
On the correlation of a naturally and an artificially
dichotomized variable

Rolf Ulrich1* and Markus Wirtz2

1University of Tübingen, Germany
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A method is suggested for estimating the correlation of a naturally (X) and an artificially
(Y) dichotomized variable. It is assumed that a normal random variable (L) underlies the
artificially dichotomized variable. The proposed correlation coefficient recovers
the product moment correlation coefficient between X and L from a fourfold table of
X and Y. The suggested correlation coefficient n is contrasted with the phi correlation
and the biserial h. The biserial h was proposed by Karl Pearson and is conceptually
related to the new correlation coefficient. However, in addition, Pearson’s biserial h
invokes the assumption that the marginal distribution of L is normal, which contradicts
its basic assumptions and thus does not recover the true correlation of L and X. Finally,
an approximation is provided to simplify the calculation of n and its standard error.

1. Introduction

Fourfold (2 £ 2 contingency) tables are commonly used to represent the bivariate

distribution of two dichotomous variables. When measuring the correlation in these

tables, the nature of the dichotomy often plays an important role in the choice of the

appropriate correlation coefficient. The term dichotomy generally applies to a division
of the members of a sample or population into two groups. The division can be based on

a qualitative or on a quantitative characteristic. In the former case the dichotomy is

sometimes labelled as natural,1 and in the latter case as artificial.

A natural dichotomy is simply based on a dichotomous attribute such as gender. Each

member in a sample or population is allotted to one of two groups according to whether

he or she possesses a specific attribute. In contrast, an artificial dichotomy is created

whenever the values of a quantitative variable are recorded only as being greater or less

than a specific cutoff value, say g. For example, the age of an individual is a quantitative
variable, say L, and in a study two age groups may be created by assigning individuals

with L # 60 years to a ‘younger age group’ and individuals with L . 60 to an ‘older age

* Correspondence should be addressed to Rolf Ulrich, Psychologisches Institut, Universität Tübingen, Friedrichstr, 21, 72072
Tübingen, Germany (e-mail: ulrich@uni-tuebingen.de).
1 Some authors prefer the adjective ‘true’ instead of ‘natural’ (e.g. Kaplan & Saccuzzo, 2001).
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group’. Likewise, a sample of students may be divided on the basis of their course grades

into ‘high’ and ‘low’ achievers. The exact values of a quantitative variable are neglected

in an artificial dichotomy, but this loss of information is sometimes accepted because it

enhances the analysis and presentation of data.2

An artificial dichotomy may also be created if there is a limit to how a quantitative

variable can be measured. It is often difficult or even impossible to measure a

quantitative variable directly, although it is possible to obtain dichotomous

information about it. For example, it is usually difficult to predict the potential of

recidivism of a previously violent person, but a variety of indicators might be available

to classify an individual as dangerous or harmless (Rice & Harris, 1995). In this case full

predictive information about future violence is not accessible although a rough but

reliable dichotomous classification (dangerous or harmless) might be possible. The

actual underlying quantitative variable on which this classification is based thus has the

status of a latent variable, and the created dichotomy may be considered as artificial

(Lord & Novick, 1968, pp. 335–349). Hence, an artificial dichotomy may result in a

diagnostic situation when one is forced to choose between two alternatives. Such an

artificial dichotomy, however, may also arise from measurement limitations. For

example, a variety of indicators could be used to classify an individual as an alcoholic

or a non-alcoholic, though detailed information about alcohol consumption is not

accessible.

There is some agreement in the psychometric literature that the phi coefficient f

should be used to assess the correlation between two naturally dichotomous variables

(e.g. Kaplan & Saccuzzo, 2001; Lord & Novick, 1968; Wherry, 1984), although there are

alternative association measures.3 The formulae for the ordinary product moment

correlation can be reduced to the phi coefficient for this type of binary variable,

conventionally represented by 0 or 1. Hence the usual product moment correlation is

used to measure the relationship between two naturally dichotomized variables.

Although f could also be used to measure the relationship between two artificially

dichotomized variables, it would not be possible to infer the actual correlation between

the underlying quantitative variables from this measure.4 This latent relationship,

however, may be inferred from a 2 £ 2 contingency table if f is replaced by the

tetrachoric correlation coefficient developed by Pearson (1900). He assumed that the

underlying continuous variables follow a bivariate normal distribution. The tetrachoric

correlation estimates the product moment correlation in this bivariate normal

distribution. The calculation of the tetrachoric correlation coefficient is cumbersome,

but fortunately a computer program (Brown, 1977) and sufficiently accurate

approximations (Digby, 1983) are available for its calculation. Detailed discussions of

2 The problems involved in artificially dichotomizing a continuous variable have been addressed in several studies. For example,
dichotomizing leads to an attenuation of statistical power and to an inflated Type I error (Aguinis, 1995; Cohen, 1983; Stone-
Romero & Anderson, 1994; Vargha, Rudas, Delaney, & Maxwell, 1996). Therefore, researchers should avoid dichotomizing
variables whenever continuous information about them is available.
3 One such alternative measure is Yule’s Q (see Bishop, Fienberg, & Holland, 1975, p. 378) and another is the so-called odds
ratio (see Tabachnick & Fidell, 2001, p. 548). These alternative measures, however, are not special cases of the product
moment correlation.
4 In general, the product moment correlation coefficient of polychotomized variables is attenuated relative to the true
correlation coefficient of the underlying continuous variables (Cohen, 1983; Ulrich & Giray, 1989). This attenuation effect
increases with a decrease in the number of categories into which the observations are sorted, and since an artificial dichotomy
represents the extreme case of polychotomization, a particularly large attenuation effect should be expected for the phi
coefficient. In very special cases, however, there are exceptions to this rule (Vargha et al., 1996).
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the tetrachoric correlation coefficient can be found in the works of Lord and Novick

(1968, pp. 345–349), Kendall and Stuart (1973, pp. 316-319), and Harris (1988). For an

interesting historical survey of the development of the tetrachoric as well as related

measures, see Cowles (1989).

The literature available provides no reasonable estimator from which the latent

correlation between a naturally and an artificially dichotomized variable can be inferred
on the basis of a 2 £ 2 table. As in the case of two artificially dichotomized variables, f is

of no use if one wishes to uncover the latent product moment correlation between the

naturally dichotomized variable and the continuous variable underlying the artificial

dichotomy; since f invokes no assumptions about an underlying continuous variable,

there exists no logical basis for such an inference. This gap is almost never mentioned in

the psychological and statistical literature available (Bortz & Döring, 2001, p. 509;

Frankfort-Nachmias, 1997; Howell, 1997; Sheskin, 2000; see, however, Bortz, 1979,

p. 277). Nonetheless, it immediately becomes clear if one tries to teach correlation as a
subject in any systematic way.

Although f could also be used to measure the manifest relationship between an

artificially dichotomized variable and a naturally dichotomous one, it would not be

possible to infer the latent correlation of the natural dichotomous variable with the

underlying quantitative variable. It is, however, common practice to employ f to

quantify the relationship between both variables. Although more recent works criticize

this practice (Fuller & Cowan, 1999; Hasselblad & Hedges, 1995; Mossman, 1994; Rice &

Harris, 1995), these studies provide no appropriate estimator of this latent correlation.5

A correlation coefficient that appears to close this gap is the special case of the

so-called biserial h (see Kendall & Stuart, 1973, pp. 319–321 for a detailed discussion).

Unfortunately, this coefficient rests on the implicit assumption that there is an

underlying univariate normal distribution, which, of course, is an unnecessary

restriction. Interestingly, however, the basic assumptions of the biserial h are suitable for

this correlation problem; this will become clearer below.

The present paper develops a new correlation coefficient to infer the true

correlation between a naturally and an artificially dichotomized variable. This new
coefficient involves the basic assumptions of the biserial h while avoiding its implicit

assumption of an underlying univariate normal distribution. This new coefficient is

compared with the biserial h and f.

2. Assumptions

Some notation is needed to simplify the presentation. Samples (L, X ) are taken from

a bivariate distribution with correlation Corr[L, X ]. X represents the naturally

dichotomized variable and L the (latent) continuous variable. Furthermore, let Y be

an artificially dichotomized variable that takes the value 0 if L # g and the value 1 if

L . g: Without loss of generality it is assumed that X is a Bernoulli variable taking the
values 0 and 1 with the probabilities Pr{X ¼ 0} and Pr{X ¼ 1} ¼ 1 2 Pr{X ¼ 0};
respectively. Hence, each observation (l, x) can be allocated to one of the cells of a 2 £ 2

contingency table. (For an example of a contingency table, see Table 1). The statistical

5 Nevertheless, these studies suggest non-correlational measures. For example, Hasselblad and Hedges (1995) employ d0

from signal detection theory to measure the effect size associated with this latent correlation. The advantage of this measure is
that d0 does not depend on the cutoff value on which the artificial dichotomization is based.
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problem is to infer the (latent) correlation Corr[L, X ] between L and X from this type of

table.6 Throughout the text we proceed from the following two assumptions:

Assumption 1.
The conditional density function f ðl=X ¼ xÞ of L ¼ l given X ¼ x is normal.7

Assumption 2.
The conditional variance of L does not depend on X, that is,

Var½LjX ¼ 0� ¼ Var½LjX ¼ 1� ¼ s2:

Assumptions 1 and 2 are not specific to the correlation developed in this paper,

because they are also explicitly or implicitly assumed in inferred correlations such as the

biserial correlation rb, the tetrachoric, and the biserial h (see Kendall & Stuart, 1973,

pp. 316–322).

From these assumptions it is clear that a positive (negative) correlation Corr[L, X ]
must result if the conditional mean E½LjX ¼ 1� ¼ m1 is larger (smaller) than the

conditional mean E½LjX ¼ 0� ¼ m0: The magnitude of Corr[L, X ] increases with the

difference between the means, although the conditional variances Var½LjX ¼ 0� ¼ s 2
0

and Var½LjX ¼ 1� ¼ s 2
1 remain constant according to Assumption 2. Of course, if X and

L are uncorrelated, then the two conditional means must be equal.

According to the above assumptions, the marginal or unconditional distribution f(l )

of L corresponds to the probabilistic mixture distribution

f ðlÞ ¼ f ðljX ¼ 0Þ · Pr{X ¼ 0} þ f ðljX ¼ 1Þ · Pr{X ¼ 1};

which implies that the marginal distribution of L cannot correspond to a normal

distribution unless m0 ¼ m1 and s0 ¼ s1; because a mixture of normals is not

necessarily a normal (cf. Everitt, 1985). This is in contrast to the biserial h, which relies

implicitly on the assumption that f(l ) is normal, although the basic assumptions of the
biserial h are the same as those above. Thus, the biserial h is inherently flawed, since it

rests on mutually contradictory assumptions. Because of this flaw, the biserial h

provides biased estimates of Corr[L, X ], as will be demonstrated below.

Table 1. A 2 £ 2 contingency table showing the bivariate distribution and marginal distributions of X

and Y. Variable X is naturally dichotomized, while Y is artificially dichotomized on the basis of a (latent)

continuous variable L.

X

Y 0 1 p.y

0 p00 p10 p.0

1 p01 p11 p.1

px. p0. p1.

6 It should be noted that f is equal to Corr[Y, X] , but usually not equal to Corr[L , X] .
7 This assumption is actually more specific than necessary. The general form of the new correlation coefficient could also be
applied to other latent distributions (e.g. the exponential or the binomial distribution).
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The following proposition (proved in Appendix A) can be deduced from the above

assumptions. It shows how Corr[L, X ] can be calculated from the information provided

by a 2 £ 2 contingency table such as Table 1. The deduction rests on the assumption

that f (l ) is a mixture of normal distributions and thus abolishes the restriction of the

biserial h.

Proposition I. Under Assumptions 1 and 2, the correlation n ; Corr½L;X� between

a naturally dichotomized variable X and a continuous variable L underlying the

artificially dichotomized variable Y is

n ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 1

p1:ð12p1:Þ

q ; ð1Þ

with D ¼ F21½ p00=p0:�2F21½ p10=p1:�; where F21
denotes the quantile function of a

standard normal variable and p1: ¼ p10 þ p11.

Note that D represents the standardized difference between means

D ¼ m1 2 m0

s

of the conditioned normal distributions. As already mentioned, (1) becomes zero if the

two conditional means are equal.

3. Numerical example

To illustrate Proposition 1, we proceed from the probabilities shown in Table 2. To use a

concrete example, we may think of Y ¼ 1 as a high grade and Y ¼ 0 as a low grade, of

X ¼ 0 as male and X ¼ 1 as female. The actual grades, L, are divided according to an

unknown cutoff g into low and high grades. Thus Table 2 illustrates a possible

association between an artificial dichotomous variable Y (grades) and a natural

dichotomous variable X (gender).

According to Proposition 1, we have

D ¼ F21 :15
:40

h i
2F21 :10

:60

h i

¼ ð20:3186Þ2 ð20:9674Þ

¼ 0:6488;

Table 2. An example of a bivariate distribution for X and Y. The natural dichotomy is gender, X.

The artificial dichotomy is high ðY ¼ 1Þ versus low ðY ¼ 0Þ grades.

Gender

Grade Male Female

Low .15 .10
High .25 .50
px. .40 .60
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and, from (1),

n ¼ 0:6488ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:64882 þ 1=ð:6ð1 2 :6ÞÞ

p
< :30:

The positive sign indicates that, on average, females received better grades.

4. Logistic approximation of the normal distribution

For practical purposes a more convenient formula for computing n is obtained if the
conditional density function f ðljX ¼ xÞ is assumed to be logistic instead of normal.

The cumulative distribution function (cdf ) of a logistic random variable X is

CðxÞ ¼ 1

1 þ e21:7x
: ð2Þ

The constant 1.7 in (2) makes C(x) very similar to the standard normal cdf F(x),
because jCðxÞ2FðxÞj , 0:01 must hold for all values of x ( Johnson & Kotz, 1970,

p. 6). Thus, for practical purposes, C(x) provides an approximation for F(x).

Under the assumption that f ðljX ¼ xÞ is logistic, Proposition 1 can be simplified (see

Appendix B) to

n ¼
ln p00p11

p01p10

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln p00p11

p01p10

� �2

þ 2:89
p1:ð12p1:Þ

r ; ð3Þ

which does not require the calculation of quantile values. Applying this formula to the

probabilities in Table 2 yields a correlation of n ¼ :30; which is virtually identical to that

computed on the assumption of a normal distribution.8

The assumption of a logistic approximation also leads to a manageable expression for

computing the standard error of the estimate n̂: Its derivation is shown in Appendix

C. For the probabilities of Table 2 and a sample size of N ¼ 100; the standard error

equals 0.121.

Under the assumption of a logistic distribution, the standardized difference between

means is equal to lnðp00p11

p01p10
Þ; which is also known as the log-odds ratio in the statistical

literature (Somes & O’Brien, 1988). Thus, the coefficient n can also be used to

standardize the log-odds ratio to between 21 and þ1, which enhances the comparison

of the ratio with correlation coefficients.

Since (3) is a function of the odds ratio, common coefficients of association measures
behave in a similar way to n in that they are also invariant with respect to the cutoff value

g. For example, Yule’s Y and Yule’s Q (Chambers, 1982) are monotonic transformations

of the odds ratio. Nevertheless, they are developed for different applications and also

8 The goodness of the approximation was evaluated for 160 000 contingency tables. For each table, a new set of numerical
values was generated for the cell probabilities p00, p01, p10, and p11. Specifically, each probability was systematically varied
over the interval [.02, .87] and under the constraint p00 þ p01 þ p10 þ p11 ¼ 1. The resulting values of n ranged from2 .86
to .86. To assess the goodness of the approximation, we calculated for each table the absolute difference between (1) and (3)
and then averaged these 160 000 absolute differences. The average absolute difference was 0.009 and the standard deviation
of all absolute differences was 0.007. In addition, only 3.4% of all absolute differences were larger than 0.02. This pattern of
results clearly suggests that (3) provides a satisfactory approximation in most practical situations. Additional computations
showed that for cell probabilities close to zero or close to one, the difference between (1) and (3) can be substantial. In such
extreme situations the approximation must be used with caution.
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yield different absolute values. In contrast to n, these measures cannot be employed to

recover the true latent correlation Corr[L, X ]. For the probabilities in Table 2, the true

latent correlation is n ¼ :30; whereas Y ¼ :25 and Q ¼ :47 differ substantially from this

value.

5. On the sample estimation of n

It is common practice to substitute sample estimates for population parameters. In our

case the compound probabilities p00, p01, p10, and p11 should be replaced by the

corresponding sample estimates. Such a practice is not always optimal, but in this case it

can be shown (see Appendix D) that this strategy provides maximum likelihood
estimates for the parameters D and p1. in (1). Since n is a function of D and p1., it follows

according to the invariance property of maximum likelihood estimation that this

strategy provides a maximum likelihood estimator for n (see Mood, Graybill, & Boes,

1974, pp. 283–286). It is well known that maximum likelihood estimators possess

excellent properties, at least asymptotically.

6. Comparison of n with biserial h and f

In this section the new correlation coefficient is contrasted with both the f coefficient

and the biserialh suggested by Pearson (1909–1910). Pearson proposed the biserialh as a

‘method of determining the correlation, when one variable is given by alternative and the
other by multiple categories’ (p. 248). According to his basic assumptions, the alternative

category (Y ) emerges from an underlying normal variable (L), whereas the multiple

categories (X ) might be purely qualitative (e.g. type of crime, type of nationality).

Furthermore, the conditional density functions f ðljX ¼ xÞ of L for x ¼ 0; 1; 2; : : : were

assumed to be normal, differing only in location. The binary variable Y is formed

by dividing the conditional distributions at g into two artificial categories. Thus, the

basic assumptions of the biserial h are identical to those from which Proposition 1

emerged.
In the special case that the qualitative variable has only two categories, the biserial h

reduces to

h2 ¼ 1 2
1 þ z2

y

1 þ z2
0 · p0: þ z2

1 · p1:
; ð4Þ

with zy ¼ F21½ p:1�; z0 ¼ F21½ p01=p0:�; and z1 ¼ F21½ p11=p1:�: The derivation of the

biserial h proceeds from the correlation ratio

h2 ¼ Corr½L;X�2 ¼ Var½E½LjX ¼ x��
Var½L� ;

which can never be negative (for a detailed mathematical treatment of the biserial h, see

Kendall & Stuart, 1973, pp. 319–321). This derivation is only valid, however, if the

marginal distribution of L is normal, because zy is computed using the normal

distribution function on the marginal distribution of Y.

Applying the biserial h to the numerical example given in Table 2, one computes

z0 ¼ F21 :25
:40

h i
¼ 0:3186;

z1 ¼ F21 :50
:60

h i
¼ 0:9674;

zy ¼ F21 :75½ � ¼ 0:6745:
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Substituting these values into (4) results in

h2 ¼ 1 2
1 þ ð0:6745Þ2

1 þ ð0:3186Þ2 · ð:40Þ þ ð0:9674Þ2 · ð:60Þ
< :092;

and hence jCorr½L;X�j ¼ h ¼ :30: Note that this value is the same as the one given by n,

neglecting possible rounding errors.

In general, however, there is a substantial difference between the coefficients h and

n. This is easily demonstrated by computing h and n from fourfold tables consistent with

Assumptions 1 and 2. Table 3 shows the results of such computations. To generate each

fourfold table, the values of E½LjX ¼ 0�; E½LjX ¼ 1�; and s were fixed at 0.0, 4.0, and 1.5,

respectively and the values of g and p1. were varied throughout the set (22.0, 0.0, 2.0,

4.0, 6.0) and (.05, .25, .50, .75, .95), respectively. Separate fourfold tables were computed

for each (g, p1.) combination, and the corresponding values of f, h and n shown in

Table 3 were obtained from these tables. Table 3 reveals several interesting features:

(1) By definition, n is invariant against a variation of cutoff g. However, both h and f

vary considerably with g ; f more so than h.

(2) n and f can differ considerably.

(3) Interestingly, in some cases f may even be larger than h or n.

This demonstration clearly reveals that neither h nor f uncovers the true correlation

Corr½X; L� ¼ n between X and L. The strong dependence of f on g is expected from the

theoretical results provided by Carroll (1961), who showed that f always depends on

the cutoff points in any bivariate distribution. However, the fact that f may even be
larger than n is remarkable, since one is usually tempted to assume that dichotomizing

leads to a loss of information that attenuates the true correlation coefficient (but see

Table 3. The correlation coefficients f, biserial h, and n as a function of g and p1.. In all cases the values

of E½LjX ¼ 0� ¼ 0; E½LjX ¼ 1� ¼ 4 and s ¼ 1:5 are constant. All values are rounded to the nearest

hundredth.

g

p1. 22.0 0.0 2.0 4.0 6.0

.05 f .07 .22 .53 .65 .29
h .43 .51 .44 .64 .72
n .50 .50 .50 .50 .50

.25 f .16 .44 .78 .64 .26
h .70 .78 .73 .80 .79
n .76 .76 .76 .76 .76

.50 f .22 .57 .82 .57 .22
h .78 .83 .80 .83 .78
n .80 .80 .80 .80 .80

.75 f .26 .64 .78 .44 .16
h .79 .80 .73 .78 .70
n .76 .76 .76 .76 .76

.95 f .29 .65 .53 .22 .07
h .72 .64 .44 .51 .43
n .50 .50 .50 .50 .50

Rolf Ulrich and Markus Wirtz242



Vargha et al., 1996). Therefore, f cannot generally be viewed as a conservative

correlation coefficient that will always provide a lower bound on the true relationship

between any two dichotomized variables.

7. Conclusion

In this paper a new method is proposed to estimate the correlation between a naturally

(X) and an artificially (Y ) dichotomized variable. It is assumed that Y emerges from an

underlying variable L, which is dichotomized at an unknown cutoff g. This new

coefficient, n, recovers the correlation between X and L if certain assumptions about

L are met. It is assumed, firstly, that the distribution of L conditioned on X is normal;

and secondly, that the conditional variance s 2 of L does not depend on X

(homoscedasticity). Both assumptions are usually invoked in inferred correlation
coefficients such as the biserial and the tetrachoric correlation. Violation of either

assumption has been studied in detail by Hasselblad and Hedges (1995) for the indices d0

and the log-odds ratio on which n is based. When the violations are modest (e.g. both

variances do not differ by a factor more than 4), the bias of n is neglectable.

The estimation of n and its standard error is quite cumbersome, if one proceeds from

the assumption that L is normally distributed. Hence, we have provided an

approximation based on the logistic distribution. This approximation not only yields

a simpler formula for computing n but also allows the derivation of a convenient
expression for computing the standard error of the estimate n̂: Furthermore, we have

shown that the suggested equation for estimating n is a maximum likelihood estimator

and thus possesses excellent estimating properties (consistency and high efficiency).

As discussed in Appendix C, this information also allows the construction of confidence

intervals for the estimate n̂ when N is relatively large.

The new correlation method is based on assumptions conceptually identical to those

of the biserial h. However, the biserial h assumes implicitly that the marginal

distribution of L is normal, which actually contradicts the basic assumptions of the
biserial h, according to which the marginal distribution of L should be a mixture of two

normal distributions. According to the basic assumptions, h should remain constant

when the cutoff g is varied. However, it was demonstrated that the expected invariance

of h in this case does not hold. In contrast to the biserial h, the new correlation

coefficient n avoids the assumption of an unconditional univariate normal distribution.

Since f depends on g, this may lead to false conclusions under certain circumstances.

Assume that a researcher in a meta-analysis study compares the f correlation of gender

and alcoholism of two countries, say A and B. The reported fs are .82 and .22 in A and B,
respectively. Does this justify the conclusion that alcoholic consumption depends more

on gender in A than in B? Not necessarily, as can be seen in Table 3 under the assumption

of p1: ¼ :5 in both countries. The actual correlation between L and X could be n ¼ :80 for

both countries, but the reportedf values of .82 and .22 could be obtained with the cutoff

values 2.0 and 6.0, respectively. Clearly, n is a more meaningful measure of correlation

because of its insensitivity to cutoff values. The same argument applies to two

diagnosticians who rely on different criteria for characterizing previously violent people

as potential recidivists. As long as their classification is based on the same normally
distributed underlying information, n would be constant.

The new correlation coefficient n can also be regarded as an analogue of the biserial

correlation rb (Kendall & Stuart, 1973, pp. 321–323), which is widely used in

psychology (Ferguson, 1976, pp. 418–419). The coefficient rb differs conceptually from
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biserial h, because rb recovers the product moment correlation between a normally

distributed X and a latent normally distributed variable L that is artificially dichotomized.

Thus, there is now a complete set of correlation techniques available to reveal the

correlation between non-dichotomous and dichotomous variables. Specifically, the

biserial correlation, the tetrachoric and the new correlation coefficient n should be

employed whenever the true correlation between two variables is concealed by an

artificial dichotomy. A common attractive feature of these coefficients is that performing

a factor analysis based on these correlation coefficients may reveal a more realistic factor

structure than a factor analysis based on a conventional Pearson correlation matrix.
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Appendix A

Proof of proposition 1
First, note that

Corr½L;X� ¼ Cov½X; L�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X� · Var½L�

p ; ðA:1Þ
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where Cov[X, L ] denotes the covariance of X and L. The terms Cov[X, L ], Var[L ], and

Var[X ] will be analysed separately.

First, the covariance of X and L is

Cov½X; L� ¼ E½X · L�2 E½X� · E½L�; ðA:2Þ

with

E½X · L� ¼ E½E½X · LjX��

¼ E½0 · LjX ¼ 0�Pr{X ¼ 0} þ E½1 · LjX ¼ 1�Pr{X ¼ 1}

¼ E½LjX ¼ 1�Pr{X ¼ 1}

¼ m1 · p1:; ðA:3Þ

where m1 is the conditional mean of L under X ¼ 1: Furthermore, we have

E½X� ¼ p1: ðA:4Þ

and

E½L� ¼ E½E½LjX��
¼ m1 · p1: þ m0 · ð1 2 p1:Þ;

ðA:5Þ

where m0 denotes the conditional mean of L under X ¼ 0: Substitution of (A.5), (A.4),

and (A.3) into (A.2) yields

Cov½X; L� ¼ p1: · ð1 2 p1:Þ · ðm1 2 m0Þ: ðA:6Þ
Second, the variance of L can be written as

Var½L� ¼ Var½E½LjX�� þ E½Var½LjX��: ðA:7Þ

According to Assumption 2, we may write

E½Var½LjX�� ¼ s2: ðA:8Þ

For the variance of E[LjX ] we write

Var½E½LjX�� ¼ E½E½LjX�2�2 E½E½LjX��2

¼ E½LjX ¼ 0�2 · p0: þ E½LjX ¼ 1�2 · p1: 2 E½L�2

¼ m2
0 · p0: þ m2

1 · p1: 2 ðm1 · p1: þ m0 · p0:Þ2:
ðA:9Þ

Inserting (A.9) and (A.8) into (A.7) yields, after some simplifications,

Var½L� ¼ ð1 2 p1:Þ · p1: · ðm1 2 m0Þ2 þ s2: ðA:10Þ

Finally, since X is a Bernoulli random variable, we have

Var½X� ¼ ð1 2 p1:Þ · p1:: ðA:11Þ
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Inserting (A.6), (A.10) and (A.11) into (A.1) gives

Corr½L;X� ¼ p1: · ð1 2 p1:Þ · ðm1 2 m0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p1: · ð1 2 p1:Þ · ðm1 2 m0Þ2 þ s2� · ½p1: · ð1 2 p1:Þ�

q

¼ m1 2 m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 2 m0Þ2 þ s2=ðp1:ð1 2 p1:ÞÞ

q

¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 1=ðp1:ð1 2 p1:ÞÞ

q ;

which proves (1).

To compute D, note that

p00 ¼ Pr{X ¼ 0 > Y ¼ 0}

¼ Pr{Y ¼ 0jX ¼ 0} · Pr{X ¼ 0}

¼ Pr{L # gjX ¼ 0} · Pr{X ¼ 0}

¼ Pr
L 2 m0

s
#

g2 m0

s

	 

· Pr{X ¼ 0}: ðA:12Þ

If L is normally distributed under X ¼ 0; then the fraction ðL 2 m0Þ=s is a standard

normal variable with distribution function F. Therefore we can rewrite (A.12) as

p00 ¼ F
g2 m0

s

h i
· p0:

from which one obtains

g2 m0

s
¼ F21 p00

p0:

� �
: ðA:13Þ

Analogously, one derives

g2 m1

s
¼ F21 p10

p1:

� �
: ðA:14Þ

From (A.13) and (A.14) one finds that

F21 p00

p0:

h i
2F21 p10

p1:

h i
¼ g2 m0

s 2
g2 m1

s

¼ m1 2 m0

s

¼ D:

Appendix B

Logistic approximation
Note that the inverse of the logistic cdf,

CðxÞ ¼ 1

1 þ e21:7x
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is given by

C21ðxÞ ¼ 1

1:7
ln

x

1 2 x

� �
:

Thus the quantity D in Proposition 1 is

D ¼ C21ðp00=p0:Þ2C21ðp10=p1:Þ

¼ 1

1:7
ln

p00=p0:

1 2 p00=p0:

 �
2 ln

p10=p1:

1 2 p10=p1:

 �� �

¼ 1

1:7
ln

p00p11

p10p01

 �
:

Inserting the last expression into (1) of Proposition 1 yields the desired result (3).

Appendix C

Standard error of n̂
In general the standard error of any random variable Y, which is a composite of random
variables X1, : : : , Xn, can be deduced if the partial derivative ›y/›xi and the variance–

covariance matrix of the Xi is known (Stuart & Ord, 1987, pp. 323–324). This general

approach allows the computation of the standard error of n̂: It can be shown that this

standard error (SE) is given by

SE 2½n̂� ¼ 1

N
· g0 · V · g; ðC:1Þ

where the quantities N, V, g 0, and g will be explained below.

First, N is the total number of observations, i.e. N ¼ n00 þ n01 þ n10 þ n11 (see

Table 1).

Second, V denotes the variance–covariance matrix

V ¼

V 00 C00;01 C00;10 C00;11

C00;01 V 01 C01;10 C01;11

C00;10 C01;10 V 10 C10;11

C00;11 C01;11 C10;11 V 11

2
66664

3
77775

of the estimates p̂00; p̂01; p̂10; and p̂11: The variance Vij and covariance Cij,kl of these

estimates are ( Johnson, Kotz, & Balakrishnan, 1997)

Vij ¼ pij 2 p2
ij ðC:2Þ

and

Cij;kl ¼ 2pij · pkl : ðC:3Þ

Finally, g0 is the transpose of vector g containing the partial derivatives of n with

respect to the probabilities p00; p01; p10; and p11:

g0 ¼ ›n

›p00
;
›n

›p01
;
›n

›p10
;
›n

›p11

� �
:
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These partial derivatives are derived from (3) and it can be shown that they are

given by

›n

›pij

¼

t · ðu · pij þ 2 · pi :Þ
pij · pi :

; for i ¼ j;

t · ðu · pij 2 2 · pi :Þ
pij · pi :

; for i – j;

8>><
>>:

ðC:4Þ

with

t ¼ s · 1:445ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s2 · u2 þ 2:89�3

q ;

u ¼ ln
p00 · p11

p01 · p10

 �
;

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pij 2 p2

ij:
q

The computation of the standard error of n̂ is demonstrated for the bivariate

distribution shown in Table 2. We will assume that a random sample with N ¼ 100

subjects is drawn from the population associated with this bivariate distribution.

Applying (C.2) and (C.3) to the probabilities in Table 2 yields the variance–covariance

matrix

V ¼

0:13 20:04 20:02 20:08

20:04 0:19 20:03 20:13

20:02 20:03 0:09 20:05

20:08 20:13 20:05 0:25

2
666664

3
777775
:

The vector g and its transpose g 0 are obtained from (C.4). Specifically, the transpose is

g0 ¼ ½ 2:01; 20:66; 22:27; 0:73 �:

Finally the standard error is given by (C.1):

SE½n̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
100

· g0 · V · g
q

¼
ffiffiffiffiffiffiffi
1:46
100

q
¼ 0:121:

Since n̂ is the maximum likelihood estimate, it should be approximately normally

distributed. Therefore, the 95% confidence interval for this example ranges from .06

to .54 and thus the observed n̂ ¼ :30 deviates significantly from zero. (To compute the

standard error of estimate n̂ from the data of a random sample, one simply replaces the

theoretical probabilities p00, p01, p10, p11 by their estimates p̂00; p̂01; p̂10; and p̂11).

The accuracy of the standard error was verified by Monte Carlo simulations in which

30 000 independent random samples of size N ¼ 100 were generated for each of several

sets of bivariate distributions, that is, p00, p01, p10, and p11. For the above numerical

example, the estimated standard error in the simulation study was 0.12 and thus was

virtually identical to the one computed before. In almost all cases, the simulated and
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computed standard errors yielded virtually identical results over a wide range of realistic

cell probabilities.

For strongly correlated variables ðn . :75Þ or very skewed marginal distributions

ðp , :1Þ; however, (C.1) tends to slightly underestimate the true standard error. For

example, the computed standard error for n ¼ :8 (given symmetrical marginal

distributions, N ¼ 100) is equal to 0.045, whereas simulation yields a value of 0.051. It
should be borne in mind, however, that for strong correlations and relatively small

sample sizes, the sample distributions are not symmetric and thus the relevance of the

standard error for computing confidence intervals is markedly reduced. Although in

most applications such strong correlations are seldom encountered, the bootstrapping

method (see Mooney & Duval, 1993) may be employed to construct confidence

intervals in such extreme cases.

Appendix D

Maximum likelihood estimators
Without loss of generality, we proceed from s ¼ 1 and m0 ¼ 0; implying D ¼ m1:
Furthermore, we abbreviate p ; p1: and m ; m1.

Proposition 2. Let nxy be the number of observations in cell (x, y) of a 2 £ 2

contingency table with x [ {0,1} and y [ {0,1}. Then

m̂ ¼ F21 n00

n0:

� �
2F21 n10

n1:

� �
; ðD:1Þ

ĝ ¼ F21 n00

n0:

� �
; ðD:2Þ

p̂ ¼ n1:

n0: þ n1:
; ðD:3Þ

provide maximum likelihood estimators for m, g, and p, respectively, with

n0: ¼ n00 þ n01 and n1: ¼ n10 þ n11:

Proof. Under Assumptions 1 and 2 the likelihood function ‘ is

‘ðm; g; p; n00;n01;n10;n11Þ ¼
�
FðgÞ · ð1 2 pÞ

�n00
£
�
Fðg2 mÞ · p

�n10

£
�
½1 2FðgÞ� · ð1 2 pÞ

�n01
£
�
½1 2Fðg2 mÞ� · p

�n11 :

As is now shown, however, it is easier to work with the logarithm

‘* ; ln½‘ðm; g; p; n00;n01;n10;n11Þ� of ‘, which can be written as

‘* ¼ n00 ·
�

ln½FðgÞ� þ ln½1 2 p�
�

þn10 ·
�

ln½Fðg2 mÞ� þ ln½ p�
�

þn01 ·
�

ln½1 2FðgÞ� þ ln½1 2 p�
�

þn11 ·
�

ln½1 2Fðg2 mÞ� þ ln½ p�
�
:
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The point ð p̂; ĝ; m̂Þ where the likelihood function ‘ attains its maximum is a solution of

the equations

›‘*

›p
¼ 0;

›‘*

›m
¼ 0; ðD:4Þ

›‘*

›g
¼ 0:

For p one computes

›‘*

›p
¼ n1:

p
2

n0:

1 2 p

and obtains (D.3) under the constraint of (D.4). For m one computes

›‘*

›m
¼ fðg2 mÞ ·

n11

1 2Fðg2 mÞ2
n10

Fðg2 mÞ

� �
; ðD:5Þ

where f denotes the probability density function of a standard normal random variable.

Note that under regular conditions the inequality fðg2 mÞ . 0 holds and hence the

term in brackets in (D.5) must be equal to zero at the maximum of ‘. Therefore, we may

write

n11

1 2Fðg2 mÞ2
n10

Fðg2 mÞ ¼ 0; ðD:6Þ

from which follows the provisional result

g2 m ¼ F21 n10

n10 þ n11

 �
: ðD:7Þ

Next, differentiate ‘* with respect to g to obtain

›‘*

›g
¼ fðgÞ ·

n00

FðgÞ2
n01

1 2FðgÞ

� �
þ fðg2 mÞ ·

n10

Fðg2 mÞ2
n11

1 2Fðg2 mÞ

� �
:

Because of (D.6) and fðgÞ . 0; the last equation can only be equal to zero if the term in

the first bracket is equal to zero. Hence, we may write

n00

FðgÞ2
n01

1 2FðgÞ ¼ 0;

and arrive at

ĝ ¼ F21 n00

n0:

� �
; ðD:8Þ

which proves (D.2). Subtracting (D.7) from (D.8) yields (D.1).
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