, that is, the value of the statis-
e D]: 24 2% 1g tics, in this case the differences Mg —My, SDr —SDy, and
Difference 69 5 —45 SKr—SKy. (3) Steps 1 and 2 are repeated for some large
SE of Difference 2 2 16 number (B) of times, obtaining B independent bootstrap
AT. Dz 58 78 —go replications. (4) Finally the SE—for example, of the
DL -56 74 84  difference Mr —Mp—is given by computing the standard
Difference 114 4 -163  deviation of the corresponding bootstrap replications.
SE of Difference 3 3 4 Steps 1-4 vgith B=100 were carried out for all data sets
Part 4: High Intensity (Present Study) in Table 2.
U.D. Dg 2 56 =30 .. . .
D, -20 53 46 Are the Predictions Consistent with the Data?
Difference 21 2 -76 Table 2 provides the necessary information for a quick
SE of Difference 2 1 14 answer.
M.P. Dr 41 56 —58 Skewness property. A clear pattern of results is ob-
D ’;: _‘158 *13(2) tained for the skewness relationship of Y1 and Yr. For
Difference all data sets, the relationship SKy 3 SKg holds. This find-
SE of Difference 3 2 4 TN ) . T
b . 26 _q4q 1ngisinconsistent with the prediction of the perceptual-
G.U. D: _28 46 s¢ moment hypothesis. Furthermore, this finding automati-
Difference 75 -10 —100 cally violates the parallelism property: Y. and Yy are non-
SE of Difference 2 3 5 parallel functions. If one proceeds from triggered-moment



models, one has to assume that the central moment of the
moment duration is negative to account for this finding
(see Equation 3). However, this would be a rather excep-
tional assumption, as latency distributions usually have
a positive third central moment.

Equal dispersion property. In 11 of 16 cases the stan-
dard deviations of Dy, and Dr differ more than expected
by chance alone [criterion: | SDy—SDg| > 2-SE]. This
finding is inconsistent with the predictions of the
perceptual-moment hypothesis, triggered-moment models,
and attention-switching models if attention is initially
directed to both channels with equal probabilities.

Invariance property of E(Dg)—E(DL). For all 3 sub-
jects in the present experiment, the difference
E(Dr)—E(Dy) increased with decreasing intensity of the
flash pair. The increases were 47 msec (SE=3.4), 7 msec
(SE=3.5), and 10 msec (SE=3.3) for Subjects U.D.,
M.P., and G.U., respectively. This finding contradicts
the notion that the central-decision process is independent
of stimulus properties—an implicit assumption of all
specific threshold models. The thresholds Cyy and Cyx
must somehow depend on stimulus intensity.

Predicted and observed moments of Dy. Table 3
shows observed and predicted central moments of Dy for
the data presented by Allan (1975a, 1975b). The modi-
fied S-K method was again applied to compute the cen-
tral moments for each subject. The central moments of
Dr and Dy and the estimate of 8 in Table 3 were used
to compute predicted central moments. Standard errors
of the difference between observed and predicted values
were again estimated by the bootstrapping procedure. Ob-
served and predicted values agreed surprisingly well. No
significant difference between the two values was found
for the successiveness/order task (Allan, 1975a). Only in
the confidence-rating task (Allan, 1975b) were the SDs
for Subjects V.R., L.M., and N.C. slightly overpredicted.
On the whole, the result is consistent with the general
threshold model and the assumed response mapping.

Averaging artifacts? I have already mentioned the
problem of averaging psychometric functions. The results
in Table 2 of my own experiment are based on averaging
the data of 10 daily sessions. Some intersession variabil-
ity is naturally unavoidable, for example, due to changes
in the subject’s pattern of responding. Hence, the doubt-
ful point is whether the average psychometric function
shows features that are nonexistent in the psychometric
functions of the daily sessions. To explore this possibil-
ity, I performed the above data analysis for each daily
session. This analysis revealed two things: (1) The esti-
mates M, SD, and SK from the daily sessions were quite
stable over the 10 sessions. (2) The averaged estimates
from the 10 sessions were nearly the same as the ones
shown in Table 2. (The SDs and the absolute values of
the SKs were slightly smaller for the single-session anal-
ysis.) Furthermore, it can be shown that the nonmono-
tone results cannot be explained by averaging artifacts:
Let Pr; {D < d} be the psychometric function of session
i(i=1, ..., 10). If we assume that threshold models hold,
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Table 3
Observed and Predicted Mean, Standard Deviation,
and Skewness of Dy,
. Central Moments (msec)
Subject M SD SK Best.
Part 1: Allan (1975a)—Successiveness/Order Task
T.M. Observed 1 67 29 0.59
Predicted 3 68 12
Difference -2 -1 17
SE of Difference 1 1 16
Al Observed 3 74 28 0.56
Predicted 5 75 21
Difference -2 -1 7
SE of Difference 1 1 16
B.P. Observed -1 81 31 0.64
Predicted -2 80 34
Difference 1 1 -3
SE of Difference 1 1 16
Part 2: Allan (1975b)—Confidence-Rating Task
V.R. Observed -10 55 31 0.58
Predicted -9 68 39
Difference -1 —-13 -8
SE of Difference 1 1 10
L.M. Observed -6 62 46 0.60
Predicted -4 T 50
Difference -2 —-11 -4
SE of Difference 1, 2 3
V.V. Observed -1 82 40 0.55
Predicted -2 81 44
Difference 1 1 -4
SE of Difference 1 1 4
B.M. Observed -1 90 47 0.56
Predicted -2 92 47
Difference 1 -2 0
SE of Difference 1 2 2
N.C. Observed 9 33 26 0.49
Predicted 11 45 19
Difference -2 -8 7
SE of Difference 1 2 13
AT Observed -11 91 62 0.60
Predicted -11 94 65
Difference 0 -3 -3
SE of Difference 1 2 2

Note—All values are rounded to the nearest millisecond. SK = skew-
ness; Best. = estimated .

then Pr; {D < d} must be monotonically increasing. The
average function is then given by Pr{D <d} =
[ZPr; {D < d}]/10. Differentiating with respect to d
shows that Pr{D <d} must be monotone if all
Pr;{D <d}s (i =1, ..., 10) are monotone. In sum, aver-
aging the data of the daily sessions did not produce
artifacts.

CONCLUDING COMMENTS

The results demonstrate that the ternary TOJ approach
yields more powerful data than do binary TOJs. Within
the framework of threshold models it was possible to iso-
late aspects of the central order-decision process without
the need to make ancillary assumptions about the percep-
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tual latencies. Such an isolation would be impossible for
the traditional approach.

The present approach provides new constraints for fu-
ture models and for modifications of present threshold
models. The constraints may be summarized as follows:
(1) The dominance property has to be satisfied. (2) The
skewness relationship SK1» SKr has to be predicted.
(3) A model must be capable of producing different dis-
persion relationships between Y1 and Yr. (4) It would be
desirable for a model to be able to account for the viola-
tion of the invariance property of E(Dr)—E(Dy) as ob-
served in the present experiment. (5) Although the vio-
lation of the monotonicity property is difficult to assess
statistically, it would be instructive to provide a model
that is capable of predicting nonmonotonous as well as
monotonous shapes of ¥ and Yg. (Suggestions in this
direction are provided by Sternberg etal., 1975,
pp. 13-16, and Ulrich, 1983.)

The violation of the invariance property is a crucial find-
ing for threshold models. It is difficult, for example, to
imagine a modification for the perceptual-moment hypoth-
esis that could reconcile this hypothesis with this finding,
in addition to which, this hypothesis cannot account for
constraints 2, 3, and 5.

However, a modification of the attention-switching
model that reconciles the model with this finding is quite
easy to imagine. This modification assumes that the dwell
times in channels y and x depend on stimulus intensity.
As an example, assume a periodic switching process to
channels x and y. Once attention is switched to a chan-
nel, evidence in favor of stimulus presence is accumu-
lated over time, for example, by a random walk process
(Laming, 1968; Link & Heath, 1975). Attention is
switched away from a channel as soon as the status of
stimulus presence versus stimulus absence is clarified. In
terms of a random walk model, attention is switched away
from a channel if the random walk process crosses the
boundary indicating stimulus presence or the boundary
indicating stimulus absence. It is clear that information
regarding stimulus presence is accumulated faster for an
intense stimulus. In terms of a random walk model, the
drift of the random walk process toward the signal
presence boundary is greater for an intense stimulus.
Consequently, dwell time would depend on stimulus
intensity—the lower the intensity the longer the dwell
time. It follows that thresholds Cyy and Cyy increase with
decreasing intensity, accounting for the violation of the
invariance property.

Can attention-switching models account for constraints
1-3? To provide an answer to this question I assumed Q

“to be exponentially distributed and computed via Equa-
tions 4a and 4b the appropriate moments for Dy and Dr.
To render the mathematics of the model tractable, I
assumed that the mean dwell times in a channel for both
signal presence and signal absence are equal. In more
realistic versions of the attention-switching model one
would surely assume different means. This computation
revealed that for particular choices of model parameters

it is possible to generate predictions in accordance with
constraints 1-3. This idea of a modified attention-
switching model seems very promising.

Allan (1975a) extended Kristofferson’s (1967a) attention-
switching model, with constant Q, to her successiveness/
order data. She fitted the model and was able to predict
the shapes of the obtained psychometric functions.
Although Allan did not modify the basic assumptions of
the model, she assumed a more complex response map-
ping than the one described above. This more complex
mapping requires the estimation of two additional guess-
ing parameters (cf. Figure 4 in Allan, 1975a). Conse-
quently, Allan (1975a) reconciles the attention-switching
model with the crucial finding of nonparallel psychomet-
ric functions by the assumption of a more complex re-
sponse mapping. However, our distribution-free approach
showed that a more complex response mapping is not
needed to account for Allan’s (1975a) successiveness/
order data (cf. Table 3). Therefore, our analysis suggests
that the original version of the attention-switching model
fails not because the above less complex response map-
ping is wrong, but because one or more of the model’s
basic assumptions is wrong (e.g., that Q is a random vari-
able instead of a constant). Model fits improve with the
number of free parameters. This may be the reason Allan
(1975a) was able to fit the model, although the original
model version is probably wrong.

Proponents of the attention-switching model might ar-
gue that the present experiment is not a critical test of the
original version of the model, because unimodal stimuli
can be monitored simultaneously, without the need to shift
attention from one point to another in the visual field.
However, recent research contradicts this notion (see,
e.g., Posner, Nissen, & Odgen, 1978; Reeves & Sper-
ling, 1986; Sperling, 1984). Further research with bi-
modal stimuli is needed to clarify this point.

REFERENCES

ALLAN, L. G. (19754). The relationship between judgments of succes-
siveness and judgments of order. Perception & Psychophysics, 18,
29-36.

ALLAN, L. G. (1975b). Temporal order psychometric functions based
on confidence-rating data. Perception & Psychophysics, 18, 369-372.

ALLAN, L. G., & KRISTOFFERSON, A. B. (1974). Successiveness dis-
crimination: Two models. Perception & Psychophysics, 15, 37-46.

ALLPORT, D. A. (1968). Phenomenal simultaneity and the perceptual
moment. British Journal of Psychology, 59, 395-406.

AYER, M., BruNk, H. D., EwiNG, G. M., Rem, W. T., & SILVER-
MaN, E. (1955). An empirical distribution function for sampling with
incomplete information. Annals of Mathematical Statistics, 26,
641-647.

BAER, K. E., VON (1862). Welche Auffassung der lebenden Natur ist
die richtige? Wie ist diese Auffassung auf die Entomologie anzuwen-
den? [Which conception of living nature is correct? How can one ap-
ply this conception to entomology?]. Opening speech given at the foun-
dation of the Russian Association of Entomology in May 1860. Berlin:
August Hirschwald.

BARON, J. (1971). The threshold for successiveness. Perception &
Psychophysics, 10, 201-207.

Benussl, V. (1913). Psychologie der Zeitauffassung [Psychology of the
conception of time]. Heidelberg: Carl Winter’s Universititshandlung.



BORING, E. G. (1950). A history of experimental psychology (2nd ed.).
New York: Appleton-Century-Crofts..

BREITMEYER, B. G. (1984). Visual masking: An integrative approach.
New York: Oxford University Press.

BUNGE, M. (1983). Epistemologie: Aktuelle Fragen der Wissenschafts-
theorie [Topical questions of epistemology]. Mannheim, West Ger-
many: Bibliographisches Institut AG.

Cox, D. R., & IsHaM, V. (1980). Point processes. London: Chapman
& Hall.

Coomss, C. H. (1984). Theory and experiment in psychology. In D. Al-
bert, K. Pawlik, K.-H. Stapf, & W. Stroebe (Eds.), Fortschritte der
Experimentalpsychologie, Hamburger Mittagsvorlesungen 1983 [Ad-
vances in experimental psychology, Hamburg midday lectures 1983]
(pp- 20-30). Berlin: Springer-Verlag.

D1acoNis, P., & EFroN, B. (1983). Computer-intensive methods in statis-
tics. Scientific American, 248, 116-130.

EFRON, B., & GONG, G. (1983). A leisurely look at the bootstrap, the
jackknife, and cross-validation. The American Statistician, 37, 36-48.

EFRON, R. (1967). The duration of the present. Annals of the New York
Academy of Sciences, 138, 713-729.

EFroN, R., & LEg, D. N. (1971). The visual persistence of a moving
stroboscopically illuminated object. American Journal of Psychology,
84, 365-375.

EpSTEIN, B., & CHURCHMAN, C. W. (1944). On the statistics of sensi-
tivity data. Annals of Mathematical Statistics, 15, 90-96.

ESCHWEILER, G., Popp, M., RAUSCHECKER, J. P., & SCHRADER, W.
(1984). Timing of flash responses in visual cortex of normal and
strabismic cats. Society for Neuroscience Abstracts, 10, 469.

Estes, W. K. (1956). The problem of inference from curves based on
group data. Psychological Bulletin, 53, 134-140.

FALMAGNE, 1.-C. (1985). Elements of psychophysical theory. New York:
Oxford University Press.

PFraisse, P. (1978). Time and rhythm perception. In E. C. Carterette
& M. P. Friedman (Eds.) Handbook of perception: Vol. 8: Percep-
tual coding (pp. 203-254). New York: Academic Press.

Fraissg, P. (1984). Perception and estimation of time. Annual Review
of Psychology, 35, 1-36.

FroHLICcH, F. W. (1929). Die Empfindungszeit: Ein Beitrag zur Lehre
von der Zeit-, Raum- und Bewegungsempfindung [Perceptual latency:
A contribution to the theory of time, space and motion perception].
Jena, East Germany: Verlag von Gustav Fischer.

GIBBON, J., & RUTSCHMAN, R. (1969). Temporal order judgement and
reaction time. Science, 165, 413-415.

GRICE, G. R. (1968). Stimulus intensity and response evocation. Psycho-
logical Review, 78, 359-373.

HarTER, M. R. (1967). Excitability cycles and cortical scanning: A
review of two hypotheses of central intermittency in perception.
Psychological Bulletin, 68, 47-58.

HARTER, M. R., & WHITE, C. R. (1967). Perceived number and evoked
potentials. Science, 156, 406-408.

HeaTH, R. A. (1984). Response time and temporal order judgement
in vision. Australian Journal of Psychology, 36, 21-34.

KRISTOFFERSON, A. B. (1967a). Attention and psychological time. Acta
Psychologica, 27, 93-100.

KRISTOFFERSON, A. B. (1967b). Successiveness discrimination as a two-
state, quantal process. Science, 158, 1337-1339.

LAMING, D. R. (1968). Information theory of choice-reaction times. New
York: Academic Press.

LATOUR, P. L. (1967). Evidence of internal clocks in the human oper-
ator. Acta Psychologica, 27, 341-348.

Levick, W. R. (1973). Variation in the response latency of cat retinal
ganglion cells. Vision Research, 13, 837-853.

LiNk, S. W., & HEATH, R. A. (1975). A sequential theory of psycho-
logical discrimination. Psychometrika, 40, 77-105.

MEUERs, L. M. M., & EuxMman, E. G. 1. (1974). The motor system
in simple reaction experiments. Acta Psychologica, 38, 367-371.
MEYER, D. E., YANTIS, S., OsMAN, A. M., & SMiTH, J. E. K. (1985).
Temporal properties of human information processing: Tests of dis-
crete versus continuous models. Cognitive Psychology, 17, 445-518.

TEMPORAL-ORDER JUDGMENTS 237

MOcks, J., GAsSER, T., & PHaM, D. T. (1984). Variability of single
visual evoked potentials evaluated by two new statistical tests. Elec-
troencephalography & Clinical Neurophysiology, 57, 571-580.

Mocks, J., Gasser, T., PHAM, D. T., & KOHLER, W, (1987). Trial-
to-trial variability of single event-related potentials: New concepts and
results. International Journal of Neuroscience, 33, 25-32.

NEUMANN, O. (1984). Moment III, Psychologie. InJ. Ritter (Ed.), Wor-
terbuch der Philosophie (Vol. 6, pp. 108-114). Stuttgart, West Ger-
many: Schwabe.

PorrEL, E. (1970). Excitability cycles in central intermittency. Psy-
chologische Forschung, 34, 1-9.

PoppeL, E. (1978). Time perception. In R. Held, H. W. Leibowitz,
& H.-L. Teuber (Eds.), Handbook of sensory physiology (Vol. 8,
pp. 713-729). Berlin: Springer-Verlag.

PosNER, M. 1., Nissen, M. J., & OpGen, W. C. (1978). Attended and
unattended processing modes: The role of set for spatial location. In
H. L. Pick, Jr., & E. Saltzman (Eds.), Models of perceiving and
processing information. Hillsdale, NJ: Erlbaum.

RAUSCHECKER, J. P., Popp, M., & ESCHWEILER, G. (1986). Latency
and precision of single-cell responses in visual cortex and their
relevance for spatio-temporal interpolation models. Behavioral Brain
Research, 20, 134,

REEVES, A., & SPERLING, G. (1986). Attentional gating in visual short-
term memory. Psychological Review, 93, 180-206.

SPEARMAN, C. (1908). The method of ‘right and wrong cases’ (‘con-
stant stimuli’) without Gauss’s formulae. British Journal of Psychol-
ogy, 2, 227-242.

SPERLING, G. (1984). A unified theory of attention and signal detec-
tion. In R. Parasuraman & D. R. Davies (Eds.), Varieties of Atten-
tion (pp. 103-181). New York: Academic Press.

STERNBERG, S. (1969). The discovery of processing stages: Extensions
of Donder’s method. Acta Psychologica, 30, 276-315.

STERNBERG, S., KNoLL, R. L. (1973). The perception of temporal order:
Fundamental issues and a general model. In S. Kornblum (Ed.), Arten-
tion and performance IV (pp. 629-685). New York: Academic Press.

STERNBERG, S., KNoLL, R. L., & MaLLows, C. L. (1975). Conditions
for parallel psychometric functions based on rating-scale data: Ap-
plications to temporal-order judgements (Technical memorandum, Bell
Laboratories, Murray Hill, NJ).

STERNBERG, S., KNoLL, R. L., & Zukorsky, P. (1982). Timing by
skilled musicians. In D. Deutsch (Ed.), The psychology of music
(pp. 181-239). New York: Academic Press.

StroUD, J. M., (1955). The fine structure of psychological time. In
H. Quastler (Ed.), Information theory in psychology (pp. 174-205).
Glencoe, IL: Free Press.

ULricH, R. (1983). Zur Psychophysik der Zeitwahrnehmung: Theo-
retische und experimentelle Analysen des Reihenfolgeurteils [Psycho-
physics of time perception: Theoretical and experimental analyses of
temporal-order judgments]. Unpublished doctoral thesis, Universitit
Tiibingen, Tiibingen, West Germany.

ULRricH, R., & STAPF, K. H. (1984). A double-response paradigm to
study stimulus intensity effects upon the motor system in simple reac-
tion time experiments. Perception & Psychophysics, 36, 545-558.

UrTtAL, W. R. (1981). A taxonomy of visual processes. Hillsdale, NIJ:
Erlbaum.

VENABLES, P. H. (1960). Periodicity in reaction time. British Journal
of Psychology, 51, 3743.

VORBERG, D. (1985). Unerwartete Folgen von zufélliger Variabilitiit:
Wettlauf-Modelle fiir den Stroop-Versuch [Unexpected consequences
of random variability: Race models for the Stroop paradigm]. Zeit-
schrift fiir experimentelle und angewandte Psychologie, 32, 494-521.

Zacks, J. L. (1973). Estimation of the variability of the latency of
responses to brief flashes. Vision Research, 13, 829-835.

NOTES

1. It should be noted that Allan (1975a) did not use the three response
categories xy, yx, and si directly. However, it is possible to analyze
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her data accordingly, as will be evident in the section Threshold Models
and Confidence Rating Data.

2. The phrase “‘arrival of sensory messages’’ has a broader meaning
than it suggests: On the one hand, this phrase can mean that the sen-
sory messages m; and my are internal punctate stimuli whose arrivals
are registered in an all-or-nothing fashion. On the other hand, one might
assume that evidence for a stimulus, say S, starts to grow with stimu-
lus onset and continues until enough activation is produced to cross a
corresponding threshold (Grice, 1968). In this second case ‘‘arrival of
my’’ means the time point when the activation produced by Sy crosses
a corresponding threshold. The considerations and conclusions about
threshold models will apply to both interpretations.

3. Even if C is correlated with latencies L, and Ly, the equal-spread
prediction should hold approximately. Consider, for example, the vari-
ance of Dg:

var(Dg) = var(Lx—Ly+C)
= var(Lx) + var(Ly) — 2cov(Lx,Ly) + var(C)
+ 2cov(Lx,C) — 2cov(Ly,C)
= var(U) + var(C) + 2[cov(Lx,C) — cov(Ly,C)].
In a similar fashion one obtains
var(Dy) = var(U) + var(C) + 2[cov(Ly,C) — cov(Lx,O)].

Therefore, if cov(Lx,C) =cov(Ly,C), it follows that var(Dy) = var(Dg).
Consequently, if the empirical estimates of var(Dr) and var(Dgr) differ
extremely, one would be in doubt about triggered-moment models in
general.

4. Values of 125 msec and —125 msec were used for dy., and d,
respectively. The selection of these values is justified by the fact that
all subjects showed perfect temporal-order discrimination at these ex-
tremes in a pilot study. When I changed these values to, for example,
150 msec and —150 msec, respectively, the same conclusions were ob-
tained, although slightly different estimates of the moments resulted for
these latter values.

5. A more complete justification of this method for estimating the
parameters is desirable. Although I have no analytical results to offer
at this time, I have conducted Monte Carlo simulations to evaluate the
method of analysis. In each simulation experiment a particular threshold
model was assumed, and the simulation was designed to find out whether
the true model parameters could be recovered by the estimation pro-
cedure. I have found that this is indeed the case and that the variability
of the estimated parameters (standard error of estimate) is well assessed
by the bootstrapping procedure.

APPENDIX A

Proof of Equation la:

Yr(d) = Pr{xy|d}
= Pr{Ax+Cxy: < Ay} (see Assumption 1)
= Pr{l+t:+Cyy < Ly+t+d}
= Pr{Ly—Ly+Cyy < d}
= Pr{Dg < d}
= Pr{Dx < d} (as Dx is continuous).

The proof is complete because the last expression is the CDF
of the random variable Dg, defined as Dg = Ly;—Ly+Cyy. The
proof for Equation 1b is similar.

APPENDIX B

Proof of Dominance Property Y1(d) = Yr(d):

By definition,
Y1 (d) = Pr{U-C=d}

=i fU=u 0 C=c)dud,

u—-c=x

where f(U=u N C=c¢) is the bivariate distribution of U and
C. The above double integral can be rewritten as

o rdtc
¥ud) = | 7 f0=u 0 C=c)dude,

and partitioned into the following two double integrals:

R = |7 [ fu=u N C=c)dudc
+ 17157 fu=u 0 C=c)dude

il

(| fu=un c=c)dudc
utcsd

+ || fw=un c=0)dudc

d-c<u<d+c

Pr{U+C <d} + Pr{d-C < U < d+C}
Yr(d) + Pr{d—C < U < d+C}.

Pr{d—C < U < d+C} = 0 must hold; hence, the supposed
inequality Yy(d) = Yr(d) follows. The proof is complete.

i

APPENDIX C

Proof of
E{[Pr—E®g)I’} = 2E{[C-E(O)F*} + E{[DL—EMDy)*}:
If C and U are independent variables, then it can be shown

that the third central moment of the sums Dr=U+C and
DL =U—-C is given by

E{Dr—EMr)’} = E{[U~EU)P*’} + E{[C-E()} (1C)
and
E{[DL.—-EMDLP’} = E{[lU-EQU)P*} — E{[C-EC)F’}, (20C)

respectively. Equation 2C has to be subtracted from Equa-
tion 1C, which yields the desired result.

APPENDIX D

Proof of
E(Dz)~EDy) = 2-ER)+E(Q):
E(Dr)—-EMDy) = E(U+Cyy)-EU—Cyy)

= E(Cyy) +E(Cyx). (1D)



From Equation (4a) follows

E(Cyy) = Px-ER)+(1-py) ER+Q)

= E(R)+(1-px EQ). (2D)
Similarly, from Equation (4b) follows
E(Cyx) = (1-p) ER)+px ER+Q)
= E(R)+p« E(Q). (3D)

Inserting 2D and 3D into 1D yields the desired result.

APPENDIX E

Proof of
Ym(d) = Pr{Dm=<d} = B-Pr{DrL<d}+(1—B) - Pr{Dr <d}:
Y is defined as

Ym(d) = Pr{xy|d}+Pr{xyuld}. (1E)

According to the assumed response mapping and the general
threshold model, we have

Pr{xy.|d} = Pr{A,+Cy < Ay}
= Pr{Dr=<d} (2E)

and

Pr{xyu|d}

B-Pr{A«<A,;<A,+Cy or Ay<A <A;+Cy)
= B[l_Pr{Ay+ny<Ax} "Pr{Ax+ny<Ay}]
= B-[Pr{DL<d}~-Pr{Dr<d}]. GE)

Inserting (3E) and (2E) into (1E) yields the desired result. An
analogous derivation is used for Allan’s (1975a) successive-
ness/order condition. The proof is complete.

GLOSSARY

This glossary provides brief definitions of main symbols used
in the text and in the appendices.

TOJ Temporal-Order Judgment.
Sx (Sy) Stimulus in channel x ().
& (ty) Time at which Sy (Sy) is presented.

d Time difference ty—1tx.

si  Subjective report that Sy and Sy appear simulta-
neously.

TEMPORAL-ORDER JUDGMENTS

Xy

yx

my (my)
Y, L and Y R

L« (Ly)
Ax (Ay)
Cyy
Cyx

U
Dgr
Do

C

M
CDF
Fm

fm

R

Q

q

fexy (feyx)
px (py)

Dum

Ym

B

myg

Di
M
SD
SK

SE
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Subjective report that Sx appears before Sy.
Subjective report that Sy appears before S,.
Sensory message elicited by Sx (Sy).

Psychometric functions defined as Yp(d) =
1—Pr{yx|d} and Yr(d) = Pr{xy|d}.

Arrival latency of my (my) at the locus of the cen-
tral order-decision mechanism.

Arrival times of my (my) at the locus of the cen-
tral order-decision mechanism.

Threshold applied to difference Ay — Ay if my
arrives at the central-order mechanism before my.

Threshold applied to difference Ax— Ay if my
arrives at the central-order mechanism before my.

Arrival latency difference Ly —Ly.
Random variable defined as Dr = U + C,y.
Random variable defined as Dy = U~ Cy,.

Moment-duration of a triggered moment:
ny = ny =C.

Duration of a psychological moment.
Cumulative density function.

CDF of M.

Density of M.

Residual-moment duration; also residual of Q.
Time quantum; conceived as a random variable.
Time quantum; conceived as a constant value.
Density of Cxy (Cyx).

Probability that attention is initially directed to
channel x(y).

Random variable that can be conceived as a mix-
ture of Dy and Dg.

Psychometric function defined as Ym(d) =
Pr{xysu'| d} + Pr{xySI | d}.

Response bias for xyy (xysi).

Estimate of the rth raw moment of D.
Estimate of Y(d).

Estimate of the mean of D.

Estimate of the standard deviation of D.
Estimate of the skewness of D, that is, estimate

of (E{[E(D) — DF}).
Standard error of estimate.

(Manuscript received October 30, 1986;
revision accepted for publication March 11, 1987.)



