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A theory, the parallel force unit model, is advanced in which the buildup and decline of force in
rapid responses of short duration are assumed to reflect variability in timing of several parallel
force units. Response force is conceived of as being a summation of a large number of force units,
each acting independently of one another. Force is controlled by either the number of recruited
force units or the duration each unit contributes its force. Several predictions are derived on the
basis of this theory and are shown to be in qualitative agreement with empirical findings about both
the mean and variability of brief force impulses. The model also has consequences for the temporal
properties of a response. For example, under certain circumstances, it predictsa reciprocal relation
between reaction time and response force. Although the theory is proposed as a psychological
account, relations between the assumptions and basic principles in neurophysiology are consid-
ered. Possible future applications and generalizations of the theory are discussed.

By developing tension around a joint, muscle develops force
against external resistance. If the force produced by the muscle
exceeds the external resistance, movement at the joint results,
In the study of motor control, psychologists have largely fo-
cused on overt movement, for example in asking questions
about the speed and accuracy of limb positioning, and have
tended to neglect the development of force. Or, if they have
referred to force development, it has tended to be as a basis for
explaining some aspects of overt movement. Thus, Schmidt,
Zelaznik, Hawkins, Frank, and Quinn (1979) proposed that the
accuracy of aimed movement be accounted for in terms of vari-
ability in the driving impulse provided by the muscles. Al-
though this line of research has served to direct attention to-
ward the determination of a prototypical force impulise func-
tion (Meyer, Smith, & Wright, 1982), there has been little effort
devoted to theoretical understanding of the form of this func-
tion. If, for example, in movements of different amplitudes
there is scaling of the force impulse function (Meyer et al.,
1982), then how is this achieved? In this article, we consider one
possible theoretical account of force impulse production that
includes a scaling property. However, the theory’s axioms lead
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to further predictions concerning, for example, the variability
of force at each point of time. These predictions lead us to a
critical review of data on the development of brief force im-
pulses.

The regulation of force per se is not only of theoretical inter-
est but is an important factor in many everyday actions. Two
examples are the grasp force used to prevent an object from
slipping under the force of gravity (Westling & Johannson,
1984) and the increase in grip force needed to compensate for
the inertial loading during acceleration of a projectile, such asa
dart, when thrown. In these cases, force levels are selected and
modulated in a manner appropriate to the context; people do
not appear, for example, to operate on an all-or-nothing basis,
switching between zero and maximum force. And contrasting
control styles, which in overt movement have led to the distinc-
tion between ballistic and guided movement, are also evident
in force production (Cordo, 1987; Desmedt, 1983). People are
capable of providing rapid changes in force in a predictive,
open-loop fashion or of using feedback to make adjustments
tailored to a change in the external situation.

In this article, we review empirical work providing informa-
tion on the time course of the first of these two classes of force
control—the production of brief, ballistic pulses. We do this
within a framework provided by a simple theory in which the
force produced by a subject is viewed as a summation over
multiple parallel output units. Each of these force units is as-
sumed to have identical properties. However, the onset of force
in a given unit is subject to a variable delay. As we show later,
this temporal variability plays a central role in determining the
observed force-time waveform.

In addition to its direct focus on amount of force, our thesis
also has implications for another area of interest to psycholo-
gists—measurement of the time of a response. Consider, for
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example, the use of response latency as an index of cognitive
processing (Meyer, Osman, Irwin, & Yantis, 1988; Posner,
1978). The elapsed time between the presentation of a signal to
respond and the onset of movement is referred to as reaction
time (RT). Systematic variation in RT associated with differ-
ences in the stimulus is taken to reflect change in afferent delay
or decision-processing time. However, time is also taken up by
movement preparation and execution. Thus, psychologists take
pains to use simple responses that would be expected to mini-
mize variation due to qualitatively different types of movement.
Brief force pulses have been advocated for this reason. But even
with a stereotyped movement such as a keypress, there can be

variation in force, which “is much less often recorded than re-
sponse time, and it is far less completely studied” (Luce, 1986, p.
51). In the following sections, we demonstrate on theoretical
grounds that such force variation in itself is sufficient to affect
estimates of the time of response. If force changes systemati-
cally with stimulus conditions, this clearly could lead to & po-
tential confounding, a point that has long worried psycholo-
gists (e.g., Delabarre, Logan, & Reed, 1897; Woodworth, 1938)

and was recently restated by Carlton, Carlton, and Newell

(1987). The force~time measure of a response could be an addi-
tional dependent variable that might be helpful in interpreting
RT data.

Data indicating that there can be a systematic relation be-
tween response force and stimulus intensity were reported by
Angel (1973). The force used in making a thumb adduction
response to an auditory or a visual signal was examined as a
function of the amplitude of the signal. On each trial, the full
force-time function was recorded. Angel reported that peak
force increased with stimulus intensity and that RT decreased
with peak force. Inspection of the force-time functions repro-
duced by Angel reveals an increase in peak force with stimulus
intensity (see Figure 1). A more rapid rate of rise in force may be
seen with higher forces. There are several ambiguities in Angel’s

report, including uncertainty about his criterion for measuring
RT, that is, whether stimulus onset or some other point was
taken as the trigger event. However, Figure | suggests that if RT
is measured as the time at which the response force first reaches
a fixed level, or threshold, lower than the lowest of the peak
force values, the dependence of the force-time function on stim-
ulus intensity would lead us to expect shorter RT estimates for
more intense stimuli. The model that we propose is able to
account for force-time relations in simple, brief pulselike re-
sponses such as those recorded by Angel. With multiple, tempo-
rally noisy output units determining the level of force at any
point in time, it is the noise in relation to the number of units
that mainly determines the form of the force-time function.
Although the model is proposed as a psychological account
of force—time relations, it is no accident that the elements of the
model have many similarities to basic principles in muscle neu-
rophysiology. Indeed, part of the motivation for the model is
that it may lead to a better understanding of the interface be-
tween brain and movement (cf. Bunge & Ardila, 1987, pp. 167-
169). The constraints discovered through quantitative modeling
help define the control problem for the brain. Our approach is
based on a simplified view of muscle activation. The simplifica-
tions we adopt are motivated not only by mathematical tracta-
bility, but also by the view that progress in understanding the

Figure 1. Force functions produced in a simple reaction time task for
different intensities of auditory stimulation with relative intensities
from bottom to top of 0, 20, 40, and 60 dB. (The length of the record
represents 640 ms; no force calibration was indicated in the original.
From “Input-Output Relations in Simple Reaction Time Experi-
ments” by A. Angel, 1973, Quarterly Journal of Experimental Psychol-
ogy, 25, p.196. Copyright 1973 by Erlbaum. Reprinted by permission)

system is more likely if the system is first described in reduced
terms (albeit loosely constrained by available data) and only
afterwards complicated by the addition of more structure
(Bunge, 1967, chap. 8). Before presenting our model, we first
briefly set out certain facts from motor neurophysiology.

The Activation of Skeletal Muscle

Skeletal muscles are composed of a large number of distinct
contractile fibers. A brief pulselike change lasting about 1 msin
the electrical polarization of the cell membrane sweeping along
the length of a fiber causes changes in the structural arrange-
ment of proteins, and these generate a very small tension (a
fraction of a gram') referred to as a twitch. Such a twitch typi-
cally has a time course spanning 150-300 ms, with the rise in
force taking roughly half the time of the decay.

The electrical pulse responsible for the muscle fiber twitch
arises in a neuron, the motoneuron located in the spinal cord,
and terminates at a motor end plate on the fiber. By means of
branching, a given motoneuron makes contact with several
muscle fibers. How many fibers are innervated by a given moto-
neuron depends on the muscle. Figures cited by Burke (1981)
give estimates ranging from 15 fibers per motoneuron for the
extraocular muscles to 2,000 fibers per motoneuron in the leg
muscle medial gastrocnemius, with intermediate values of 100
and 600 for the hand and arm muscles. The term motor unit
(MU) is used to refer to the motoneuron with its set of muscle
fibers. An impulse coming down a motoneuron is propagated

simultaneously along all its branches, with the result that the

! The standard unit of force is the newton (N) rather than the kilo-

gram (kg). One kilogram force equals 9.81 N, and hence [ g force is
approximately 1 cN.
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twitches in each of the muscle fibers of 2 given MU are gener-
ated in synchrony. Because the fibers ultimately attach to one
tendon at each end of the muscle, the individual twitches are
mechanically summated. A significant quantity is thus the ten-
sion produced in a single fiber twitch summed over the number
of fibers in the MU. Depending on the muscle, this may amount
to a few grams.

In the performance of everyday tasks, muscle tensions much
greater than a few grams are normally required. To generate a
tension impulse running into hundreds of grams, activity in
many MUs is required. If the twitches in all the MUs occur
simultaneously, their mechanical effects will sum, and the re-
sulting tension will increase as more MUs are added or re-
cruited. However, there are at least two factors that act to pre-
vent perfect temporal overlap. The first is that, in a group of
motoneurons, there is a considerable range of fiber conduction
velocities (e.g. see Eccles & Sherrington, 1930). Even though
the input to a nerve fiber bundle may be tightly synchronized,
the output will be a set of impulses dispersed in time. The
amount of the temporal dispersion is a function of the range of
fiber conduction velocities and the length of the nerve. This
results in a low-pass filtering effect, and an expression for the
transfer characteristic of nerve bundles was derived by Wil-
liams (1969,1972). This first factor is deterministic in the sense
that a particular MU is always associated with the same con-
duction delay. A second factor acting to reduce temporal over-
lap is stochastic in nature; the activation of MU is not tightly
synchronized but is variable. Evidence for this comes from ex-
amination of the onset of activity in particular pairs of MUs.
Thomas, Ross, and Calancie (1987) studied selected MU pairs
in the first dorsal interosseous (the muscle that moves the index
finger sideways toward the thumb) during relatively brief (120
ms) ballistic movements associated with the closing phase of
using scissors. They documented standard deviations of the
interval between the onsets of spike bursts of pairs of MUs in
the range of 10-40 ms. Such variability in MU pair onsets
might arise in multisynaptic pathways of motor preparation
processes. But the important point is that in a brief contraction,
such lack of synchronization in the onset of activity across MUs
will reduce the overlap of their force contributions.

One means of compensating for the effective drop in tension
due to asynchronization in onset times over MUs would be to
prolong the contraction time of each MU. Such a prolongation
would involve the motoneuron discharging more than once.
However, if the spike discharges are closely spaced, not only is
the MU contraction duration increased, but the tensions result-
ing from the later spikes are higher than they would have been
in isolation (Partridge & Benton, 1981). Indeed, with contrac-
tions extending over a series of MU spikes, firing rate may be
used to regulate tension instead of adjusting the number of
MU recruited.2 However, in maintained contractions at lower
levels of tension (up to 50% of the maximum tension that a
muscle is capable of ), it is thought that the main way of increas-
ing tension is to add more MUs, Only at higher tension levels
are increases in firing rate thought to become significant in
increasing muscle tension (Freund, 1983).

The neurophysiology just described leads us to view the neu-
romuscular interface between intention and performance as

somewhat uncertain or zoisy. In producing a brief force pulse, a
variable number of units may make their contributions of force,
starting at variable points in time and lasting for variable dura-
tions. If there is a single point in time at which we would initiate
an action, there is clearly going to be a temporal “blurring” in
the summated output relative to the underlying punctate com-
mand in the brain. A formalization of this idea—albeit directed
primarily at a characterization of electromyogram (EMG)—
with force treated in incidental fashion, was provided by
Meijers, Teulings, and Eijkman (1976). They were interested in
understanding the form of the electrical activity of the muscle
exhibited in the surface EMG by treating the voltage waveform
as the summation of single MU discharges. As their starting
point, they assumed the electrical activity of the muscle ob-
tained with direct stimulation of the motor nerve to be a sum-
mation, without temporal jitter, of the individual MU electrical
waveforms. Using direct stimulation to estimate the single MU
waveform, they then took the EMG and, by deconvolution with
the MU waveform, obtained an estimate of the distribution of
MU onset times, that is, the temporal dispersion of MU activity
relative to the central command. On the basis of this onset time
distribution (which indicated appreciable temporal jitter simi-
lar in magnitude to that documented by Thomas et al,, 1987),
Meijers et al. then turned to consider how EMG would be ex-
pected to accumulate in relation to the number of active motor
units.

At the end of their article (Meijers et al.,, 1976) and in an
earlier article (Meijers & Eijkman, 1974), Meijers et al. sug-
gested the applicability of the idea of summation, as used in
their modeling of EMG, to the development of force. However,
they did not elaborate this idea into specific predictions for the
expected form of the overall summated force. Instead, they
pointed out how such a model predicts a reduction in temporal
uncertainty from the case of the single MU response 10 the
situation where the “response” is defined as the point at which
some preset proportion of units have been activated. With an
interest in the effects of stimulus intensity on simple RT, Ulrich
and Stapf (1984) adopted and extended the proposal of Meijers
et al. Assuming the total number of units activated increases
with stimulus intensity, Ulrich and Stapf showed that the model
predicts a corresponding decrease in both mean and variance
of RT (defined in the model as the time to attain a certain
number of active units). These predictions were qualitatively in
agreement with their data.

In this article, our purpose is to bring all these strands to-
gether. We provide a formal statement of a model for the devel-
opment of brief force impulses. We compare (qualitatively) the
model’s predictions on force-time relations with published be-
havioral data. We draw out implications for both future re-
search and future elaboration of the model, particularly where
current neurophysiology indicates there are major simplifica-
tions that could seriously alter the model’s predictions.

2 The increase in tension with firing rate is limited by the develop-
ment of tetanus, when the individual twitches merge into a steady
contraction. Normal firing rates are considerably below this level.
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The Parallel Force Unit Model

The parallel force unit model® (PFUM?*) is an account of the
rise and decay of force with time in tasks where subjects are
required to produce brief, ballistic pulse changes in force. The
elements of the model are represented in Figure 2. (See Appen-
dix A for a glossary of terms used throughout this article) Ob-
served force is assumed to depend on the sum of forces devel-
oped by a subset of a large number of force units (FUs), each
acting independently of one another. The behavior of each FU
is taken to be a function of the activity of an underlying MU in
combination with the mechanical coupling between the MU
and the point of measurement of force. We suppose that a brief
voluntary contraction involves many FUs and that there is
variability in the times and hence in the periods of activity
across FUs.

The Assumptions of PFUM

We make the following assumptions, A, through As, about
the production of a force impulse:

A,. In each trial, a subset of b FUs is recruited from a pool of

1 units. The units in this subset are identified by the index i =1,

A
A, The observed forcebFo (t) at time ¢ is given as the summation

FEO=2F@ b=n, 1)
=L
where F; (1) is a random variable,® which denotes the force coniri-
bution of unit i at time ¢.

A, Lett=0be the discrete moment in time at which activation
of the FUs underlying an observed force pulse is centrally com-

F (1)

time t —

Figure 2. A stylized example of the development of force during asingle
trial under the parallel force unit model. (Top five lines: A central
command at time ¢ = 0 activates after a random delay the force produc-
tion in a number of single-force units. Bottom line: At each point of
time, the force developed in a muscle equals the summed force of all
recruited units)

manded. Unit i starts to contribute force at time L;, where the
random variable L; denotes the Jatency of unit .

A, The random nature of F;(f) is embodied in L,. We assume
that a deterministic nonnegative FU force~time function u;(+)
characterizes the time course of force contributed by unit £, once
force production is initiated. The trial-to-trial variability of F;(#)
is then generated by random displacement of the function z(+)
along the time axis by L;; that is,

0 fort <L,
F.(t)= (2)
u(t—L;) fort = L.

Figure 3 illustrates Equation 2.

As.  To enhance the mathematical tractability of PFUM, we as-
sume that all n FUs are identical. Thus, we add two subsidiary
assumptions. (a) All force~time functions are identical: 2,(+) =
u(+) (i=1,..., n). (b) The latencies L,(i = 1, ..., n) have the
identical probability density function (PDF) f(-).

Force development is thus conceived of as a probabilistic
process defined over a large set of FUs, each contributing a
small fraction to the total output. Although the units are not
necessarily assumed to be statistically independent, they are
taken to be mechanically distinct, and so the observed force
level at any time is the sum of the effects of those units that are
currently active.

Predicted Mean Force-Time Function

In this section and the next, we start our formal development
of PFUM, using only Assumptions A, through ;. We first
obtain a convolution property for brief force pulses. It shows
how the observed force-time function F,(-) depends on the
individual forcetime function () and on the density f{-).°

31n this article, the meanings of the terms theory and model are
taken within the framework of the hypotheticodeductive system (cf.
Bunge, 1967). In particular, a general theory 7, together with specific
or subsidiary assumptions &, yields the model /i (cf. Bungeand Ardila,
1987, p. 128). The set § enables the deduction of consequences (theo-
rems) from JM, which would be difficult or even impossible on the basis
of T alone. Hence, strictly speaking, J entails T; or in other words, J#
is a specific version of T This usage contrasts with an alternate inter-
pretation of the term in which model is treated as a synonym of anal-
ogy. In the latter case, a model is taken, for heuristic or didactic pur-
poses, to be a pictorial representation of a theory (cf. Lachman, 1960;
Schmidt, 1988, pp. 36-37).

4We encourage the German pronunciation of the acronym, as in
Pf-erde, and hence Pf-um.

5 We follow the convention of using boldface letters for random vari-
ables.

§ Meijers, Teulings, and Eijkman (1976) derived mathematical ex-
pressions for the mean and the variance of EMG signals that in princi-
ple could be applied to force-time functions. However, they tailored
the variance prediction for multiphasic signals to obtain a mathemati-
cally tractable expression, which holds only approximately. Further-
more, the mathematical analysis of their predictions is unnecessarily
complex. For these and other reasons, we provide simplified versions
of their original proofs, which are better suited for the purpose of this
article. The simplified proofs concern Propositions | and 5 in our arti-
cle, which correspond to Expressions 10 and 15, respectively, in the
work of Meijers et al. (1976).




272 ROLF ULRICH AND ALAN M. WING

A\

F,‘(t',w;,)) ] /
-

/

Fi(t',w1)

Li (Ldl) Li (Ldg) t time t —

Figure 3. Therelation between L,and F, (¢). [ The random variable F, () denotes the force level produced by
force unit iat time ¢. This level changes from trial to trial because the force-time function #;( + )israndomly
displaced along the time axis. The latency L, causes the random displacement, The two realizations w, and
w, illustrate this random displacement of u;( - ) with two different levels of force associated with a particu-

lar point ¢ on the time axis.]

We then show that the obtained force-time function leads to a
scaling property for which there are supportive empirical ob-
servations. In later sections, we introduce some simplifying as-
sumptions to derive mathematically more tractable expressions
for the mean and variance of the observed force~time function.

For the following considerations, some definitions are
needed: Let the total area 4 = [% u(t)dr under u(-) be the
impuise of an FU, and let z( - ) be defined as

20 =0 3)

for £ > 0. The function z(-) will be called the normalized FU
Jorce-time function. Note that the area under the normalized
function equals 1.

Proposition 1. If Assumptions A, through As hold, then the
mean force-time function B[F,(+)] is given for all t > 0 by

E[F,()]1=b-4-h(t), @)

where b is the number of recruited FUs, A is the impulse ofan FU
and h(t) = [ z(t — t')f(t')dt’ denotes the convolution of the
normalized function z(-) and the PDF f{-) of the latency L.

Proof. Taking the mathematical expectation on both sides
of Equation 1 yields

b

E[K,®)]= 2} E[F;(]. (5)
From Equation 2, one obtains
b
E[Fo(t)]=ZlE[ui(t—L,-)]- (6)
Simplifying according to Assumption A,
E[F,()]=b-E[u(z-L)]. (7
Because u(t) = 4 - z(t), we have
E[K,(t)]=b-4-E[z(t- L)]. (8)

According to the “law of the unconscious statistician” (cf. Ross,
1980, pp. 39-40), the expectation E[g(X)] of any real-valued

function g( - ) of arandom variable X with PDF f{ - ) is given by
E[g(X)]= [g(x)f(x)dx. Applying this law to Equation 8
yields

E[E, ()] = b-A-f: 2~ 1) f)dr )

The integral [§ z(z — ¢') f(')dt' = (z% f)(?) is the so-called
convolutionof z( - }and /(- ). Theasterisk isa common abbrevi-
ation for the convolution operation. The proof is complete.

Remarks on Proposition 1. Proposition 1 is thus concerned
with both the size and the shape of the mean force-time func-
tion. The force at any given time ¢ > 0 increases with the num-
ber b or the impulse 4 (or both) of the active FUs. The shape of
the mean force-time function is determined by both the PDF
J(+) of the FU onset latency L and by the normalized FU
force-time function z( - ). The factor that determines the shape
is the convolution term A(+ ). Because z(+ ) is nonnegative and
the area under it is1, z( - ) can be regarded as a PDFE, Let X be a
random variable that corresponds to z(- ). This random vari-
able does not appear in the assumptions of PFUM. It has the
status of a dummy random variable. However, the definition of
X is helpful in that it allows the use of familiar concepts of
probability theory to interpret the shape of the mean force~
time function. Assume that X and L are independent random
variables; then, the PDF of the sum X + L is given by the
convolution A(-) (cf. Feller, 1971, chap. 1). Therefore, if the
variance of L is relatively large compared with the variance of
X, then the shape of the mean force-time function is mainly
determined by the shape of f(-). However, if the converse is
true, then z(-) mainly determines the shape of the mean force—
time function. The larger the variance of L, the less E[E,(-)]
resembles the shape of the force-time function u(-) and the
more “smeared” is the force impulse.

The smearing of the FU force-time function is not only a
feature of the mean force-time function but can be observed in
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single trials. This is illustrated in Figure 4 by computer simula-
tions. Each panel shows three realizations of force development
under the same set of assumptions and model parameters. In
the panels on the top, the underlying FU force-time function is
a symmetric triangular function, whereas in the panels on the
bottom it is a rectangular function of the same duration. In all
four panels, the impulse and the number of recruited FUs 18
kept constant. The simulations are based on the assumption
that the PDF of the onset latencies corresponds to the so-called
special Erlangian distribution (discussed later). In each panel,
the mean of L is constant. In the right-hand panels, the stan-
dard deviation SD[L] is twice that in the left-hand ones. As
evidence of smearing, note that none of the simulated functions
indicates the shape of the underlying function u(- ). Also, note
that the smearing effect increases with the variability of L; the
summed force functions derived from triangular and rectangu-
lar underlying functions are more similar in shape in the right-
hand panels, where there is greater variance of L.

The simulation clearly illustrates the dependence of the
shape of the overall force-time function on the variability in
latency, L, that produces FU onsets of asynchronicity. It is there-
fore important to ask for evidence that FU-onset standard de-
viations are as large as the 20- to 40-ms values chosen for the
simulation. If FUs in the model are equated’ with MUs, esti-
mates of the onset variability may be taken from Thomas et al’s
(1987) observations of variability of the interval between the
onsets of pairs of independent MUs. Suppose the efferent de-
lays from a single central command to the onset of observable
activity in each of a pair of MUs represent identically distrib-
uted and independent random variables D; and D;; then the
interval between their onsets is A = D; — D,. Then, as pointed
out by Ulrich and Stapf (1984) for the case of response
asynchronies in simultaneous bimanual keypresses, the vari-
ance of A equals twice the variance of D. Thomas et al. esti-
mated the standard deviation of MU-onset asynchrony as large
as 40 ms in some pairs. Assuming the onset delay variance of
one MU to be half that of the asynchrony, this estimate would
indicate values of standard deviation for the MU delay as large
as 28 ms. Moreover, as noted in the introduction, Meijers et al.
(1976) estimated a distribution of MU onset times on the basis
of EMG data. This estimated distribution spanned about 60
ms, indicating a rather large standard deviation of D. Both
findings clearly provide the possibility of a considerable degree
of smearing of the single FU force-time function in arriving at
the total force function.

Scaling of the Mean Force-Time Function

Given Proposition 1, an important consequence is that, if
peak force is controlled by recruiting varying numbers of FUs,
mean force-time functions for different levels of peak force
should have the same basic form. To demonstrate this, consider
the following proposition:

Proposition 2. The area A, under the mean force-time Sfunc-
tion is

A,=b-A. (10)

Proof Because [§ h(f)dt =1 must hold, this proposition
follows directly from Proposition 1.

Remark on Proposition 2. The proposition embodied in
Equation 10 provides a simple way to test the hypothesis that
different mean force—time functions are generated by different
recruitment levels. We define a rescaled mean force-time func-
tion r(+) fort> 0 by

_EIRO]

. an

r(?)
Then all rescaled mean force-time functions of various ampli-
tudes should superimpose if their corresponding force levels
were achieved by varying the number of FUs recruited. How-
ever, if the rescaled mean force-time functions do not coincide,
then we must suppose that a change of normalized function
z(+) has occurred.

Empirical observations on scalability. 1f subjects are asked
to produce higher peak forces and they do this by recruiting
more units, that is, by increasing b, then according to the
model, the form of the force~time function for different force
levels will be related. PFUM predicts that after scaling by the
area under the curve, the force-time functions will superinm-
pose.

Data from various studies provide support for this scaling
property of the model. Referring to Figure 1, we note that the
force-time functions reproduced by Angel (1973) look dis-
tinctly similar in form. Because the functions with the higher
peak values exhibit greater rates of rise of force, the times to
peak force are little changed, and the functions might well be
expected to superimpose once normalized by their differing
areas.

An analysis giving more detailed information about the form
of the mean force~time function was provided by Freund and
Biidingen (1978). In their experiment, subjects produced brief
(rise times around 90 ms) isometric force pulsesof up to 100 N
with the muscles of the index finger. Two conditions were run.
In one, the target condition, subjects were expected to produce
as fast as possible a peak force within 10% of a target value. In
the nontarget condition, subjects were simply asked to produce
pulses of minimum duration with a range of peak values over
trials. The average force was generally a smooth, single-peaked
function of time, with more time being taken in the decay
phase than in the buildup to the peak force value. The form of
the functions (Freund & Biidingen, 1978, p. 6), which were
assessed by times for successive thirds of the peak force, did not
depend on peak force—a finding consistent with rescalability
of the force—time function. This finding suggests that force lev-
els were controlled by changes of b according to PFUM.

The clearest evidence of scaling of the force-time function is
to be found in Gordon and Ghez (1987a). Subjects produced
elbow flexion force impulses to targets at three different levels,
with the highest force being between 40% and 50% of maxi-
mum. Instructions emphasized production of a single smooth
impulse of force and that, once initiated, responses should not
be amended. Trial data aligned at force onset are shown in
Figure 5. In Panel B of the figure, the traces normalized by peak
force show remarkable constancy. Gordon and Ghez (1987a)

7 Further consideration of the relation between the model’s axioms
and muscle neurophysiology may be found in the Discussion section.
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Figure 4. Simulation of force development. (Individual force units [FUs ] are activated at random times
determined by a special Erlangian distribution with constant mean. The functions represent the overall
force summed over the 400 FUs at each point in time, ¢. The form of the underlying FU force-time
function is symmetric triangular on the top [Panels A and B ] and rectangular on the bottom [Panels C and
D1]. In each case, the duration of the FU force-time function is 80 ms, with an impulse of 4 = 5 Nms. The
standard deviations of the Erlangian-distributed latencies L, . . . , L are 40 ms in the right panels and 20
ms in the left panels. Three simulations are depicted in each panel. Note that the temporal dispersion of the
activation times “smears” the shape of the underlying FU force-time functions. Averaging the overall
force-time functions would introduce further smearing)

stated that “trajectories of responses to different targets were
scalar multiples of a common waveform” (p. 246).

Rectangular FU Force~Time Function

Note that Propositions 1 and 2 do not require that the laten-
cies L, ..., L, be independent random variables. No form of
statistical dependence would invalidate Propositions! and 2. In
Assumption A;, time was defined relative to an unobservable

central command.® However, the definition of time could be
extended to an external command such as the imperative signal
in a simple RT task. Although inclusion of a signal-detection
period in the latency L; would introduce positive dependence
over i, Propositions 1 and 2 would still hold. In this section, to

8 We consider the problem of aligning observed force-time functions
for averaging in the On the Time to Attain a Predetermined Force
Level section.
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Figure 5. A: Mean observed force F, (1), dF,(2)/dt, and d°F, (t)/dt* functions for responses to three target
levels in fast (left) and accurate (right) conditions. B: Same functions as in Panel A, but normalized by peak
force. (From “Trajectory Control in Targeted Force Impulses: I1. Pulse Height Control” by J. Gordon and
C. Ghez, 1987, Experimental Brain Research, 67, p. 245. Copyright 1987 by Springer. Reprinted by permis-

sion)

further develop the predictions of PFUM for the mean force-
time function, we make an assumption about the form of the
single FU force-time function. However, once again, the devel-
opment does not depend on independence of the separate FU
latencies. Only when we turn to predictions for the precision of
force-time functions in The Predicted Precision of Brief Force
Pulses section do we have to tighten the assumptions to exclude
dependence. To demonstrate the usefulness of Proposition 1,
we now make the following assumption, A, that the FU force-
time function can be approximated by a rectangular function
(cf. Figure 2). At time L, following the central command to
recruit FU i, a constant force ; acts for a duration d;. Thus,
assuming all FUs are equivalent (As):

a,0<t<d
u(t) = (12)
0, else.

The next proposition follows from Proposition 1.
Proposition 3. If Assumptions A, through A hold, then the
mean force~time function is
E[F,()]=b-a-[F®)- F(t—d)], (13)
where F(-) is the cumulative distribution function (CDF) of L
and the constants a and d are defined in Equation 12.

Proof The area A under the rectangular function given in
Equation 12 is 4 = d-a. According to Equation 3, we obtain
z(+) by dividing Equation 12 by this area. This yields

-la, O<t<d
z() = (14)
0, else.

The convolution A(+) is calculated as

ht) = f: 2t~ 1) f¢)dt (15)
_ ),
- fH D (16)
- ld[F(z) _Fi-d)l. 17

Inserting A = a - dand Equation 17 into Equation 4 yields Equa-
tion 13. The proof is complete.
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Two Modes of Peak Force Adjustment

Given the rectangular form of the FU force-time function
assumed in the previous section, the resulting expression for the
mean force-time function in Equation 13 can be used to demon-
strate two contrasting modes of control over peak force, once a
particular CDF for L has been specified. We choose the special
Erlangian distribution, which is given for z > 0 by

m=1 ,=p-tf . AT

Fo=1-"y L0 (18)

r=0 r !
with scale parameter p > 0 and shape parameter m=1,2, 3.....
The corresponding PDF is skewed to the right, J shaped for m =
1, bell-shaped for 7 > 1, and attains its maximum at ¢ = (m —
1)/p. The expectation and the variance of an Erlangian distrib-
uted random variable L is E[L] = m/p and Var[L] = m/p?,
respectively. The Erlangian distribution embodied in Equation
18 has been a very popular tool in stochastic modeling of psy-
chological processes (cf. Luce, 1986; Townsend & Ashby, 1983)
because it provides a reasonable balance between flexibility
and mathematical tractability. Equation 18 was also used by
Meijers and Eijkman (1974 ) and by Ulrich and Stapf (1984) to
model the summation of force development in RT tasks. Unless
otherwise stated, in the following illustrations, we set the pa-
rameters m =4 and p = 0.05 ms™, yielding E[L] = 80 ms and
SD{L 1= 40 ms.

Proposition 3 offers two modes of increasing peak force in
brief impulses: first, recruiting more FUs, that is, increasing b;
second, lengthening the duration d of each FU that contributes
its constant force a.? Figure 6 illustrates the consequences of
both control modes, with reasonable choices of the parameters
aand d(cf. Desmedt, 1983, p. 228 ) and b (cf. Buchtal & Schmal-
bruch, 1980, p.95). The left side of this figure shows the impact
of bon E[F,(-)] when d is fixed. The greater 4 is, the larger the
area under E[F,(-)]. However, the shape of the function stays
the same. Thus, for example, the zero crossings of the first and
second derivatives (corresponding to peak force and peak rate
of change of force) coincide in time, as may be seen in the
bottom rows in the left panel. This time invariance is to be
expected for this control mode according to Proposition 1. If the
various mean force~time functions on the left side were to be
rescaled, then all the functions would coincide. Indeed, this is
observed to be the case in the data of Gordon and Ghez
(1987a), shown in Figure 5.

The right side of Figure 6 shows the consequences of varying
d while b is held constant. Two effects of  on the mean force~
time function may be noted. First, an increase of d raises the
overall force level. Second, beyond the initial force rise, an in-
crease in d raises E[K,(+)] at every point in time; that is, the
shape of the function varies with d. Thus, for example, the zero
crossings of the first and second derivatives shown in the bot-
tom rows in the right panel do not exhibit time invariance. The
different functions produced by varying d are not rescalable.

Remarks on the concept of peak force. Before further con-
trasting the predictions of PFUM with empirical observations,
a clarification of the term peak force is necessary, because it is
not used consistently in the literature. Some researchers (e.g.,
Freund & Biidingen, 1978), working with averaged data, de-
note the maximum of the mean force-time function as peak
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force. Suppose that this maximum is located at time t,, indicat-
ing time to peak force; their concern would be with estimating
the single quantity E[F, (#,) ]. Other researchers (e.g., Newell &
Carlton, 1985) have worked in terms of the highest force level
achieved in each individual trial. The average of the latter, sin-
gle-trial measures is then denoted as mean peak force, or con-
fusingly as peak force. Because time to peak force varies from
trial to trial, it must be treated as a random variable, say T,
Thus, the single-trial peak force can be represented as a “dou-
ble” random variable F, (T, ) and its average as E[F,(T,)]. The
analytic treatment of F,(T,) is complex, and for this reason
computer simulations were run to assess the difference between
E[F,(T,)] and E[F,(¢,)]. The simulations led to the following
conclusions: (a) The variance of T, is negligible if b is large, say
b> 200. (b) In general, the mean of T, coincides with L,; that s,
the mean of the times to peak force corresponds to time to the
peak of the mean force~time function. Hence, on the basis of
PFUM, the difference between F, (T,) and F, (¢, ) can be disre-
garded for our purposes in this article. All analytic results pre-
sented in the following were assessed by computer simulations
on F,(T,). However, because the results were essentially the
same, only the analytic results regarding F, (t,) are reported
herein.

Empirical observations on the invariance of time to peak
Jorce. In the experiment by Freund and Biidingen (1978),
where subjects produced brief isometric force pulses of up to
about 80 N with the index finger, the time to peak was constant
over different target peak forces. This invariance held over
various directions of finger movement and so was not limited to
one particular muscle. Carlton et al. (1987, Experiment 2)
asked their subjects to generate peak forces with the index
finger to targets in the range between 2 and 9 N in both simple
and two-choice RT paradigms. Time to peak force varied only
slightly with target force level. Gordon and Ghez (1987a) also
reported constancy of rise time in isometric elbow flexion force
impulses, particularly when accuracy was emphasized. In a
more recent article, Favilla, Hening, and Ghez (1989) studied
both flexion and extension of the elbow. Again, constancy of
time to peak force was evident despite the different muscle
groups involved. Finally, further evidence of the generality of
the invariance of the time to peak force comes from a very
different task studied by Lee, Michaels, and Pai (1990). Stand-
ing subjects had to make abrupt bilateral pulls against a handle
to targets from 5% to 95% of their maximum pulling force.
Despite the many muscles involved in this task, these authors’

? If FUs are identified with MUS, then on the basis of muscle physiol-
ogy outlined in The Activation of Skeletal Muscle section, one might
argue that the parameters d and a should be positively correlated. In-
creases in the duration of MU contributions are associated with in-
creases in the number of repetitive motoneuron action potentials. If
these discharges are close in time, then there is superposition of these
effects on successive twitches, with resulting higher force level. Hence,
d and a may not vary independently. However, according to Equation
13, an increase in @ would have the same effect on the mean force-time
function as an increase of b, We may thus keep aconstant and note that
this restriction could underestimate the “real” observed force level,
although this restriction does not affect the shape of the mean force-
time function.
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Figure 6. Predicted mean force-time functions (A) along with their first (B) and second (C) derivatives
predicted from Equations 13 and 8. (The following parameter values are fixed for all figures: m=4, p=
0.05 ms~, and @ = 5 cN. The vertical calibration bar represents 2.41 N, 163 N/s, and 7,163 N/s?in Panels
A, B, and C, respectively. Left panels: Changing force by varying the number of force units, b, while their
duration, d = 50 ms, is fixed. b= 600 [solid line ], 400 [closely spaced dots ], and 200 [widely spaced dots ]
force units. Right panels: Changing force by varying d while bis fixed at 400 force units and d = 80 [solid
line], 50 [closely spaced dots ], and 20 [widely spaced dots] ms)

data demonstrate very clear constancy of rise time to peak
force. All these studies would suggest within PFUM that sub-
jects met the different target forces primarily by adjusting FU
recruitment.

Empirical observations on time to peak force correlated with
peak force. So far, we have considered amplitude increases
achieved by an increase of b. However, within PFUM, ampli-
tude increases will also occur if there are increases in d. Under
these circumstances, changes in peak force will be accompa-
nied by lengthening in time #, to the peak. Increases in time to
peak as a function of peak force were reported by Freund and
Biidingen (1978) in their nontarget condition. In that study, the
force-time plots presented showed a small but progressive in-
crease in the rise time with peak force. A small increase of rise
time with peak force was also reported by Gordon and Ghez
(1987a) in a condition where speed rather than accuracy was
emphasized. A dependence between force and time to peak
force may also be seen in two of three types of movement in-
volving different muscles studied by Desmedt and Godaux
(1977).

The first experiment in the study of Carlton et al. (1987)
clearly demonstrates that time to peak force and peak force are

positively related as predicted by PFUM if FU duration d is
lengthened. Subjects were asked to produce a brief force im-
pulse of a prespecified duration in a range of 1 50-600 ms while
all other dynamic factors were free to vary. Time to peak force
increased with impulse duration. Hence, it must be concluded
on the basis of PFUM that Carlton et al’s subjects manipulated
FU duration to produce the desired impulse duration. How-
ever, if subjects mainly regulated force duration by adjusting
FU duration, then one would expect that peak force should
increase with required impulse duration, and this is exactly
what Carlton et al. observed.

The studies mentioned in this section, indicating a degree of
dependence of peak force and time to peak force, all involved
normal subjects. In another study, a dependence was reported
in subjects with motor disorders in situations where the normal
control subjects displayed peak time invariance. Hefter, Hom-
berg, Lange, and Freund (1987) observed that in some cases of
Huntington’s chorea, the time to peak force increased with
force over a 2- to 10-N range. In 1 patient, maximum rate of
change of force was remarkably constant, and the duration of
the force pulse was lengthened. However, other Huntington’s
patients exhibited lengthened contraction duration while re-
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taining some increase in rate of change of force with peak force.
It is interesting to speculate whether progression of the disease
implies progressive loss of recruitment, which is compensated
by lengthening of duration.

Maximum Effort Peak Force and Time to Maximum
Effort Peak Force

In the studies reviewed so far, the forces produced by the
subjects were less than the maximum of which they were capa-
ble. In contrast, Newell and Carlton (1985) have evaluated iso-
metric force production by the elbow in a task that required the
subject to produce as great a force as possible (termed maxi-
mum effort peak force) with a fixed criterion time to peak force
(see also Carlton & Newell, 1987). They reported that maxi-
mum effort peak force depends on the the time I, to peak force.
Their findings were that mean maximum effort peak force in-
creases in a negatively accelerated manner with , (cf. Newell &
Carlton, 1985, Figure 1).

This finding is in accord with PFUM, as may be demon-
strated by computing mean maximum effort peak force as a
function of 1, According to PFUM, the value of £, ¢an be con-
trolled by increasing or decreasing d. If subjects are instructed
to produce their maximum possible force while maintaining a
prescribed time to maximum effort peak force, they have to
adjust d accordingly and recruit all # available F Us. The follow-
ing proposition shows how 4 and f, are related within the frame-
work of PFUM.

Proposition 4. Suppose that L 1 -+, Ly, are distributed ac-
cording to Equation 18 and that u(+) is a rectangular function
&iven by Equation 12; then the relation between d andt,is

£ = d J (19)

p-d
1-exp { o
Proof. At the point t, where the function E[F,(- )] reaches
its maximum E[F, (%) 1, it becomes at least momentarily flat,
Hence, to locate the peak E[F,(t,) ], one need only differentiate
E[F,(r)] with respect to ¢ and set the result equal to 0 and then
solve for ,. Thus, according to Proposition 3,

d
ZEE®O1=0 (20)

%{a-b-[F(t)—F(t—d)]}=0 1)

ab-[fO) - ft-d)]=0 (22)
- fe-ay=o. (23)

Solving the last expression for yields the desired value, . IfL
follows a special Erlangian distribution, then the last expres-
sion becomes

W1 ym-l At — m—1
pe _.52_(511 —)l)! — pe-lsmd) lo-t=a))™! Em _‘f))'] =0 (24)
tpm—l — ep-d(tp - d)m~1 - 0' (25)

Solving for 1, yields Equation 19. The proof is complete,
An illustration of the predicted relation between L, and mean
maximum effort peak force. Figure 7 shows the relation be-

tween d and #,, which was computed on the basis of Equation
19. Two properties of this relation are obvious. First, the mini-
mal value of £, depends on the minimal possible value of 4.
However, the minimal value of I, can never be smaller than the
mode of the PDF of L. Hence, the two curves shown in the
figure do not start at L,=0butatt = (m—1)/p, which is the
mode of f(-). Second, as d increases, £, approaches d.

The adjusted 4 value for a prescribed value of L, shown in
Figure 7 was entered into Equation 13 to establish the desired
mean maximum effort force function. The result of this com-
putation is depicted in Figure 8, showing mean force as a func-
tion of £, if all  available FUs are recruited. As one can see, the
resulting function increases in a negatively accelerated fashion
with #,. There are four interesting aspects connected with this
figure: (a) The curves do not start at the origin (z,= 0) but at the
mode of f{-). Note that this nonorigin property seems also to
be true for the empirical graphs reported by Newell and Carl-
ton (1985, Figure 2). (b) The smallest possible value of d deter-
mines where a graph starts. For example, consider the dotted
curve; if the smallest value of 4 were 36 ms, then the curve
would start at £, = 80 ms, with E[F,(80)] = 17.4 N. (c) The
theoretical curves approach the value -4 = 45 N as f, in-
creases. In other words, if dis very large, then all FUs are simul-
taneously active at time £,, producing maximum possible force,
(d) Mean maximum effort peak force can be more than dou-
bled by an appropriate increase of t,; this was also reported by
Newell and Carlton (19835, p. 235) for their subjects.

The Relation Between Mean Maximum
Effort Peak Force and SD [L]

The larger the variability of latency L, the more smeared is
the force impulse. This was illustrated in Figure 4. This smear-
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Figure 7. Predicted relation between duration, d, of the force unit
force~time function and time %, to peak force of the observed mean
force-time function for two Erlangian latency distributions. (Solid
line: p=0.05 ms™" and m = 5. Dotted line: p=0.05ms™ and m= 4. At
longer times to peak force, both functions approach the straight line,

d=1,)
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parameter m of the Erlangian distribution. Dotted curve: m = 4, Solid
curve: m=135)

ing effect implies that mean maximum effort peak force is at-
tenuated. The number of simultaneously active FUs determines
peak force. Therefore, if SD[L] is large, then the probability is
small that all FUs are simultaneously active, that is, that their
periods of activity overlap in time. Hence, maximum effort
peak force decreases with increasing SD[L]. This effect, how-
ever, can be counteracted by increasing duration d, because this
will increase the likelihood that the periods of activity of several
FUs will overlap in time.

To observe how SD[L ] attenuates the force output, we com-
puted mean maximum effort peak force E[F, (¢,) 1 asa function
of SD[L] and d on the basis of Equations 13, 18, and 19. The
parameters m and p of the Erlangian distribution were varied
in such a way that the mean E[L] held constant at 80 ms but
SD[L ] varied in the range between 0 and 50 ms. '

The result of this computation is shown in Figure 9, which
relates both SD{L ] and d to the mean E[F,(z,)] of the maxi-
mum effort peak force. The values of this mean are given as
percentages of the force outpuf under complete synchroniza-
tion of FUs (SD[L] = 0). Mean maximum effort peak force
decreases monotonically with SD[L]. If 4 is smali, then
E[F,(z,) ] decreases especially fast. Even with moderate values
of d, the effect of SD[L] on peak force can be quite dramatic.
For example, with 4 = 40 ms, an SD[L ] of about 30 ms would
already imply a 50% reduction of mean maximum effort peak
force. According to PFUM, therefore, SD[L ] must be regarded
as an important limiting factor in force production.

The Predicted Precision of Brief Force Pulses

The precision of response is often used asan index of the skill
of a performer. Hence, several studies (e.g. Gordon & Ghez,

1987a, 1987b; Hening, Vicario, & Ghez, 1988; Jenkins, 1947,
Newell & Carlton, 1985, 1988; Noble & Bahrick, 1956; Schmidt
etal, 1979; see Newell, Carlton, & Hancock, 1984, for a review)
have been devoted to the sources of response variability. Under-
standing the relative contribution of central and peripheral
sources to response variability is a fundamental goal of re-
search (cf. Newell & Carlton, 1985, p. 240). With the goal of
shedding light on peripheral contributions, in this section, we
investigate the precision of force impulses within the frame-
work of PEUM and contrast the theoretical results with empiri-
cal findings on force variability.

The variance Var[F,(f)] of force F,(z) for all £ > 0 offers a
suitable index of response precision. According to PFUM, the
source of this variability is entirely due to the variance Var[L]
of the FUS onset latencies. Surprisingly, this source alone can
account for several findings on force variability.

Perhaps the most tractable theoretical result concerning
Var[F, (¢) ] for the following analysis can be summarized as fol-
lows (cf. Meijers et al., 1976, p. 10):

Proposition 5. If Assumptions A, through As hold and the
latencies L;, . . ., L, are independent random variables, then the
variance of K, (f) for t > 0 is

Var[F, (1) ] = b- A2 {E+ @O~ [(* N O}, (26)

where (z+f)(+) denotes the convolution of z(-) and f(+),
(z2+f)(+) the convolution of z*(+) and f{-), A the impulse of a
FU and b the number of recruited FUS.

Proof BecauseL,,...,L,are assumed to be independent,
we can write

b
Var[F, (1) ] = 2 Var[F,(1)] (27)
=l
= b Var[u(t—L)] (28)
=ph-A* Var[z(t—L)] (29)

= b- A {E[22(r - 1) ] - (B2t~ 1)])*} (30).

=bh A% Uw 22— 1) f{)dl'

0

—(r z(t—t’)f(t")dt’)Z]. (31)

0

Note that the first and second integrals on the right-hand side
are the convolutions (z2# f)(+)and (z* f)( ), respectively. The
proof is complete.

Remarks on Proposition 5. All other things being equal,
Var[F,(f)] increases linearly with the number b of recruited
FUs and as the square of impulse 4. This property is illustrated
in Figure 10 by means of computer simulations.

10 §f fatency L follows an Erlangian distribution, then the relation
between E[L ]and SD[L] is given by SD[L ] = E[L]/Vm. Because the
parameter m is restricted to the integer valuesm =1,2,3, ..., the
standard deviation SD[L ] is restricted to the values E[L]/ Vi,E[L]/
V2,E[L] /V3,...Hence, SD[L]and E[L ] cannot vary independently.
To bypass this problem, we treat m as a real positive value and thus
obtain a natural generalization of the Erlangian distribution, namely,
the so-called gamma distribution (cf. Feller, 1971, pp. 47-48).
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Figure 9. Mean maximum effort peak force E[F, (£,) ] as a function of
standard deviation SD[L] and 4. (Maximum effort peak force is ex-
pressed as a percentage of the force developed for SD[L ]= 0. Latency
L is assumed to follow an Erlangian distribution with E[L } fixed at 80
ms.)

Proposition 5 implies an interesting principle of response
precision. Suppose that for a given target, force-level force
pulses are to be as similar as possible. In other words, the ob-
served force level at time £ should on the average be E[F, ()],
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L | 1 |
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with minimal Var[FE,(f)]. Within the framework of PFUM,
there are two contrasting possibilities for attaining the required
force level without affecting the shape of the mean force-time
function. First, recruit only a small number of FUs, where each
FU contributes a relatively large impulse 4. Second, recruit all
n available FUs, where each FU contributes only a small 4.
Would Var[F, (¢)] be smaller in the first or in the second case?
On the basis of Propositions 1 and 5, the second alternative is
preferable because larger units give a lower resolution. There-
fore, if a precise response is required, according to PFUM, as
many FUs as possible should be recruited, with each FU con-
tributing only a small fraction of total force, as illustrated by
Figure 10. Increasing the number of units (recruitment) is better
than increasing the force of each unit in keeping Var[F, (1) Jtoa
minimum and so achieving fine control.

Rectangular FU Force~Time Function and Variability

No specific assumption about u( ) is contained in Proposi-
tion 5, and therefore Var[F,(¢)] cannot be elucidated at this
general level. If we proceed again from the idea that u( - ) can be
approximated by the rectangular function in Equation 12, then
a tractable mathematical expression for Var[F, (¢) ] can be de-
rived from Proposition 5.

Proposition 6. Ifu(+) is defined by Equation 12, then

Var[F, ()] = b+ a® [F(t)— F(t — d)]
X[ -F@®+Ft-d)], (32)

where F(-) is the CDF of L and the parameter a is the constant
Jorce contribution of a FU with duration d.

(N1

30F

-

20F

10

Observed Force

1
150 250 350
Time [ms]

-50 @ 50

Figure 10. Dependence of variance of the observed force~time function on number and amplitude of the
individual force units (FUs). (The simulations in both panels are based on a temporal dispersion of FU
onsets that follows a special Erlangian distribution with the mean E[L] = 80 ms and the standard devia-
tion SD[L] = 40 ms. The underlying FU force-time functions are symmetric triangular functions of
duration 80 ms. The number of FUs and their impulses differ in the two panels. A: b= 400 and A= 5 Nms.
B: =100 and 4 = 20 Nms. The curves in Panel B exhibit a larger variability than do those in Panel A.
Note, however, under Proposition 1, that the mean force-time functions for both panels would be identi-

cal)
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Proof The convolution (zx f)(+) is calculated as

0= [ 2e-nsod 6
0
N (G
- | e (34)
=$2-[F(l)—F(t—d)]. (35)

Inserting 4 = a-d and Equations 17 and 35 into Equation 26
yields the desired result. The proof is complete.

Remarks on Proposition 6. Figure 11 illustrates the pre-
dicted variability function of Equation 32 for the case where the
CDF of L is the special Erlangian distribution. (All model pa-
rameters except d are the same in all panels) The value of d is
50, 100, and 150 ms in Panels A, B, and C, respectively. An
especially interesting feature of the variability function is its
local minimum, which becomes more salient as 4 increases. It
can easily be shown that Equation 32 predicts a local minimum
Var[F, (t,) ] at t, and a maximum Var[F, (t,)] for all times &,
satisfying the equation F(t,) — F(t, — d) = '».!" There is an
intuitive explanation of this local-minimum feature: Consider
the case in which d is infinitely long (relative to onset variabil-
ity); variability during the force rise phase must drop to zero as
force asymptotes at a new steady level. However, we are inter-
ested in brief impulses in which FUs only maintain their activ-
ity for a brief duration before turning off. Note, then, that an
asymptotelike ending to the rise phase is visible in Panel C of
Figure11. This may be related to the degree to which individual
FU durations allow their active phases to overlap before their
offsets begin to pull the force-time function down again. The
increasing overlap of FU activity (which also increases peak
force) from Panels A through C in Figure 1 1 may then beseento
cause the predicted local minimum in variance. The peak in
variability during force rise occurs at the first point at which
50% of the FUs become active. This time point corresponds to
the median of latency L, which is located at ¢ = 73 ms in Figure
11. The second variability peak occurs 4 ms later as the number
of active FUs drops below 50%.

Suppose that force level is controlled only by d and that L
follows a special Erlangian distribution; then both £, and
E[F,(%,)] increase with d, as was shown earlier (cf. Figures 7
and 8, respectively). How does Var[F,(z,) ] behave under this
condition? Figure 12 provides the answer, showing SD[F, (5,) ]
as a function of ,. This analysis reveals that after an initial fast
increase, the variance of peak force diminishes with longer val-
ues of d. Note that this prediction contrasts with the case where
force is controlled by b only. In the latter case, SD[F,(%,)] in-
creases with b as suggested by Proposition 5.

Empirical observations on the relation of SD[K, (t,)] and
t,.  Wedonot know of any study that documents SD{F,(-)] as
a function of ¢ or as a function of ¢,. However, an observation
reported by Newell and Carlton (1988, Experiment 4) should
be mentioned in this context. They examined the effect of 4, on
peak force variability. Subjects were required to produce the
same criterion peak force (54 N) for different times to peak
force. Mean peak force did not differ significantly across the
times to peak force. However, the standard deviations of peak
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Figure 11. Predicted mean E[F, (f)] and standard deviation SD[F, (1) ]
asa function of time ¢, (Time point ¢ = 0 is marked by a large tickon the
¢ axis. Note that the unit of SD[F, (¢) ] is dN = N/ 10. In all three panels,
the parameters are m = 4, p = 0.05 ms™!, a= 5 cN, and b= 900 force
units. A: d= 50 ms. Maxima SD[F, () 1= 7.50 dN are located at £, =
80 and £, = 98 ms. Local minimum SD[F, (t,)1=7.496 dN and maxi-
mum E[F,(z)] = 23.19 Nare Jocated at £, = 88 ms. B: d = 100 ms.
Maxima SD[F, (t,) ] = 7.50 dN are located at 4, = 73andt, =171 ms.
Local minimum SD[F,(z,)] = 5.61 dN and maximum E{E(£,)] =
37.44 Narelocatedatz,=123 ms.C: d=150 ms. Maxima SD[F, (t,) 1=
7.50 dN are located at £, = 73 and 1, = 223 ms. Local minimum
SD[F,(t,)]=3.03 dN and maximum E[F,(,)]=43.08 Nare located
at £, =163 ms)

150

force decreased significantly as #, increased. To apply PFUM to
such a task, b must be adjusted at each prespecified value of #; to
achieve the required constant criterion peak force.

Table 1 illustrates this point. Suppose the experimental con-
ditions call for a criterion peak force of about 50 N and four
prespecified times to peak force of 100, 150, 200, and 250 ms.
The table shows the necessary adjustments of dand b to achieve
these requirements. The rightmost column contains the stan-
dard deviations of F, (,) computed with Equation 32. This stan-
dard deviation decreases as f, increases, and hence this predic-
tion is in qualitative agreement with the observations of Newell

11 This conclusion would not apply if F(£) — F(t — d) < '» is true for
all # > 0. However, this inequality only holds for small values ofd.
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Figure 12. Predicted standard deviation SD[F, (£,) ] of maximum ef-
fort peak force, with adjustment of ¢ determining time to peak force,
(For both curves, the parameters are p= 0.05 ms™, a= 56 cN, and b=
900 force units. Dotted curve: m = 4. Solid curve: m = 5)

and Carlton (1988)."? This prediction of PFUM is intuitively
easy to grasp: Short FU durations are necessary when the pulse
has to be made within a brief interval, as shown by the second
column in Table 1. Under PFUM, with short FU durations
giving relatively little overlap, more force units are required for
the desired peak force level than if larger durations of FU acti-
vation had been possible. Because variability increases with
number of FUs, the variance of peak force is higher at short %,

To attain a given level of peak force with a range of prespeci-
fied values of ¢,, adjustment of both d and b is necessary, With
two variables to control, one might expect that several practice
trials would be required before good performance levels can be
achieved. This feature of PFUM may underlie an observation
made by Corcos, Agarwal, Flaherty, and Gottlieb (1990). They
reported that producing isometric force pulses to a fixed-target
force level (50% of maximum voluntary contraction) in differ-
ent durations was more difficult to perform than producing
force pulses of fixed duration to different force targets. Within

Table 1
Duration d, Number b of Force Units, Standard Deviation of
F,(t,) and Mean of F,(t,) as a Function of Time to Peak Force

" d b E[F, (4] SDIR,(t,)]
100 68 766 50 1.31
150 134 537 50 0.59
200 192 506 50 0.24
250 246 501 50 0.09

PFUM, the former would require simultaneous adjustment of b
and d, whereas the latter could be achieved with changes to b
alone. Moreover, in a study of saccadic eye movements, Bahill,
Hsu, and Stark (1978) concluded that control of the duration of
the muscle impulse driving the eye to a new position is more
difficult than control over the amplitude (height) of that im-
pulse. This is also consistent with the idea that control of b
(impulse height) is easier than the adjustment of both 5 and d
(impulse duration).

Preload Force and Peak Force Variability

Asdiscussed in the Maximum Effort Peak Force and Time to
Maximum Effort Peak Force section, Newell and Carlton
(1985) investigated peak force produced in elbow flexion pulls
ranging between 2% and 90% of maximum force. Using a vari-
ant of the original paradigm, Newell and Carlton (1988 ) exam-
ined rapid isometric elbow flexions starting from different rest-
ing level forces (preloads). In the first experiment, subjects
were asked to produce the same peak force (54 N) starting from
different preloads (0, 13.5, 27.0, and 40.5 N). A significant
decrease in standard deviation of peak force was observed with
increase in preload. In the second experiment, the change in
force level (peak force minus preload) was kept constant at13.5
N, but preload was varied from block to block (0, 13.5, 27.0,
and 40.5 N). The standard deviation of peak force decreased
with preload, although the observed force increase was approxi-
mately constant. In the third preload experiment, the ratio of
preload to peak force was kept constant at ¥» while varying the
absolute levels of preload and peak force. Thus, there were four
preloads of 6.75, 13.5, 20.25, and 27.0 N, with the associated
criterion peak forces of 13.5, 27.0, 40.5, and 54.0 N, respec-
tively. In this task, the standard deviation of peak force in-
creased with preload.

There is a natural way to apply PFUM to these preload ex-
periments. Suppose that there are two categories of FU. One,
the tonic FUs, produces the required preload force level. The
other, the phasic FUs, produces the required force increment.
At any point in time, observed force F, () is assumed to be equal
to the summed forces over both categories. Suppose at time ¢ =
0 the tonic FUs are already active. The role of the central com-
mand must then include not only activation of the phasic FUs
at this time, but also at time ¢ = 4, a deactivation of the tonic
FUs. Thus, there are two time-locked components to the com-
mand, and we assume both are subject to random delays with
the same PDF In this way, both phasic and tonic FUs are deacti-
vated on the average simultaneously at time ¢ = E[L] + d.

Let by (b ) be the number of tonic (phasic) FUs with b+ bp<
n. If u(-) is assumed to be a rectangular function of length d
and height a, then the predicted mean force-time function of
preload experiments is

E[F,()]=a-[br+ bp-F(t) = (br + bp) F(t — d)]. (36)

(See Appendix B for proof) Furthermore, if the latencies L,,
..., Lyare pairwise independent, then the variance of observed

Note. CQmputations arebasedonm=4, p=0.05ms™,anda=10cN.
The unit in the first and second columns is the millisecond. The unit in
the fourth and fifth columns is the newton.

12 However, the decrease is not of the same order as the one reported
by Newell and Carlton (1988), and SDI[F, (%) ] approaches zero as ¢,
further increases.
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force is given by

Var[E, (1) | = a* {b+ [l - F(t — d)]-F(t— d)
+ b [F() - F(t—d)]-1 = F@)+ Fe— )]} (37)

(See Appendix B for proof)

Figure 13 exemplifies Equation 36 with the special Erlangian
distribution for F(-). The figure shows four mean force-time
functions having the same peak force but starting from a differ-
ent resting level (as in Newell & Carlton's 1988 experiment).
The functions differ only with regard to the number of tonic
and phasic FUs; that is, it is assumed that force level is con-
trolled only by the number of FUs. The higher the preload
force, the less the number b, of phasic FUs required to achieve
the same level of peak force. From the figure it is also evident
that £, decreases somewhat with increasing preload force.
Hence, the scaling property of mean force-time functions, as
discussed earlier, does not generalize to preload experiments.
Newell and Carlton (1988 ) did not report whether £, varied with
preload condition. However, their Figure 1 (1988, p. 39) shows
some example trials in which ¢, decreases somewhat with pre-
load force in the manner of Figure 13.

The three examples in Table 2 were modeled according to the
preload conditions of Newell and Carlton’s (1988) Experiments
1,2, and 3. The main question is whether the variability predic-
tions of PFUM agree qualitatively with data reported by Newell
and Carlton. The computations in Table 2 were based on Equa-
tions 36 and 37 with the parameters m= 4, p=0.05 ms~},a=10
¢N, and d= 50 ms. Only the parameters b, and by were varied in
such a way that the resulting force-time functions satisfied both
the required preload and peak force-level condition of their
experiments. However, the intention was not to match the exact
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Figure 13. Predicted mean force E[F,(#)] as a function of time ¢ and
preload condition. (The time point¢= 0 is marked by a large tickon the
taxis. All curves are based on the parameters m =4, p=0.05 ms~,a=
10 ¢N, and d = 50 ms. However, the graphs differ with respect to brand
Bp. Preload force 0 N: b= 0 and b= 900. Preload force 10 N: br=100
and b, = 730. Preload force 20 N: b= 200 and b= 552. Preload force
30 N: by= 300 and b, = 366)
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Table 2

Preload Force Level, Mean of F,(t,), Standard Deviation of
F,t,), and Time to Peak Force t, as a Function of b, (Number
of Phasic Force Units) and by (Number of Tonic Force Units)

by br Preload E[F,(t,)] SD[Fq(t,)] L,
Example 1
970 0 0 50 1.56 88
799 100 10 50 1.45 86
623 200 20 50 1.31 83
439 300 30 50 1.12 79
Example 2
195 0 0 10 0.70 88
213 100 10 20 0.77 31
225 200 20 30 0.81 77
235 300 30 40 0.83 75
Example 3
107 50 5 10 0.55 81
213 100 10 20 0.77 81
320 150 15 30 0.95 81
426 200 20 40 1.10 81

Note. Computations are based onm=4, p=0.05 ms™,d=50ms,and
a=10¢N. The unit in the third, fourth, and fifth columns is the newton.
The unit in the sixth column is the millisecond.

force values of their study because at this stage of model devel-
opment, our concern is only with the qualitative adequacy of
predictions based on PFUM. In Example 1 it is assumed that
the same peak force level (50 N) has to be achieved starting
from different preloads (0, 10, 20, and 30 N). Note that the
standard deviation of peak force decreases with preload level,
and this agrees with the observation made by Newell and Carl-
ton (1988, Experiment 1). Example 2 illustrates the prediction
of PFUM if subjects are required to produce a constant force
increment of 10 N starting from different preloads. In this exam-
ple, SD[F, (t,) ] increases with preload level, and this was also
observed by Newell and Carlton (1988, Experiment 2). The
third and last example corresponds to their Experiment 3, with
the ratio of preload to peak force being 1:2 for all four preloads.
Again, the prediction is in qualitative agreement with the obser-
vation made by Newell and Carlton (1988, Experiment 3)in
that SD[F, (1,) ] increases with preload level. In sum, then, these
examples demonstrate that PFUM can account for the variabil-
ity data of preload experiments.

Relation of E[F, (¢) ] and SD[F, (1)]

It is a customary practice in experimental work on force pro-
duction to relate mean and standard deviation of E, (¢) to reveal
the precision of performance. In general, standard deviation of
force increases with the level of force produced. Most studies of
this relation report a negatively accelerating function (e.g., Ful-
Jerton & Cattell, 1892; Jenkins, 1947; Newell & Carlton, 1985 ),
although Schmidt et al. (1979) have described an increasing
relation. In this section, the predictions PFUM for the relation
between SD[F,(z)] and E[F,(s)] are investigated. This is
carried out separately for the two modes of force-level control.
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We continue to assume that L, ..
dom variables.

., L, are independent ran-

Force-Level Control by b

Suppose that higher target force Jevels are produced by re-
cruiting more FUs. In this case, the following result for the
relation of E[FE, (#) ] and SD[F, (#) ] is obtained:

Proposition7.  If force level is controlled only by the number b
of FUs, then SDIF, ()] increases as a square root function of
E[F,(0)]

SDIE,(f)]= a-VE[E,()] a>0, (38)
where the constant o equals %%%% .
Proof Note that
E[K®)]1=b-E[F;,(1)] (39)
and
SD[F,(:)]*= b-SD[F;(t)]* (40)

must hold. Divide Equation 40 by Equation 39 and rearrange
the resulting expression. The proof is complete.

Empirical Observations on the Relation of E[F,(1)] and
SD[F,(t)]. There are several studies that may be interpreted
in terms of Proposition 7. In early experiments conducted by
Fullerton and Cattell (1892), standing subjects produced a se-
ries of near-isometric pulls, ranging in peak force from 20 to
160 N. Fullerton and Cattell reported that the standard devia-
tion of peak force was proportional to the square root of the
corresponding mean force. Although this result appears to be
consistent with PFUM, the authors did not report the time to
peak force. Without an indication of its constancy, we do not
have firm grounds for believing that subjects were only regu-
lating b and not 4. In the Newell and Carlton (1985) study, the
standard deviation of peak force F, (z,) for a fixed time to peak
force was investigated. The isometric task required etbow flex-
ion pulls with peak forces ranging between 2.5% and 90% of
maximum effort peak force. They also observed that the stan-
dard deviation of peak force increased in a negatively acceler-
ated fashion with mean peak force.

An alternative way of characterizing the precision of force
control is in terms of the coefficient of variation:

SDIK ()]
E[F,®)] "

c “4n
Several researchers have summarized their results by plotting ¢
against various targets for peak force, the latter corresponding
(normally) to E[F, ()] (Fullerton & Cattell, 1892; Gordon &
Ghez, 1987a,1987b; Hening et al., 1988; Jenkins, 1947; Noble &
Bahrick, 1956). These plots were motivated by applying
Weber’s law to the domain of force production. Weber’s law
states that the Weber fraction As/s should be constant for all
values of s, where s denotes the stimulus magnitude and As the
difference limen (cf, Luce & Galanter, 1963). In the domain of
force production, the coefficient of variation is considered anal-
ogous with Weber’s fraction. The general finding is that ¢ de-
creases markedly at the smallest values of E[F,(r) ]. However,
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outside this region, Weber’s law holds moderately well, al-
though there is a continuing tendency for the fraction to de-
crease.

Both the function generated by ¢ and the standard deviation
function (i.e., SD[F,(t)] as a function of E[F,(f)]) convey es-
sentially the same information. This is best seen by dividing
Equation 38 on both sides by E[F, (?) |; thus, one obtains casa
function of E[FE, (1) ]:

[+3

RO

Equation 42 predicts an initial marked decrease of ¢ for small
values of E[F,(f)] and a relative constancy of ¢ beyond this
initial decrease. This agrees qualitatively with corresponding
empirical findings (Fullerton & Cattell, 1892; Gordon & Ghez,
1987a, 1987b; Hening et al., 1988; Jenkins, 1947; Noble. &
Bahrick, 1956).

(42)

Force-Level Control by d

Interestingly, quite different conclusions might be reached
regarding the relation of E[F, (f) ] and SD[F, (¢) ] if force is con-
trolled by varying the duration of the force contribution by each
FU. Specific assumptions about the force-time function u(+)
and about the CDF of L are, however, necessary to assess this
relation. As an example, suppose that #( - ) is rectangular and
F(+)is a special Erlangian distribution. Consider the values of
SDIF, (f)] and E[F, () ] at peak force depicted in Figures 8 and
12, respectively, which were computed on the basis of these
assumptions for particular model parameters. Figure 14 shows
a plot of SD[F, (1) ] against E[FE,(z) ] for this case. Although at
lower peak forces SD[F, (¢) ] increases with E[F, (1) ], SD[F, () ]
decreases markedly for large values of E[F, (f) ]. In motor con-
trol, it is surprising to encounter a situation where variability
does not continue to increase through the range of a physical
dimension; but even more remarkably, PFUM suggests that
variability may actually decrease under certain circumstances.

Yet data exist (Sherwood & Schmidt, 1980, Experiment 2)
where this is the case. Sherwood and Schmidt reported an in-
verted-U-shaped function between force and standard devia-
tion of produced force in an isometric elbow flexion task. The
target forces ranged from 58 N close to a maximum level of 276
N. The standard deviation of force increased linearly up to
approximately 65% of maximum force and declined thereafter.
Unfortunately, Sherwood and Schmidt did not provide the time
to peak force in their original work. However, Newell and Carl-
ton (1985, p. 239) attributed this decrease in force variability to
a concomitant lengthening in time to peak force, which would
be consistent with the idea of PFUM, that higher force levels
were controlled by d and thus reduced force variability with
increasing force level. Of course, further research in this area is
warranted.

One may appreciate that PFUM would be able to predict
several shapes of the function relating SD[F, (t) ] and E[F, (¢) 1 if
force level were controlled by different combinations of band d.
This might account for the discrepant estimates in the literature
of this function as reviewed by Newell et al. (1984).
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Figure 14. An example of an inverted-U-shaped standard deviation
function predicted by the parallel force unit model. (The figure was
obtained by plotting the standard deviation SD[F, (t,) ] shown in Fig-
ure 12 against the corresponding mean E[F, (t,) } shown in Figure 8.
The curves for m = 4 and m = 5 superimpose)

On the Time to Attain a Predetermined Force Level

In the introduction, we suggested that the development of
force in brief impulsive responses could have implications for
measuring the times of those responses. Reference was made to
Angel’s (1973) study in which RT varied systematically with
peak force. We suggested that this dependence could have
arisen because the response was defined as the crossing of a
predetermined force level, or threshold, which is constant
across conditions. Different rates of force increase associated
with different peak forces would then affect the time to attain
the threshold. Angel assessed force levels using a force trans-
ducer, but note that this point also applies when a mechanical
device, such asa microswitch, provides the threshold. This char-
acterization of a relation between force and measured response
time would appear to fall within the domain of PFUM. How-
ever, so far, PFUM has been formulated in terms of force chang-
ingas a function of time, E, (). To understand the implications
of the model for measuring the time of a response, the roles of
force and time need to be switched. Thus, in this section, we
consider the motor delay T( f) to achieve a predetermined
force level £

Throughout most of the RT literature, the motor delay is
assumed to bea constant delay, and therefore it does not contrib-
ute to the variance of the total RT. The main reason for this
assumption is that it simplifies the building of mathematical
models of RT (cf. Luce, 1986; Meijers & Eijkman, 1977; Ulrich
& Giray, 1986); however, it also receives support from empiri-
cal studies of repetitive tapping (Wing, 1980; Wing & Kristof-
ferson, 1973 ) and synchronous bimanual responding (Ulrich &
Stapf, 1984; Wing, 1982) in which estimates of motor delay
variability are relatively small. How can low estimates of motor
delay variability be squared with the variable onset latencies of

the single FUs in PFUM? A theoretical rationale for the low
values, which is in line with PFUM, was proposed by Meijers
and Eijkman (1974). They treated the motor delay in terms of
mth order statistics, that is, as the onset time T,,, for the mth
unit of b units with randomly distributed onset latencies. They
demonstrated that the variance of T, decreases rapidly as the
number b increases. Hence, they argued that the temporal pre-
cision of the motor process will be high as long as many units
are activated, even when the single-unit onset times exhibit a
large time jitter. In this analysis, the use of the mth order statis-
tic implies that the » — 1 units preceding the onset of the mth
unit should remain active at least up to that point. Strictly
speaking, this only applies when activation times, d, are suffi-
ciently long. However, in the following section, we describe a
simulation study, based on PFUM, which indicated that the
observations of Meijers and Eijkman (1974) also hold for rela-
tively brief pulses. In light of the simulation results, we then
consider studies on the relation between the force and time of
discrete responses.

Simulation of Threshold Force Attainment Time

In an earlier section we analyzed the mean force~time func-
tion E[F,(-)] predicted by PFUM and showed how changes in
the number b of recruited FUs and the duration d of the FU
force~time function affected peak force E[F, (£,)] and time to
peak force £,. Our present concern is with characterizing the
observed force-time function in terms of its timing. We should
like to know, for example, over repeated trials, what are the
mean and standard deviation of times taken to reach a particu-

- lar level of force. The evaluation of varying times to cross fixed

force thresholds may be contrasted with our use in a preceding
section of the constancy of times to attain varying force levels as
support for the scalability property of PFUM.

In the simulation (see Table 3 for results) we used, as before,
Erlangian distributed FU onset latencies L, . .., L, with pa-
rameters p = 0.05 ms, m = 4, and rectangular-shaped force-
time functions #( + ) with amplitude 2 = 5 ¢N. This combination
of parameters produced the peak forces (F, ) and times to peak
forces (T, ) shown in the first 2 columns. We assess the effect of
varying b and 4 (while keeping all other parameters in the
model constant) in terms of times defined relative to a low and
a high fixed force threshold, f; and f;, where 0 < f; < f;. The
motor delays between the central command and the observed
force first attaining levels f; and f, we denote T( ;) and T( f;).
The associated interval R=T( f;) — T( /;) we term the rise time.

The results of the simulation given in Table 3 are for force
levels f; = 20 cN and f; = 200 cN, with 200 or 400 FUs com-
bined factorially with FU force-time function durations of 40

13 The time interval T(/") between central command and overt re-
sponse (keypress) has been variously termed response delay (Wing &
Kristofferson, 1973), motor time (e.g., Meijers & Eijkman, 1974), mo-
tor subsystem latency (Meijers & Eijkman, 1977), and motor delay (e.g.,
Vorberg & Hambuch, 1978). Others subsumed T(J) under more gen-
eral terms, such as irreducible minimum RT (Woodworth & Schlos-
berg, 1954) or residual latency (Luce, 1986).
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Table 3
Parallel Force Unit Model Simulation of the Effects of Number b
of Force Units and Force Unit Duration d on Timing Measures

Measure F, T, T() T(f) R
b =200,d = 40 ms

Mean 447 84 20 46 26

SD 30 8 3 3 3
b=400,d =40 ms

Mean 879 83 16 35 19

SD 46 6 2 2 3
b=200,d =80 ms

Mean 748 109 20 46 26

SD 29 5 3 3 4
b =400, d = 80 ms

Mean 1,482 109 16 35 19

SD 42 4 2 2 3

Note. The means and standard deviations of various timing measures
(see text for explanation) are based on 750 trials each. The unit of peak
force F, in the first column is the centinewton; all other column entries
are in milliseconds. The entries in the first and all other columns are
rounded to the nearest centinewton and millisecond, respectively.

or 80 ms, which give various peak force values and associated
times to peak force as shown in the first 2 columns.'*

There are difficulties in estimating mean and variance func-
tions in order to relate them to PFUM. The predicted relations
are based on time ¢ relative to an unobservable event, namely
the moment at which the central command occurs. If we were
to choose an arbitrary point, such as the peak force, in order to
align the force-time function prior to averaging, we clearly
would bias the estimates, for example, reducing Var[F,(z,)].
Gordon and Ghez (1987a, p. 245) suggested alignment on force
onset. According to the simulations, the timing accuracy on
crossing a prespecified force level is very high. As an alterna-
tive, we therefore suggest that such a time point could equally
well be used as a reference for averaging observed force-time
functions.

In the following section, we consider the relation of the simu-
lation results on changing b and 4 to behavioral data on timing,
However, first we draw attention to a general property of
PFUM, evident in Table 3, in which the means of the motor
delays T( f) and T( ;) are seen to be considerably shorter than
the mean FU latency (which was set at 80 ms). This underesti-
mation by the motor delay of the FU onset latency reflects a
simple principle referred to by Raab (1962), in the context of
variability in afferent latencies, as statistical facilitation. With
dispersion of onset delays over several channels, the time of
onset of activity regardless of channel is, on average, less than
the average onset time of any given channel. There is a facilita-
tion of the onset time defined over the group relative to the time
that would be obtained if only one unit were present.

Statistical facilitation affects not only mean latency but also
timing precision. In the simulation, although the variability of
latency L is quite large, SD[L ] = 40 ms, the observed motor

delay standard deviations are very small. The tapping study of
Wing and Kristofferson (1973) and the bimanual RT study of
Ulrich and Stapf (1984) provide independent estimates of the
standard deviations of motor delays that are of the order of only
a few milliseconds, PFUM thus affords a viable account of such
low estimates of the variance of motor delays.

Motor Delays Related to Force Output

In psychological research, the time of a response (most com-
monly of interest in RT experiments but also of importance in
the study of timing) is often identified by the depression of a
switch that closes an electrical circuit. This requires a brief force
in excess of some threshold. Depending on the mechanics of
the switch, the required force may be lower or higher, but, asin
the simulation of the preceding section, it is likely to be con-
stant across conditions. The results of the simulation clearly
demonstrate that, under certain conditions, the time of a re-
sponse (whether defined on a low threshold, f;, or a high thresh-
old, f;) will be inversely related to peak force. This is the case if
peak force is adjusted in terms of b, the number of recruited
FUs, but not if changes in peak force are achieved by altering d,
the duration of the FU force-time function.

At least two RT experiments provide evidence that there can
be alterations in peak force without change in RT, consistent
with force control based on adjustment of FU duration. In a
finger-press task that required the production of brief force
pulses with response duration unconstrained, Ivry (1986, Ex-
periment [ ) reported that changes in peak force (for targets of
4.5,17.5, or 10.5 N) had no effect on either simple or choice RT.
Because time to peak force and impulse duration increased
with peak force, this would suggest that subjects varied FU
duration in order to vary peak force. This strategy would tend
to keep the rate of force rise constant over different peak forces.
A complementary task, in which subjects had to vary the dura-
tion of brief isometric finger-press force pulses with force un-
constrained, was studied by Carlton et al. (1987, Experiment
1). As mentioned earlier, they reported that time to peak force
and peak force increased with duration. However, despite the
changes in peak force, they also observed no effect on simple or
choice RT. Again, with PFUM, we would assume that subjects
adjusted FU duration without change in number of recruited
FUs. Earlier work by Klemmer (1957) on RT also showed a
constancy over different force levels. Although he did not re-
port time to peak force, rate of force rise was constant over
conditions, indicating that control of force was carried out by
manipulation of FU duration.

' The values in the first 2 columns support a claim made earlier (see
the Remarks on the Concept of Peak Force section) in which we sug-
gested that the difference between the “double” random variable
F,(T,) and F,(t,) is negligible as long as b is large. From Equation 19
with (b~d) combinations 200-40, 400-40, 200-80, and 400-80 [ FUs~
ms], one obtains the predicted values £, = 82, 82, 109, and 109 ms.
These values agree well with the means of T, in Table 3. Accordingly, by
Equations 13 and 32, values of 424, 849, 733, and 1,466 cN for
E[K ()], and 35, 49, 31, and 44 cN for SD[F,(¢,)], are obtained.
These values clearly approximate the corresponding means and stan-
dard deviations of F, listed in Table 3.
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Several studies provide evidence of changes in FU recruit-
ment in the adjustment of peak force. In the introduction, we
referred to Angel’s (1973) observations of variation in simple
RT with response force (see Figure1). His systematic manipula-
tion of stimulus intensity resulted in decreases in RT that were
associated with increased response force. Under PFUM, the
shortening of RT with higher peak forces is attributed to in-
creases in the number of recruited FUs. Reduction of RT with
force in a task that required graded control of force is reported
in Carlton et al. (1987, Experiment 2). Subjects were required
to produce peak forces to targets in the range 2.5-8.5 N. Al-
though the instructions left impulse duration unconstrained, it
was found that subjects maintained a relatively constant time to
peak force, and RT (both simple and choice) decreased with
increasing force.

Changes in response timing with peak force have also been
reported in a task that required subjects to produce sequences
of accurately timed isometric force pulses (Keele, Ivry, & Po-
korny, 1987). Subjects were required to stress different elements
of a thythmic temporal pattern by approximately doubling the
force on that response from the normal level (which was about 4
N). Keele et al. observed that the accenting usually decreased
the length of the interval (measured at 10 ¢cN) terminated by
that response. They attributed the effect to “more rapidly mobi-
lized muscular forces” (Keele et al., 1987, p. 110) with stronger
forces, a view consistent with PEUM.

We have considered data from tasks in which force might be
adjusted either by change in FU duration (which would leave
RT unaltered) or by changing the number of FUs (which would
lead to an inverse relation between peak force and RT). How-
ever, it is clearly a simplification to suppose that subjects would
always adopt one mode of control to the exclusion of another.
Indeed, in a study by Haagh, Spijkers, van den Boogaart, and
van Boxtel (1987), both a reduction in RT and an increase in
time to peak force was evident as force increased from 5% up to
50% of maximum voluntary force. This suggests both an in-
crease in b and an increase in d. Moreover, tasks have been
described that, under PFUM, would necessarily require con-
trol on both dimensions. Siegel (1988) asked subjects to pro-
duce isometric force impulses on a hand dynamometer to a
target of 98 N. He required them to control the rate (time to
peak force) to levels 40% and 20% of the most rapid impulses.
To reduce the rate of rise of force under PFUM requires a
reduction in number of FUs. However, this would result in a
reduction of peak force, and this must be compensated for by
an increase in FU duration. (A concrete example of the opera-
tion of such a constraint may be found in Table 1) Although the
latter would leave RT unaffected, the drop in number of FUs
predicts an increase in RT, and this is what Siegel observed. A
similar result over a more complicated set of conditions was
also reported by Carlton and Newell (1 987).

PFUM might also be helpful in understanding a deficit in
force production observed in Parkinson’s disease patients and
reported by Stelmach and Worringham (1988). Subjects with
Parkinson’s disease and age-matched control subjects were re-
quired to aim at different target force levelsina simple RT task.
The authors reported longer RT, longer times to peak force,
lower rates of force development, and more irregular force-
time functions in the Parkinsonian group than in the control

group. In the framework of PFUM, one might speculate that
this performance difference reflects a difference in the basis of
control, whereby Parkinsonian subjects use fewer larger ampli-
tude FUs and adjust peak force by changing FU duration rather
than altering the number of FUs recruited. It is interesting in
this regard to recall that we earlier inferred this same mode of
control in the case of a patient with Huntington’s chorea, also a
basal ganglia disorder, described by Hefter et al. (1987). The
basis for that inference was the constancy of maximum rate of
change of force for different peak forces. Furthermore, Bahill et
al. (1978) have suggested that, in the case of peripheral nerve
deficit (unilateral abducens nerve paralysis) affecting eye move-
ments, patients tended to modify impulse width rather than
amplitude. In each of these cases, the interpretation under
PFUM would be that an impairment in the ability to increase
the amplitude of brief force impulses by increasing b is com-
pensated for by an increase in d. Thus, the model appears to
have application to disordered as well as normal motor perfor-
mance.

Discussion

In this article, we have developed a theory (PFUM) in which
it is assumed that the voluntary production of a brief force
impulse involves the concerted action of a large number of dis-
tinct FUs. Each FU is assumed to have some deterministic
force-time function associated with the lumped effects of the
contraction properties of muscle fibers and the mechanical
characteristics of the skeletomuscular system. The level of force
produced may be adjusted by varying the number of active FUs
(recruitment) or by altering the duration of the FU force-time
function. If the time of onset of each FU has an appreciable
temporal uncertainty relative to its period of activity, the
buildup of the observed overall force to its peak value will be
extended, as will the decay period. The greater the onset vari-
ability, the longer the periods of buildup and decay and, unless
the duration of the FU force~time function is increased, the
lower the peak force attained.

The body of this article is concerned with deriving predic-
tions for this theory, and the major points are summarized in
Table 4.

As an analogy for PFUM, suppose several people are strug-
gling to lift a very heavy object, such asa piano, over an obstruc-
tion, such as a step. Individually, none of them are strong
enough to raise the piano. However, good teamwork, probably
based on someone taking the lead with a “One, two, three, lift”
command, results in overlap of the times of their individual
efforts. By this means, the summation of their individual lifts
may be sufficient to take the piano over the step. The point of
the analogy is that, in tasks where an individual must generate a
force impulse, coordination of activity over several potentially
independent muscles is often required. Given, further, that
each muscle is composed of a large number of separate muscle
fibers, the situation is akin to the piano-moving analogy in
having several independent units contributing to the total force.
Just as the efficacy of the piano movers’ lifting may be seen to
be a function of the degree to which the individual members
can act in concert, so in our theory we have been concerned
with the nature of force summation over the separate force ele-
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Table 4
Summary of Supported Predictions
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Relation/property

Prediction

Data support

Scalability of mean force-time functions

Relation of peak force and time to peak
force

Relation of M and SD of (peak) force

(relation of coefficient of variation
and mean force)

Preload force and force variability

Force and mean response time

If force level is controlled only by FU recruitment,
then the rescaled mean force-time functions
must superimpose.

If force level is controlled only by FU duration,
then both peak force and time to peak force
increase. The scalability property is violated.

Mean maximum peak force increases in a
negatively accelerated manner with time to peak
force.

If force level is controlled only by recruitment,
then SD increases in a negatively accelerated
fashion with mean force. (Coefficient of
variation decreases fast for small values of mean
force but attains a relative constancy beyond
this initial decrease.)

If force is (also) controlled by FU duration, then
SD can decrease with increasing mean force.

PFUM predicts relations between peak force,
preload force level, and peak force variability.

With constant ,, RT decreases with force as the
number of FUs increases (statistical facilitation).

Angel (1973), Freund & Biidingen (1978),
Gordon & Ghez (1987a), Lee,
Michaels, & Pai (1990)

Carlton, Carlton, & Newell (1987,
Experiment 1), Hefter, Homberg,
Lange, & Freund (1987)

Carlton & Newell (1987), Newell &
Carlton (1985)

Fullerton & Cattell (1892), Gordon &
Ghez (19872, 1987b), Hening, Vicario,
& Ghez (1988), Jenkins (1947), Newell
& Carlton (1985), Noble & Bahrick
(1956)

Newell & Carlton (1988, Experiment 4),
Sherwood & Schmidt (1980)
Newell & Carlton (1988)

Carlton et al. (1987, Experiment 2),
Carlton & Newell (1987), Keele, Ivry,

With force increase accompanied by lengthened ¢,

RT is constant.

& Pokorny (1987), Siegel (1988),
Stelmach & Worringham (1988)

Carlton et al. (1987, Experiment 1), Ivry
(1986, Experiment 1)

Note. FU = force unit; M = mean; SD = standard deviation; PFUM = parallel force unit model; RT = reaction time.

ments composed of fibers within muscles. However, in contrast
to the analogy, in our modeling we did not assume the existence
of ateam leader giving explicit instructions to achieve coordina-
tion. Whatever consistency is observed in the development of
brief force pulses, the extent to which there is invariance in the
time to peak force over different force levels is an emergent
characteristic. The behavior of the system is a consequence of
the stochastic properties of the system’s elements all acting inde-
pendently rather than being the result of any structured, execu-
tive control processes.

Although the theory has a considerable number of implica-
tions for the nature of force~time relations in brief force im-
pulses, it might appear that PFUM is no more than a formaliza-
tion in mathematical terms of a rather simplistic view of the
neurophysiology of multifibered muscle. To a certain extent,
this is indeed the way we perceive our work. However, we would
argue that the exercise of putting these ideas into a form that
allows the generation of quantitative predictions is not trivial.
When assumptions that are required to derive predictions are
made explicit, gaps in empirical understanding become appar-
ent. Deducing the properties of the theory in terms of formal
propositions serves to sharpen the sophistication of interpreta-
tions of existing data; relations among various observed phe-
nomena may become comprehensible. - Limitations on
previously accepted forms of data analysis and presentation
may become evident, and new, more insightful measures based
on procedures that are theoretically more sound may suggest
themselves. And it may be hoped that the theory will help

structure intuitions so that they may better guide future re-
search.

However, any exercise in quantitative modeling necessarily
leans heavily on its assumptions. These are critical not only in
simplifying the theoretical development of predictions but also
in maintaining a model’s identifiability. As more parameters
are included in a model, its fit to a body of data will improve,
but the possibility of estimating unique, stable, and interpret-
able values for those parameters becomes more remote. For this
reason, when developing PFUM, we made a decision to be
selective in incorporating empirical results, for example, from
the very extensive neurophysiological literature concerning the
subtle patterning of motoneuronal activity. But now that we
have developed the theory to the point where it is capable of
providing at least a qualitative account of a substantial body of
behavioral research, it is time to reexamine some of those as-
sumptions. What are the consequences, if any, for PFUM if
some of the assumptions are not valid? What are the implica-
tions for future research? In addressing these questions, we take
points from three different levels of the analysis of movement:
neurophysiological, biomechanical, and behavioral.

Neurophysiological Data Overlooked?

To discuss those aspects of muscle neurophysiology that
might seem most directly in conflict with the assumptions of
PFUM, it is necessary to consider studies in which the force~
time functions associated with the activity of individual MUs
throughout a muscle are sampled during steady contractions
using spike-triggered averaging (STA). In this method, which
was first used by Buchtal and Schmalbruch (1970), a fine-wire
electrode is inserted into the muscle, and a recording is made of
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the electrical spike activity of a single fiber while the force pro-
duced by the pull of the muscle across its joint is monitored by a
sensitive transducer. The tension developed in a steady contrac-
tion is then averaged with respect to each successive depolariza-
tion spike of the fiber, which will coincide in time with all the
other muscle fibers that, together with the driving motoneuron,
constitute the MU. The averaging causes slight fluctuations in
the tension record that are time locked to the MU to stand out
from random fluctuations in tension due to the unsynchro-
nized activity of other, unrelated MUs. From a behavioral per-
spective, the STA is a useful characterization of muscle function
because it reflects not only the MU characteristics but also the
effects of biomechanical factors intervening between muscle
fiber and the external point at which force can be measured. In
terms of PEUM, it may be considered to correspond to the FU
force-time function.

By sampling across MUs throughout a muscle, it has been
shown with the STA approach that single-unit twitch ampli-
tudes are geometrically distributed—larger amplitude MUs be-
ing relatively less common (Milner-Brown, Stein, & Yemm,
1973). Such variation in twitch amplitude may be attributed to
differences both in the number of fibers connected to a given
motoneuron and in the cross-sectional area of the individual
fibers. In contractions of slowly increasing force, there is orderly
recruitment of MUs by size according to the level of force. Moto-
neurons that result in relatively small twitch tensions during the
contraction of their muscle fibers are recruited prior to MUs
that produce larger twitch tensions (Henneman, 1957). This
finding, often referred to as the size principle, has been shown
to apply to many muscles under quite different conditions
(Henneman & Mendell, 1981), although the rank ordering is
not always perfectly preserved (Thomas, Ross, & Stein, 1986).

PFUM could, in principle, be generalized to allow for subsets
of FUs with force-time functions that differ on characteristics
such as amplitude. However, as the theory stands, the size prin-
ciple raises certain issues. First, consider the consequence of
different amplitude contributions (and, quite possibly, different
durations) from different FUs. Clearly, this would constitute a
violation of Assumption A, that all FUs have the same force-
time function. And, not only does the size principle indicate
that not all FUs are identical, but also, at least in slow contrac-
tions, there is nonrandom recruitment from the set of available
FUs. To the extent that recruitment in brief contractions might
also be ordered by size, this would render invalid the assump-
tion that the latencies of individual FUs can be characterized
by a single random variable, L. One consequence is that even if
peak force were being controlled by the number of FUs, there
would no longer be scaling of the force-time function with
increase in peak force. Instead, the duration of the overall
force~time function would increase with the addition of the
Jarger FUs coming in after longer delays (and for longer pe-
riods) at higher force levels. It thus becomes important to ask
whether the orderly recruitment of MUs according to the size
principle applies to rapid, ballistic contractions or whether it is
limited to slowly developed contractions?

Rapid isometric contractions have been studied in terms of
MU recruitment order. In such contractions, the electrical activ-
ity in the agonist muscle recorded in the surface EMG largely
precedes the force pulse. A method for examining an order of

MU recruitment under these circumstances was suggested by
Desmedt and Godaux (1977). Subjects were instructed to pro-
duce brief pulses of varying peak force, and MU characteristics
were then related to this peak force. It was found that more large
MUs were recruited at a given force than would have been
expected from data obtained in trials where the force is in-
creased slowly. Given the short duration of the overall EMG
burst, it is clear that the active MUs must be recruited in close
temporal proximity. If, as is suggested by Thomas et al’s (1987)
data on isotonic contractions, there is appreciable variability in
the times of onset of MU activity, there will be a high probabil-
ity of fluctuations in the onset order of different MUs asso-
ciated with brief, isometric force impulses. Clearly, it would be
desirable to have additional neurophysiological data on recruit-
ment order and temporal dispersion in brief ballistic contrac-
tions.

However, there are relevant behavioral data that suggest uni-
formity of FUs. The study of Freund and Biidingen (1978) de-
scribed earlier included an additional task. This required sub-
jects to produce brief force increases of 10 N from different
baseline forces. Despite variation in baseline forces over the
range 0-40 N, neither the time to peak force nor the rate of rise
of force varied. Constancy of rate was also earlier described by
Klemmer (1957) for baseline forces in the range 0-7 N. These
preload studies suggest that the characteristics of the recruited
set of FUs do not depend on baseline force, and this is consis-
tent with Assumption As.

A second important set of neurophysiological data that casts
doubt on the validity of Assumption A, stems from a study of
isometric wrist flexion torque production by Sanes and Jen-
nings (1984). These authors provided data on force pulses pro-
duced by wrist flexion that indicate the presence of antagonist
activity in isometric tasks. Their recorded force impulses show
a similar time course to those recorded by Freund and
Biidingen (1978). However, although the baseline flexion
torque (preload level) is zero, a small but distinct undershoot
was found on the tail end of the impulse. Inspection of the
accompanying EMG traces revealed clear antagonist activity.
This finding suggests that the offset of the force impulse may be
actively driven, rather than arising purely through the cessation
of agonist activity. Meinck, Benecke, Meyer, Hohne, and
Conrad (1984) also observed activation of the antagonist in the
production of brief force pulses involving isometric finger flex-
jon. This antagonist activity could be suppressed by subjects if
they were instructed to passively relax after matching the target
force as fast as possible. However, subjects found this condition
more difficult, and practice was required if subjects were to
avoid active reduction of the force. Active curtailment by the
antagonist of isometric force impulses has also been docu-
mented for elbow flexion, particularly for impulses of shorter
duration (Corcos et al,, in press; Ghez & Gordon, 1987). This
finding was subsequently confirmed for elbow flexor isometric
force pulses by Ghez and Gordon (1987), who concluded that
briefer pulses (with rise times to peak less than 120 ms) may be
actively curtailed by a burst of activity in the antagonist muscle.

In light of such observations, it would therefore appear that
within PFUM, the overall force F,(f) should be treated as a
summation of both positive and negative contributions. Such a
view might be developed in a number of ways. The force-time
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function of each FU might be assumed to be first positive and
then negative. That is, negative (or antagonist) activity might be
taken to be tightly linked in time to the preceding positive (or
agonist) activity in a manner similar to that proposed by Dar-
ling and Cooke (1987) for isotonic muscle activation in arm
positioning tasks. Or, one might suppose that there are indepen-
dent classes of positive and negative FUs. Depending on the
particular assumptions made about the phase of positive and
negative force contributions relative to the temporal dispersion
of their onsets, quite different mean force~time functions might
obtain. And, unlike the special cases of PFUM that we dis-
cussed earlier, the variance of F,(f) would not necessarily be
related to the level of force. Thus, in general, it would appear
that future work in this area will need careful consideration of
model identifiability of whether two distinct models can be
discriminated on the basis of behavioral measures of observed
force~time functions.

Biomechanical Factors Not Taken Into Account?

Although we have allowed neurophysiology to shape the as-
sumptions of PFUM, our concern in this article has been pri-
marily with overt behavior, with force measured at the effector
level rather than with muscle tension per se. It is thus important
to appreciate that there are various biomechanical factors that
may qualify the use of data on MU activity to infer FU proper-
ties. An excellent review of a number of approaches to model-
ing the relation between (deterministic) neural activation of
muscle and resultant joint motion was provided by Winters and
Stark (1987). They favored a class of models based on Hill’s
(1938) conception of muscle as a contractile element arranged
in series with a viscoelastic element and connected in parallel
to a joint with inertial and elastic properties. To describe the
relation between neural activation and muscle torque, up to
eight parameters are required. For the general case, in which
there is change in muscle length, the relation is nonlinear due to
factors such as a dependence of tendon stiffness on muscle
length (Proske & Morgan, 1987). However, when the task is
isometric, involving no change in muscle length, the data are
described reasonably well with models having only one or two
parameters. These parameters depend only on the joint and
whether torque is being directed into flexion or extension.

In our analysis of PFUM, mechanical effects are lumped
together with muscle fiber contractile properties in the defini-
tion of the FU force-time function. If the latter changes with
muscle length (or joint angle), the assumptions of PFUM will
be violated. Thus, it would seem more appropriate to investi-
gate PFUM in tasks where muscle contraction is isometric or
nearly isometric. Nonetheless, there may be interest in applying
observations on the form and consistency of brief force pulses
to overt movement trajectories. Thus, for example, Abrams,
Meyer, and Kornblum (1989) suggested that in eye movements
and limb movements, kinematic aspects such as the increase in
variability of movement end points with movement velocity
may have a common basis arising in neuromotor noise. They
proposed that the generation of a movement involves the selec-
tion of a prototypical force-time function that may be scaled in
time or amplitude. It is tempting to suggest that PFUM could
provide an account of these dimensions of control, of the partic-
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ular form of resulting force-time function, and of the conse-
quent noise characteristics. However, if the focus is to be shifted
to tasks performed under isotonic conditions where muscle
length is changing appreciably, allowance must be made for
nonlinearities such as those reviewed by Winters and Stark
(1987). Although explicit modeling of each source of such ef-
fects would be one strategy to developing PFUM, an alternative
is to relax the assumption of a deterministic single-unit force—
time function u(+). PFUM could be generalized to force-time
functions, which change randomly from trial to trial. We have
assayed several computer simulations in which #( - ) varies from
trial to trial. Although at a preliminary stage, this work proba-
bly will help specify under what range of conditions results
would be expected to resemble the predictions based on a deter-
ministic function u(-).

Role of Feedback Overlooked?

In describing step changes in force, Cordo (1987) identified
initial ballistic and subsequent adjustment phases to voluntary
aimed isometric contractions. His analyses indicated a feed-
back basis for the corrections, much as argued for the role of
feedback in hand-positioning movements (Keele, 1981; Keele
& Posner, 1968). In this article, we have treated brief force
impulses rather than the step changes studied by Cordo. But
adjustment to the initial specification (eg., in our terms, of
recruitment level, FU duration, or both), if not necessarily on
the basis of concurrent feedback, has been suggested by Ghez
and his collaborators in their research on the production of
brief impulses. In the production of targeted force impulses,
most of the variance (between 70% and 96%) is accounted for
by the peak value of the second derivative of force (Gordon &
Ghez, 1987a). Because this peak value occurs relatively early
(50 ms after the onset of force change), it is reasonable to iden-
tify it as a product of open-loop control that may be accounted
for by PFUM. However, the remaining variance, which is not
accounted for, invites interpretation. This is provided by Gor-
don and Ghez (1987b) in terms of a process that internally
monitors the unfolding neural commands.

The monitoring process proposed by Gordon and Ghez
(19870) falls outside the assumptions embodied in PFUM. It
could be argued that, because the process only accounts for a
relatively small proportion of the variance, it should be of little
concern in quantitative, psychological modeling. However,
there is no reason why, eventually, PFUM might not be adapted
to include feedback adjustment. Conversely, we would like to
see accounts of feedback processing that take explicit account
of the nature and consequences of irreducible noise. But, for the
present, on the grounds of keeping the number of parameters
down in the interests of mathematical tractability and model
identifiability, we favor the strategy of studying force develop-
ment in tasks that design away the complications introduced by
subjects using concurrent feedback control.

In the performance of motor skills, it is generally recognized
that subjects may use feedback at several levels (e.g., Schmidt,
1975). At lower levels, modifications to motor activity based on
the feedback may take place without conscious intervention
and with a relatively brief time course so that the feedback loop
is contained within a trial. Such concurrent feedback process-
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ing may be contrasted with the use of knowledge of results in
which modifications to action may extend over several trials,
may be subject to conscious strategic control, and may be based
on symbolic representation of the outcome of prior motor activ-
ity (Salmoni, Schmidt, & Walter, 1984).

Two contrasting options for the control of peak force (recruit-
ment, b, or duration, d ) have been identified within PFUM, but
no variation in these parameters has been considered. Yet sub-
jects may use their knowledge of results to make small, correc-
tive adjustments to the controlled parameter in the course of a
block of trials even though the experimental conditions are
held constant. Thus, in a more realistic version of PFUM, b
might be treated as a random variable, say B, allowing recruit-
ment to vary from trial to trial. In this case, K, () would repre-
sent a random number of random variables:

B
K @)= EI F;(1). (43)

Probability theory provides several tools to handle this general-
ization (cf. Ross, 1980, p. 85). Thus, for example, to show that
the theoretical results for mean F, (£) hold under variation in b,
one need only replace the constant b by E[B] in the relevant
expressions in Equation 44. However, the mathematical treat-
ment of Var[F, () ] is more cumbersome. Nonetheless, compu-
tations that we have done with b treated as a random variable
indicate variance properties that are similar to the predictions
set out earlier in this article.

In a preceding section, we explored the implications of
PFUM for measures of response time in terms of systematic
changes in peak force over different experimental conditions
associated with either b or d as the controlled parameter. Al-
though we already noted that Angel (1973 ) reported systematic
changes in mean RT with mean force, it is also relevant that he
found no statistically significant relation between response
magnitude and RT over a series of trials where stimulus inten-
sity was held constant, The simulation in Table 3 showed that,
on average, systematic change in number of FUs results in an
increase in peak force and a shortening of RT. In the absence of
a negative correlation between peak forceand RT, it is tempting
to infer that any variation in peak force in the case of Angel’s
data was not due to random variation in 5. However, a check for
covariation between RT and T, (in case of variation in d) would
seem advisable before concluding that the observed variation
falls within the amount predicted simply by temporal disper-
sion of onsets as treated in an earlier section. Moreover, in a
repetitive responding task, Keele et al. (1987) found small but
statistically reliable negative correlations between the peak
force of brief isometric responses and the interval (defined on
crossing a low threshold) terminated by that response.

Absence of correlation between the time of response and
peak force (or time of peak force) would appear consistent with
absence of appreciable variation in b or 4. However, suppose b
and d were true constants. Under PFUM, while the observed
force-time function might fluctuate from trial to trial in shape
due to temporal dispersion of onsets, one would predict that
there should be constancy of the area under the curve. There
would, in other words, be a negative correlation between peak
force and duration of the force pulse over trials within a condi-

tion. We know of no published data that bear on isometric
contractions, although Newell, Carlton, and Carlton (1982) re-
ported significant negative correlations between peak force and
force duration under isotonic arm movement conditions. How-
ever, in our discussion, we have identified a number of factors
that could contribute to variation in b or d and thereby lead to
variability in the area under the observed force-time function.
The latter source of variability would tend to reduce the nega-
tive correlation produced by the temporal dispersion of onsets.
It is thus clear that future research into the production of brief
force pulses must include analyses of trial-to-trial random varia-
tion of this area in relation to the underlying dimensions of
control afforded by b and 4.

Conclusion

In conclusion, we have shown that with simple mathematical
principles it is possible to derive quantitative predictions for the
time course of force-time functions and their precision. These
predictions have been shown to be in qualitative agreement
with a wide range of extant data on the production of brief
isometric force impulses. We anticipate that future research
will follow a more quantitative approach that would allow fit-
ting of data and estimation of parameters within the model.
Nevertheless, even the qualitative approach taken in this review
has started to build a bridge across the gap between neurophysi-
ological and behavioral perspectives on that most elemental
component of movement, the production of force.
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Appendix A

Glossary

The following is a list of the main symbols and abbreviations used in
the order of appearance in the text. Note that symbols in boldface
represent random variables. An italic letter followed by (+) denotes a
function, for example, /(- ), whereas an italic letter without (- ) denotes
a constant or a parameter.

Abbreviations
RT Reaction time
STA Spike-triggered averaging
MU Motor unit
EMG Electromyogram
FU Force unit

PDF Probability density function
CDF Cumulative density function
Random Variables

F,(1)  Observed force level at time
F,(t)  Force contribution of the ith FU at time ¢

L; Latency of the ith FU

T(f) Motor delay (time to attain force f)
T, Time to peak force in a single trial
E, Single-trial peak force

Operators, Functions, and Constants

n Maximum number of FUs

b Number of FUs recruited on a given trial

t Time

u(+)  Force-time function of a FU

A Impulse of a FU: Area under function (+)

z(-)  The normalized function of u(+)

h(-)  The convolution of z(-) and f(+)

d FU duration

a Constant force level of a FU

m Shape parameter of the Erlangian distribution

p Scale parameter of the Erlangian distribution

E[-] Expectation

Var[-] Variance

SD[+] Standard deviation

f(-) PDFofL

F(-) CDFofL

t Time of peak force of mean-force time function

Ln Time of maximum force variance of variance-force time
function

Predetermined force levels with f; > f;

fih

(Appendix B follows on next page)
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Appendix B

Proof of Equations 36 and 37

The force contribution F;(7) of a tonic FU at time ¢ is defined by
{O fort=L+d
F,(1)= (A1)
afort<L+d.
Hence, the mean of F;(f) is
E[F,(01=0-Pr{L+d=<£}+a-Pr{L+d>t}
=a-[l-PdL+d=< 1]
=q.[l - Ft—d)]. (A2)
The variance of F; () is computed in an analogous manner:
Var(F;(f)] = E[F,(1)*] - E[Fi(1) ]?
=a’ l-Fit-d)]-a*[l - Fit—-d)]?
=g’ [1-F(-d)]-Fi-d). (A3)

Let Fr(2) be the total force produced by all b, tonic FUs; then
E[Fr()]=br-a-[1 - F(t—d)] (Ad)
and
Var[Fr(8)] = by a*-[l - F(t - d)]- F(t—d). (A5)

The total force produced by all 5, phasic FUs is denoted by Ex(f).
Note that the mean and the variance of Fp(¢) must be identical to
Equations 13 and 32, respectively. Because F, (¢) = F-(¢) + F; (¢), weadd
Equations Ad and 13 to compute E[F, () ]. Likewise, we add Equations
AS5and 32 to compute Var[F, () ]. After simplifying, the desired results
are obtained. The proof is complete.
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