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Predictions of race models are derived for divided attention experiments
in which redundant signals are presented at slightly different times. The
models place constraints on the change in mean reaction time (RT) as
afunction of the time interval between signal onsets, and these constraints
can be used to test race models within the redundant signals paradigm.
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The redundant signals effect has often been used to test
models of divided attention. This effect arises in target-
detection tasks, where a subject must make a given response
if presented with either one or both of two target signals, S,
and S, (e.g,atoncanda light). Trials on which both signals
are presented, S,,, are called redundant signals trials, and
the typical finding is that mean reaction time (RT) is smaller
in these trials than in trials where either S, or S, is presented
by itself. This “redundant signals advantage” was first
reported by Todd (1912), who found that it decreases with
increasing separation between the RT distributions produced
by S, and S, inisolation. Subsequently, the redundant signals
advantage was studied further as a means of quantifying
intersensory facilitation (e.g., Hershenson, 1962).

Raab (1962) proposed that race models could explain the
speedup of responses on redundant signals trials. Let RT,,
RT,, and RT,, be random variables representing the
observed reaction times on trials in which the subject is
presented with the signals Sy, S, and S,,, respectively.
According to race models, each signal initiates a separate
process that will yield the response after some processing

time, and the actual response is generated by the first of

these processes to finish. Hence the model asserts

RT,, =min(RT,, RT,) (1)
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Such models are clearly compatible with the finding that
E[RT,,] <min(E[RT,], E[RT,]) (2)

For example, Raab (1962) showed that this model predicts
a redundant signals advantage of approximately 0.5 standard
deviation units when RT, and RT, are independent and
normally distributed. Because they provide a plausible and
conceptually simple account of the redundant signals advan-
tage, race models are a reasonable default model for this
effect.

Miller (1978, 1982) noted that race models must predict

F ) SF()+F(1), >0, (3)
where F,, F,, and F,, are the cumulative distribution func-
tions (CDFs) of RT,, RT,, and RT,,, respectively. Luce
(1986, p. 131) and Ulrich and Giray (1986) showed that this
inequality still holds even if a residual base time is included
in the analysis,! and Townsend and Nozawa (1995) have
characterized more generally both the inequality and the
models that do and do not satisfy it.

Many studies have used Inequality 3 to test race models
(e.g., Diederich, 1992; Grice, Canham, & Boroughs, 1984;
Miller, 1978, 1982, 1986; Mordkoff & Miller, 1993; Mordkoff
& Yantis, 1991), because this inequality has provided the
only general test of race models. Other tests have been
constructed by assuming that RT, and RT, are independent
or have specific distributions (e.g., Blake, Martens, Garrett,
& Westendorf, 1980; Meijers & Eijkman, 1977; Raab, 1962),
but these tests do not seem very satisfactory because of their

U'Let the detection time for S, be 7 and for §, be T,. Furthermore,
let the random variable M denote the motor time. Thus one may write
RT,=T,+M,RT,=T,+ M, and RT,,=min(T,, T,) + M=min(T, + M,
T,+ M)=min(RT,, RT,). Therefore race models still predict (3) il a
motor time is added on at the end of the race.
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extra assumptions. Experimental tests indicate that Inequality
3 is violated in a number of tasks, allowing race models to
be ruled out for those tasks (e.g.. Diederich, 1992; Grice et
al., 1984; Miller, 1978, 1982, 1986; Mordkoft & Miller, 1993;
Mordkoff & Yantis, 1991). Such results are interpreted as
evidence in favor of an alternative class of coactivation
models, in which activation from both signals combines
rather than races to produce the response. Coactivation
models provide one class of alternatives to race models, and
they seem particularly attractive for situations in which the
data violate Inequality 3 (for further elaboration and
specific examples of these models, see Diederich, 1992, 1995;
Diederich & Colonius, 1991; Grice er al., 1984; Schwarz,
1989, 1994; Townsend & Nozawa, 1995). However, there
are other tasks in which Inequality 3 is satisfied, and in these
tasks race models remain viable (e.g., Grice et al., 1984;
Grice & Reed, 1992; Meijers & Eijkman, 1977; Mordkoff &
Yantis, 1991).

This article presents a new class of tests for race models
that can sometimes reject them even when Inequality 3 Is
satisfied. In brief, we show that such models make predic-
tions about how mean RT should change when a brief
stimulus onset asynchrony (SOA) is introduced between
signals on redundant signals trials. Previous studies have
repeatedly demonstrated the value of SOA manipulations for
illucidating elementary cognitive operations (e.g., Hershenson,
1962; Miller, 1986; Neely, 1977; Vorberg, 1985); the present
article contributes to this trend by presenting a new way to
use this manipulation for testing race models. This new test
will not only strengthen the interpretation of SOA effects on
RT but might also provide a convenient theoretical reference
point for the development and comparison of alternative
model classes.

As far as we know, the first mathematical analysis of race
models for such a manipulation was provided by Heath
(1984). He derived the prediction of mean RT as a function
of SOA, when RT, and RT, are identically and exponen-
tially distributed random variables. He showed that maximal
RT facilitation occurs with synchronous signal onsets and
that this facilitation diminishes monotonically as the onsets
become more asynchronous.

In this paper we considerably extend this theoretical
analysis. First, we show that race models imply under fairly
general assumptions certain testable restrictions on the
slope of the RT-SOA function. Second, we demonstrate
with analysis and numerical examples that this new test
supplements the CDF test (3) of race models. That 1s, the
new test may allow race models to be rejected even though
the CDF test does not, and vice versa. Thus, the two tests
in combination provide a stricter diagnostic criteria for race
models than does either test by itself. Third, we pursue
a recent approach provided by Townsend and Nozawa
(1995) to explore how capacity allocation in a processing
system affects the properties of RT-SOA functions.
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MEAN RT AS A FUNCTION OF SOA: PREDICTIONS
OF RACE MODELS

Let S, be presented at time ¢, and S, at 1, =1, +d, where
d represents the SOA. Note d>0 means S, 1s presented d
msec before S, whereas d < 0 means S, is presented d msec
before S,. Let RT(d) be an observed reaction time at a
particular SOA, measured from the onset of the first signal,
that is, from t =min(7,, t,).

The theoretical analysis in this section proceeds from a
rather general version of the race model considered by Luce
(1986) and Ulrich and Giray (1986; see also Townsend &
Nozawa, 1995). According to this version, processing of S,
and S, is accomplished in parallel detection channels up to
a point in the processing system where each detection
channel transmits its output into a single response channel.
The detection times are T, and T, for S, and S, respec-
tively. Whichever detection channel finishes first activates
the processing of the response channel. Thus, the race
between detection channels finishes at the moment when the
response channel becomes activated. Let M, the residual
motor time, denote the processing duration of the response
channel. According to this general version, then, the
reaction time RT(d) for a given value of d 1s

min(T,, T,+d)+M if d>0

4
min(T,—d, T,)+ M if d<0 )

RT(d) ={

where T,, T, and M are random variables with arbitrary
distributions.

The new test requires the assumption of SOA independence,
which is formally stated in the following definition.

DermNiTIoN 1 (SOA Independence). Let G, (x, y|d)
=Pr{T,<xn T,< y|d} be the joint cumulative distribu-
tion function of T, and T, for a given value of d. Furthermore,
let E[ M | d] be the mean of motor time M for a given d. SOA
independence is present when the following requirements ()
and (ii) are met for all values of d:

(i) E[M|d]=E[M]
(i) Gy ylx yld)=Gy\lx, y).

Remarks on Definition 1. Part (i) of Definition 1 requires
that the mean of M does not vary with d. There is evidence
that this requirement is satisfied: The lateralized readiness
potential—a psychophysiological measure of motor activity
derived from the electroencephalogram—develops over the
same amount of time preceding responses to both single
and redundant signals (Mordkoff, Miller, & Roch, 1996,
Experiment 3). Note that neither the variance nor the higher
moments of M are required to be independent of d. Thus,
the requirement is not inconsistent with evidence that the
variance of M varies slightly with  (Diederich & Colonius,
1987).
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Part (i) only requires that the joint distribution G, , of
T, and T, does not depend on d. Note that T, and T, can
be dependent on each other and on M, and they can have
different distributions.

Definition 1 is similar to the definitions of “context inde-
pendence” and “perceptual separability,” given by Colonius
(1990) and Ashby and Townsend (1986), respectively, which
are required by the CDF test (3) (Luce, 1986, pp. 128-131).
Context independence is satisfied when the marginal dis-
tribution of RT, (or RT,) is identical for both S, (or S,)
and S,, trials. In contrast to Definition 1, this form of
context independence is violated when the distribution of M
varies with trial type. For instance, if the variance of M
is different with S, than with S,,, the CDF test would
be invalidated. For a thorough discussion of this form of
context independence the reader is referred to Colonius
(1990).

The following proposition forms the basis of this article.
It shows that under race models the slope of the RT-SOA
function is completely specified by the distribution of the
difference T, — T,

ProrosiTioN | (The Slope of the RT-SOA Function).
Given the race model specified by Eq. (4) and the assumption
that SOA independence (Definition 1) holds,? then the slope
of B[RT(d)], that is, its first derivative with respect to d,
Z(d) =0E[RT(d)]/od, depends on G, _,, the CDF of the
difference T, — T,. Specifically,

1—G,_{d) if d=0

—G,_(d) if d<O. )

Z(d)={

x=Yy

Proof.  We will only prove Proposition 1 for the case of
d>0; the proof for d <0 is analogous. The expectation of
RT(d) is given by

E[RT(d)] =E[min(T,, T, + d)]+E[M] (6)
and therefore the derivative with respect to dis
6E[RT(d)]_8E[min(Tx,Ty+d)] )

od od

We will first derive a formula for E[ min(7T,, T, + )], and
then obtain its derivative. The CDF of min(T, T, +d) is

Pr{min(T,, T, +d) <t}

(8)

2 Strictly speaking, this proposition also requires that densities Gy, G,
and G, , do exist.

=G (1) + G (1—d) =G, (1, 1—d)
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where G, denotes the bivariate CDF of T, and T,, G,and
G, being the marginal CDFs of T and T',. Because the min-
imum is a positive random variable, its expectation s

E[min(T,, T, +d)]

:Jw[l—-Pr{min(Tx, T,+d)<t}]dr 9)
0

=j°° [1=Gut)— G (t—d)+ G, (1, i—d)] di. (10)
0

(Because G(t—d)=0and G, (1,1 —d)=0 for t<d, it is
convenient to employ = 0 as the lower integration limit in
the line above and in the following lines.) Therefore, the
derivative of E[RT(d}] is

OE[RT(d)]
od
[P [1=Gln =Gt —d) + Gy (1, 1 =d)] i
- ad
(11)
e[ 3G,(t—d) 0G, (1 1—d)
_L[ P T }dr (12)

@{fa“’fégx,y(x,y)dxdy}] y

=j {gy(t"d)’i' (')d

0

(13)

where g, , is the joint density function of T,and T,,and g,
is the probability density function (PDF) of T,.

Using the Leibniz rule for differentiating an integral, this
reduces to

OE[RT(d)] _ @ ] ]
___5(.{,__1{0 fogx,y(x,t—d)dxdt (14)
i [P T, <inT,=i—dpd(19)
0
=1—jmpr{Tx<y+dnTy=y}¢v (16)
0
with a substitution of y = ¢ — d. Then we may write
Pr{T.<y+dnT,=y}
=Pr{T,<y+d|T,=y}-g(y) (D)
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and
@L%@—L 1 ~J:O Pr{T,<y+d|T,=y} &y dy
(18)
=1-Pr{T,<T,+d} (19)
=1-Pr{T,—T,<d} (20)
=1-G,_,(d) (21

This completes the proof.

Remarks on Proposition 1. Because G,_,(d) is non-
decreasing in d for d 20, it follows that the function Z(d)
decreases from 1—G,_,(0) to 1=G,_(0)=0. Hence
E[RT(d)] must increase in a negatively accelerated fashion
as d increases from 0 to oo, toward the asymptotic value of
E[T,]+E[M]. When d<0, E[RT(d)] increases analo-
gously as d decreases. Somewhat counterintuitively, this
also implies that E{RT(d)] has a V-shape, coming sharply
to a local minimum at d = 0, which we will call the V-property.

Proposition 1 provides a means of testing race models,
because it provides constraints on the slope of the function
relating E[RT(d)] to 4. In particular, because |1Z(d)| <1,
race models predict that a change in d of 4 msec should
produce a change in mean RT of at most 4 msec, so any
large change would justify rejection of such models.

[LLUSTRATIVE EXAMPLES OF PROPOSITION 1. We provide
two numerical examples to illustrate the properties of
Proposition 1. The first example assumes that the detection
times T, and T, are independently and exponentially
distributed with rates a and b, respectively. In this case the
mean RT is

L o
E[RT(C[)] =E[M]+ | I 1 (22)
'B‘F{m—g} i if d<0

with its first derivative (which is also identical to G, _ (d))
equal to

Z—i—b e™™ if d>0
Z(d)=

(23)

—L e it d <0,
a+b

Panels A and B of Fig. 1 provide a numerical example for
(22) and (23). First, as implied by Proposition 1, the mean
RT increases in negatively accelerated fashion with d for
d>0 and with decreasing d for d<0 illustrating the
V-property. Second, as predicted by Proposition 1, the

absolute value of slope Z(d) of the RT-SOA function is
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always less than 1. The second example assumes independ-
ent and normally distributed detection times.® As expected
on the basis of Proposition 1, an analogous result emerges
for this case (see panels D and E).

COROLLARIES OF PROPOSITION 1. Proposition 1 suggests
three corollaries that might be useful in testing race models.

CorROLLARY 1. If T, and T, are identically distributed,
then | Z(d)| <0.5.

Proof. According to Proposition 1, Z(0)=1— G,_,(0).
Now if T, and 7', are identically distributed, G, _ ,(0)=0.5,
and hence Z(0) =0.5. In addition, G, _ , must increase as d
increases, so Z(d)<0.5 for d>0. An analogous argument
establishes the result |Z(d)| <0.5 for d <0.

Remark. In an experiment with equally detectable targets,
this corollary provides a stricter test of race models than
Proposition 1, because in this case |Z(d)] <0.5. Thus, with
equally detectable signals race models predict that a change
in d of 4 msec should produce a change in mean RT of at
most 4/2 msec.

COROLLARY 2. For d>0 define the average U(d),

Z(d)+1Z(—d
U(d) =,_(___2___|__|_..£___).|w, (24)
2
Given the assumptions of Proposition 1, it Jollows that
0 Ud) <05, (25)

Proof. Inserting the results of Proposition 1 in Equation
24 gives

(26)

Since G,_ ,(d)=0 and G,_d)>G,_,(—d) for all d, it
follows immediately that U(d) <0.5.

Remark. This corollary also provides a stricter test of
race models than Proposition 1, because this test may even
be violated when |Z(d)| < 1. Regardless of whether signals
are equally detectable, the average RT obtained with signal
offsets of d msec, (E[RT(d)] + E[RT(—-4d)])/2, should be
at most E[RT(0)] + /2 msec.

EXAMPLES ( continued). Panels C and F of Fig. 1 show
values of U(d) computed by averaging values obtained at d

3 Mean RT cannot be expressed explicitly when T, and 7, are normally
distributed. However, because the CDF of T, — T, is known to be normal
with mean g, —u, and variance %+ o}, Proposition | can be used to
compute E[RT(d)] = C+ %, Z(x) dx, where the integration constant C
must be equal to E[RT(-)].
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FIG. 1. Two numerical examples of race models. The examples show E[RT(d)] (Panels A and D), Z(d) (Panels B and E), and U(d) (Panels C and
F) as a function of d. The left panels (A, B, and C) show the predictions of a race model in which the distributions of T and T, were assumed to be
exponential with parameters of « = 1/50 and b = 1/80 msec "', respectively, and E[ M] is assumed to be 150 msec. The right panels (D, E, and F) show
the predictions when T, and T, are normally distributed with parameters y, = 200, o = 50 and u, =230, o, =80 msec.
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and —d for the corresponding lines in Panel B and E,
respectively. It can be seen that 0< U(d)<0.5 and that

U(d) decreases strictly from 0.5 to 0.0.
CoroLLARY 3. U(0)=0.5.

Proof.

Remark. Given the assumptions of Proposition 1, then
the function U(d) must always begin with 0.5 at d =0.

CoroOLLARY 4. U(d) is a decreasing function of d for

d>0.
Proof.
U(d):l—Gx_y(d);Gxﬁy( d) (28)
=1—[Gx— (d)'_Gx—y(—d)] (29)
2
zl—Pr{~d<2Tx~Ty<d}‘ 0)

Note that Pr{ —d < T, — T, < d} must increase with d. This
completes the proof.

COMPARISON WITH THE RACE MODEL INEQUALITY

For practical purposes, it is of interest to see how the new
SOA-based tests proposed here differ from the test based on
CDFs (Inequality 3). Are there cases where one will reject
race models and the other will not, or are they somehow
logically (though not necessarily statistically) equivalent
tests? Although we have not yet been able to characterize
completely the relevant model space, we will present here
three examples illustrating cases where one test would reject
race models but the other would not. Together, these exam-
ples constitute a demonstration that, in this case, two tests
really are better than one. (Table 1 provides a summary of
these models.)

Triggered-Moment Models

Assume that the first signal that arrives at =0 triggers a
moment, or time quantum, of duration Q (e.g., Baron, 1971;
Efron, 1967; Sternberg & Knoll, 1973). A central processor
registers any sensory input arriving during this moment,
and it can only initiate a response when Q finishes. The
speed of all succeeding processes increases with the amount
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of sensory input (and hence, the number of signals) arriving
during this moment.

To apply this basic idea to the redundant signals effect,
we assume that RT is the sum of Q and T}, ie {f, s}. The
random variable T; encompasses the duration of all pro-
cesses after the central processor has initiated the response.
Specifically, T, is the duration when two signals arrive
within the moment Q, whereas 7, is the duration when only
one signal arrives during this moment.* Within this frame-
work, it seems reasonable to assume that E[ T,]—E[T/]
= | msec.

For this model the mean RT for d>01is

E[RT(d)]=E[Q+T/| Q0 >d]-Pr{Q>d}

+E[Q+T,|0<d]-Pr{g<d}  (31)
=E[Q]1+E[T,]-[1-Pr{Q<d}]
+E[T,]-Pr{Q<d} (32)

—E[Q]+E[T/)+E[T,~ T]-Fo(d). (33)

where Fy(d) denotes the CDF of Q. Therefore, the first
derivative of E[RT(d)] is

Z(d)=E[T,—T/]-fold), (34)
where f,(d) is the PDF of Q. (For d <0 replace d by —d in
Egs. (33) and (34)). Assuming that the variance of Q is
relatively small, it is possible that f,(d) is larger than one
when d is equal to the mode of Q or at neighboring values
near the mode. According to (34), f,(d)> 1 implies Z(d)
> 1, s0 Proposition | would be violated in this case.

The preceding analysis of the triggered-moment model
shows that the slope of the RT-SOA function is basically
determined by the PDF f, of the time quantum Q. Inter-
estingly, however, the model holds that violations of the
CDF test are influenced by the CDFs G, and G,of T, and
T, respectively. In the following we will show this property.

First note that according to this model the RT to S, is
RT,=Q+7T,,the RTto S,is RT,= O+ T,, and the RT to
S,,is RT,, = Q0+ T,. Second, note that the CDF test is not
violated if

F () SF(1)+F,(1)

(35)
holds for all #>0. If we assume that Q, T,, and T, are
stochastically independent, then F,, is the convolution of
Gy and G, that is, F,,=G,* G, Likewise, F, and F,
are the convolution of G, and G, that is, F, =Gy G,

4 To simplify the math, we assume there are only two states fand s. [n
a more realistic yet less mathematically tractable version of this model, T
and T could depend on the amount of accumulated sensory input during
the period Q.
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TABLE 1
Model’s Predictions for the CDF and SOA Tests

Model

Brief Description

CDF Test SOA Test

Race models
Triggered-moment models

Faster of two racers determines RT

Faster of two racers triggers a moment of duration Q. Sensory input

Always passed
May be violated

Always passed
May be violated

arriving during this moment is accumulated. A response is initiated
at the end of this moment, and response speed increases with the

amount of accumulated sensory input.
Distinct-signals models

redundant-signals trials
Superposition model

criterion of ¢ > 1 pulses is reached.

Limited capacity models

(exponential detection times)

Super capacity models
(exponential detection times)

Similar to race models but additionally assumes a redundant racer in
Each stimulus starts a Poisson process. Detection occurs when a
Fixed amount of central capacity is shared between channels

Double stimulation increases the amount of central capacity

May be violated Always violated

Always violated Always passed
Always passed Always violated

Always violated Always violated

and F,=Gg* G,. Therefore, we may rewrite the former
inequality as

Go# GA1)<2-Gg G1) (36)

J.;Gf(t')-gQ(t——t’)dt'<2-L:GS(Z’)-gQ(z‘—z")dt’ (37)

Lj[z LGt~ G ]-golt—1)df >0, (38)

It can be seen that the latter inequality will be satisfied if the
relation

Gy(1)=0.5-Gf{1) (39)
holds between G, and G, for all values of £ >0.

To summarize, according to the triggered-moment model,
the slope of the RT-SOA function is determined by fp. There-
fore, whether or not this model will violate the SOA test is
determined by the shape of f,. If fo(d)>1, then under
regular conditions (E[ T,— T,] > 1) the SOA test will be
violated. However, f, does not affect the outcome of the
CDF test. This outcome is influenced by the distributions of
T, and T. Specifically, if (39) holds then the triggered-
moment model will pass the CDF test (although it is not a
race model by definition).

Figure 2 provides a numerical example of the triggered-
moment model to illustrate these conclusions. For this
example, we assumed that O, T, and T, follow normal
distributions with means of 20, 230, and 250 msec and
standard deviations of 5, 15, and 31 msec. For these para-
meter values, the model is consistent with Inequality 3 but
violates Proposition 1 in two ways. First, the slope Z(d) 1s
equal to 1.6 at d=20. (Note that the mean RT increases
by almost 20 msec as the SOA increases from d=14 to
26 msec.) Second, the model predicts a positively accelerated

480/41/4-5

function relating mean RT to SOA, which is inconsistent
with the V-property implied by Proposition 1.

Distinct-Signals Models

As a second illustration, we consider a model that is
psychologically more plausible but mathematically less
tractable. This model always violates the SOA test but
violates the CDF test only under certain conditions. Specifi-
cally, this is a version of the distinct-signals model
supported by the findings of Miller (1991). According to
this model, three distinct channels may initiate a response.
One corresponds to S, one corresponds to S,, and one
corresponds to S,,, the combination of both signals. The
racers of S, and S, start as soon as their respective signals
come on. The redundant racer starts ¢ milliseconds after
both signals are present, however, because the nervous
system takes extra time to form a conjunction of the two
signals. Let T,, T,, and T, denote the processing times
associated with each racer, then the distinct-signals model
stipulates for d> 0

RT(d) =min( Ty, T, +d, T, +d+0) + M. (40)

To obtain mathematically tractable expressions, it is convenient
to assume that T,, T,, and T, represent stochastically
independent and exponéntially distributed random variables
with rates a, b, and c and CDFs F,, F,, and F. Furthermore,
without loss of generality, we will ignore M. Under these
assumptions the CDF of RT(d) for a given d > 0 is computed
via

ny(tld)=l—[1—Fx(t)][1——Fy(t—d)]

< [1=Ft—d—0)] (41)
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FIG. 2. A numerical example of the triggered-moment models. Panels
A, B, and C show E[RT(d)], Z(d), and U(d) as functions ol d. The
variables Q. T,, and T, were assumed to be normally distributed with
means 20, 230, and 250 msec and with standard deviations 5, 15, and
31 msec.
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as
l—e if r<d
Fxp(t|d)={1—e a4 if d<t<d+d
1_e7ul~/7(!«—z[)~(1t—d—d) if 1>d+(5.

(42)

The mean of RT(d) can be obtained from (42) by noting
that

E[RT(@)]=] [1-Fytldld ()
0
which yields, after integration and simplification,
I_e—ad l_e—(n+b)<5 o
E[RT(d)] = p + Py
e—(a+!1)¢)‘—a(l
_ 44
* a+b+c (44)

For d < 0 the rates « and b have to be interchanged, and d
must be replaced by —d. Figure 3 illustrates (44) and
documents that RT(d) decreases when & decreases or when
¢ Increases.

From (44) one obtains the slope of the RT-SOA function
as

lje—zzll(a+b+c)+[lce—(¢1+ly)(5~(l(l

(a+b)a+b+c) )

Z(d) =

From this result we finally arrive at the average absolute
slope at d=0
e —{a+b) (‘)‘i\ )

It is easily seen from (46) that U(0) > 0.5 must hold for ¢>0
and & < co. Therefore, the distinct-signals model will always
violate the SOA test. It will not necessarily violate the CDF
test, however, as we show next.

Note that the CDFs of RT, and RT, correspond to F.()
=1—exp[ —at] and F(t)=1-exp[ —bt], respectively.
Furthermore, it follows from (42) that the CDF for RT,, in
a redundant signal trial with d=01s

(46)

1
0)==x-11
U.( ) 2 [ +a+b+c

1 —elathr if 0<1<o

EV"(”d:O):{ —la+b+art+ed if 1565, ( )

l—e

The CDF test is passed if and only if F(#)+F.(1)2
F.(r]d=0) holds for all t>=0. First, consider the case
0 <1<, in which the CDF test can be written as
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FIG. 3. A numerical example of the distinct-signals model. The figure shows E[RT(d)] as a function of d. All three curves were computed with rates
a and b of 1250 msec ' and 1/200 msec !, respectively. The following parameter combinations (¢, §) were used for the various curves: (17300, 80),

(150, 80), and (150, 40).

l—e @ 4l—g Mzl —etath (48)
1—e“"~e"”+e‘(”+"”20 (49)
(1—e=)-(1—e"")20 (50)

and, therefore, will always be satisfied for all te[0,4].
Second, consider the case ¢ > d, for which the CDF test will
be satisfied if and only if the following inequality holds:

—e —(u+b+c) 1+('(5.

l—e “+l—e"21 (51)
Unfortunately, (51) provides no explicit solution for the
exact conditions under which the CDF test is satisfied.
However, it is obvious that (51) can be violated for some
values of 13>0, when ¢ is relatively large or when d s
relatively small.

This point is illustrated in Fig. 4. Each panel in this figure
depicts the two functions S(#) = F.(1) + F)( Hand F,(t|d=0).
For all panels the rates a and b are 1/150 msec ™! and
1/200 msec ~', respectively. In Panel A the values of ¢ and d
were chosen such that (51) is satisfied, that is, ¢ = 1/1 00 msec ™"
and & = 50 msec. In Panel B the rate ¢ was increased from
1/100 to 1/50 msec ™', whereas in Panel C the delay 6 was
decreased from 50 to 25 msec. As can be seen in Panels B
and C, both changes lead to a violation of the CDF test.

In sum, the distinct-signals model always violates the
SOA test, but only violates the CDF test with certain

combinations of parameters. The above analysis shows that

the CDF test is violated when the processing speed in the
redundant channel is relatively fast or when the nervous
system establishes the conjunction relatively quickly. Hence,
the SOA test is always able to distinguish between the
distinct-signals model and standard race models defined by
(4), but the CDF test is not.

Schwarz’s (1989) Superposition Model

Schwarz’s (1989) Poisson superposition model provides
an example of a model in which Inequality 3 is violated but
the new SOA-based test is not. According to this model,
each stimulus starts a Poisson pulse generation process, and
detection occurs when a criterion level of ¢ pulses s reached.

Schwarz (1989, Eq. (5)) derived the mean of RT as a
function of SOA for the superposition model, which is for
d >0 given by

‘ b
E[RT(d)] =%—a(a +b) e
“!a-dy

(c—i)+EB[M], (52)

X
Z‘O il
where rate « (b) denotes the rate of the Poisson process
associated with stimulus S, (S,) and ce {1,2,3, ...} is the
criterion count. (For d<0, d 18 replaced by —d, and the

rates ¢ and b are switched.)
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FIG. 4. A numerical example of the distinct-signals model. Each panel
shows the CDF F,(t|d=0) and the sum S(1)=F (1) + F,(1). The curves
in all three panels were computed with rates « and b of 1/150 msec ' and
1/200 msec ', respectively. Different parameter combinations (c, 8) were
used in the various panels. These combinations are (1/100, 50) for Panel A,
(1/50, 50) for B, and (1/100, 25) for C. Note that the CDF test is violated
in Panels B and C but not in A.
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FIG. 5. A numerical example of Schwarz’s (1989) superposition model,
using best-fitting parameter estimates provided by Schwarz (1989, Table 1).
Panels A, B, and C show E[RT(d)], Z(d), and U(d) as a function of .
Pulses ate generated by signal S, at rate ¢, = 1/20 and by signal S, at rate
a,=1/61, so they are generated at rate 1/61 4 1/20 msec ~! on redundant-
signals trials, These computations assume a criterion of ¢ = 3 pulses needed
to generate a response and a mean motor time of 165 msec.
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The upper panel of Fig. 5 shows an example for (52).
From this example it is clear that (a) the predicted mean RT
as a function of d is within the bounds derived from race
models, and (b) the model predicts a sharp local minimum
mean RT at d=0, just as race models do. However, as
shown by Townsend and Nozawa (1995, Proposition 7),
such superposition models generally imply a violation of the
CDF test. Thus, Schwarz’s superposition model provides an
instance of a non-race model which violates Inequality 3 but
not the new SOA test.

Although the Poisson superposition model is mathemati-
cally rather intractable, additional analysis clearly suggests
that it cannot violate the SOA test for any combination of
the parameters a, b, and ¢. This conclusion is suggested by
the predicted slope function, Z(d), d >0,

b
(a-f—b)ae
=17 ,igi—1
x[c.a%-z [a_z}’__] (a-d~—z')(c——i)] (53)

Al
i=1 i

—ad

Z(d)=

which is obtained by differentiation of (52) and simplifica-
tion. (For ¢ <0, the remarks from above apply again.) The
predicted slope function indicates that the steepest slopes
are

. b
= <
J dd=gio
lim |Z(d)| =——<1.0 (55)
Pl Ca4+bh T

In particular, this result shows that U(0) = 0.5 must hold for
all parameter combinations and is therefore consistent with
the SOA test (although Schwarz’s model is by definition a
non-race model, except for the case ¢c=1). In conclusion,
then, the Poisson superposition model can mimic the SOA
prediction of race models, although it can clearly be rejected
by the CDF test as shown by Townsend and Nozawa (1995).
The superposition model of Schwarz and its extension
(Diederich, 1995) are instances of the independent channel
summation model class defined by Townsend and Nozawa
(1995). Future theoretical effort is necessary to see whether
the conclusions obtained in this section for Schwarz’s model
can be generalized to the whole class of independent channel
summation models.

CAPACITY ALLOCATION

Townsend and Nozawa (1995) provided a general mathe-
matical framework to analyze the redundant-signals effect
using the concept of system capacity, which is commonly
invoked in cognitive models (e.g., Kahnemann, 1973; Norman

480/41/4-6
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& Bobrow, 1975; Navon & Gopher, 1979; Townsend &
Ashby, 1978). In brief, their approach was to relate the
amount of capacity available for processing redundant
signals to that available for processing single signals, under
the assumption that higher capacity leads to faster processing.
As elaborated below, they showed that different assumptions
about capacity lead to models that do or do not satisfy
Inequality 3, like race or coactivation models. In this section
we briefly review their approach; after that we utilize this
framework to assess how capacity affects the slope of the
RT-SOA function.

Townsend and Nozawa based the notion of capacity on
the so-called integrated hazard functions H,(¢), H (1), and
H,(1), which are associated with the random variables
T,,=min(T,,T,), Ty, and T,, respectively. Generally, the
hazard function of a random variable with PDF f{(r) and
CDF F(1) is

h(t)= ft)/[1 = F(1)] (56)
and can be conceived of as its conditional density function.
The hazard function often provides revealing information
about the corresponding f{) of a random variable, although
the two functions are mathematically equivalent, because

() completely determines /(¢) and vice versa (cf. Luce,

1986, pp. 13-20; Townsend & Ashby, 1983, p. 26). The relation
between both functions is

F(t)=1—¢~ 0, (57)
where H(t) is the integrated hazard function
H(z):j ay. (58)
0

Function H(1) can be conceptualized as the energy, that is,
the work done by a processing channel within the interval
[0, 1] (see Townsend & Ashby, 1983, Chap. 4; Townsend &
Nozawa, 1995, p. 332).

As suggested by Townsend and Nozawa, independent
race models provide a convenient reference point for develop-
ing the notion of capacity. As shown by the authors, race
models imply the following simple expression H, (1) =
H,(t)+ H,(t), which led the authors to the generalization

H,(1)=C(1)-[H (1) + H(1)], (59)
where C(t) is the capacity coefficient representing the pro-
cessing efficiency in redundant-signals trials. Specifically,
unlimited capacity models may be conceived as C(r) =1,
limited capacity models as C(z)< 1, and super capacity
models as C(7) > 1. In an unlimited capacity system the pro-
cessing efficiency of one channel is not reduced if another
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channel begins its processing. In a limited capacity system,
however, the efficiency of one channel would decrease if
a second channel starts processing. In a super capacity
system, the two channels may exert a mutual facilitation on
each other such that processing efficiency in one channel
actually increases when the second channel becomes active.
For example, Townsend and Nozawa (1995) have shown
that if a system is super capacity at all values of 7, then the
CDF test must be violated for some values of ¢. Thus,
coactivation models (e.g., Schwarz, 1989) can be viewed as
super capacity models within this framework.

Within the framework of capacity models, the question 1s,
how does capacity affect the slope of the RT-SOA function?
More specifically, which of the models (i.e., limited capacity,
unlimited capacity, or super capacity) will violate the proposed
SOA-test? The remainder of this section is devoted to an
analysis of this issue.

Let F,,(1|d) be the CDF of the detection time T,,(d)
in redundant-signals trials when signal S, precedes signal
S, by d milliseconds. Furthermore, let H,,(7|d) be the
integrated hazard function associated with T', (1 | ). Before
we proceed with our analysis, it has to be clarified how
H_(t|d) can be related to H,(7) and H,(¢) in the case of
asynchronous signals. (We consider the analysis for d>0
only. For d <0, one just needs to reverse the subscripts x
and y in the following analysis.) One obvious way to extend
the above capacity definition to this case emanates from the
hazard functions /() and (). Note that if S, is delayed
by d milliseconds relative to S,, function /(1) would merely
be shifted by ¢ milliseconds to the right along the time axis
for independent race models, yielding (¢ |d) = H,(1)+
H,(t—d) with H,(t—d) with H,(t—d)=0 for  <d. Note
that this expression can be rewritten as

Ho(1]d) =HJd)+ [H )~ Hd) + Ht—d)],  (60)
where the term in the brackets indicates the growth of
H,,(t|d), when both signals are present. In accordance
with Townsend and Nozawa, the preceding equation may
be generalized to

Ht) i t<d
ny(t|d)= Hx(d)+cd(t)[Hx(t)—Hx(d)+Hy(l_d)]
if t>d

(61)

for all values of d>0. H,(d) represents the work done
before the onset of the second signal. The function C,(t)
measures the capacity at all values of time > d and has the
same logical status as the capacity coefficient C(t) provided
by Townsend and Nozawa, although in the most general
case the function C,(¢) may be assumed to vary with d. It
can also be seen that (61 ) implies these authors’ definition of
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capacity for d=0. As a matter of principle, the mean of
T,(d) could be computed via (61) and by noting that

ELT,(]=[ [I=Foltldld (8

= [T ey (63)
0

The generality of (61) hampers mathematical tractability.
Therefore, we will employ two simplifying assumptions.
First, we will assume a fixed capacity model, that is, C(1)=¢
does not vary with time ¢ (cf. Townsend & Ashby, 1978).
Second, we assume that T, and T, follow an exponential
distribution with rates @ and b, respectively. With these
additional assumptions the following theorem applies.

PROPOSITION 2. Assume that (i) T, and T, are exponen-
tially distributed with rates a and b, respectively, and (ii)
Cy(1)=c (fixed capacity assumption). Under both assump-
tions the mean of RT(d) =M + T,,(d) is

| | 1 4
—_ —_—— —a 1 >
a+[(a-|—b)c a}e i d=0

E[RT(d)] =E[M]+

Tt N
b+[(a+b)c b}e i d<0.
(64)

Proof. Proposition 2 will be proved for d>0, as the
proof for d <0 is analogous. Since T, and T, are exponen-
tially distributed, the integrated hazard functions are H (1)
=at and H (1) =0bt, respectively. Therefore (61) can be
written as

at if 1<d

ad+c-[at—ad+b(t—d)] if t>d. (63)

Holt] )=
With (63), the mean of T, is computed as

d ®
E[T,,(d)] =.[0 o—at dH_L o~ {ad+clat—ad +b(1—d)1} gt

(66)
d 0
:J p—al dt+e—ad+c(a+b)d.j p—cla+b) gy
0 d
(67)

Integration and simplifying yields the desired result. This
completes the proof.

Figure 6 illustrates (64) for various values of ¢. It can be
seen that the amount of RT facilitation increases with c. As
one might expect for ¢=0.5 (limited capacity), there is no
facilitation in redundant-target trials.
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FIG. 6. Numerical examples for the capacity model. Mean RT as a function of SOA. Note that ¢ =0.5 represents limited capacity, ¢ = | represents

unlimited capacity, and ¢ = 2.0 represents super capacity. In all examples a =

It seems instructive to consider the predicted slope of the
RT-SOA functions d = 0. Differentiation of (64) yields

} e if d20

(68)

R
Zd) = éa—}-b)c

—1} e if d<0

{(a%—b)d

and therefore the slopes at 4 = 0 of the RT-SOA function for
synchronous signals is

lim Z(d)= b —1 (70)
(/_1.%1_ —(a-i—b) c '

From this result the following corollary emerges.

1/50, b=1/80 msec "', and E[ M] = 150 msec.

COROLLARY 5. Given the assumption stated in Proposition
2, the average absolute slope U(d) at d=01is

U0y =1-—

2¢ ()

Proof. Proceeding from the definition of U(d) given in
Corollary 1, we can write

lim, o, Z(d)+ limg_ o, Z(d)]

U0)= 3 (72)
a b
] e
_ (Cl+b)c > ((l+b)c ' (73)

Simplifying completes the proof.

From this corollary the following conclusion emerges:
First, for the unlimited capacity models and in agreement
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with Corollary 2 the predicted average absolute slope at
d=0 U(0)=0.5. Second, for limited capacity models we
have U(0) < 0.5 and for super capacity models U(0)> 0.5.
Thus the latter two classes imply violations of Corollary 2.
These violations might be used to discriminate between model
classes, at least under the present simplifying assumptions.
Clearly, considerably more theoretical work on this topic is
called for to assess the generality of this conclusion.

CONCLUSIONS

The purpose of this paper was to provide a new test for
race models which focuses on the change of mean reaction
time as the interval between two redundant targets changes.
We have shown by example that this test can supplement
the race model inequality; that is, the new test can rule out
race models in situations where the race model inequality
does not indicate a violation. On the other hand, the
new test does not completely supercede the race model
inequality, for there may be situations in which race models
will be rejected via the inequality but not via the new test
(e.g., Schwarz, 1989).

The main properties of the new test may be summarized
as follows. First, the increase in mean RT as a function of
SOA should never exceed a slope of one, i.e., Z(d) < 1.Inan
experiment with equally detectable targets, an even stricter
bound applies, ie., Z(d)<05. Second, a stronger slope
prediction is established if positive and negative SOA values
are available. In this case, the average absolute slope
[Z(d)+|Z(—d)|]/2 must be smaller than 0.5. Third, this
average must always be 0.5 at d=0. Fourth, the slope
for d>0 is strictly decreasing with increasing  and,
analogously for d <0, strictly increasing as d decreases. This
implies that the SOA function should have the shape of a V.
In addition, this V-property requires that the minimum
mean RT must always be located at d=0.

It is difficult to provide a general formal framework for
the model class with which the SOA test is more sensitive
than the CDF test. However, from the various non-race
models that were analyzed in this article, the following
tentative picture emerges:

(a) Both limited capacity and supercapacity models
(Townsend & Nozawa, 1995) generally produce violations
of the SOA test. Limited capacity models produce less
increase in mean RT with increasing SOA than is predicted
by standard race models, and supercapacity models predict
more. Supercapacity models but not limited capacity models
will also produce violations of the CDF test (see Townsend
& Nozawa, 1995, p. 334), so the SOA test is particularly
useful at detecting limited capacity processing,

(b) The triggered-moment and distinct-signals models
suggest that the SOA test is also violated when the coactive
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effect of both channels needs some time to develop after
both signals have been registered by the nervous system.
In this case the relatively fast responses may appear to be
produced in accordance with the race model. However, as
time goes on a coactive affect or supercapacity builds up, so
the relatively slow responses will be faster than the race
model would predict. This buildup might be too late to have
a strong effect on the left tail of F,,, in which case the CDF
test would not tend to be violated. The buildup would
nevertheless profoundly affect the right tail of F,,. Conse-
quently, the mean RT in a redundant-signals trial would
receive much more facilitation than predicted by the
standard race model and hence the SOA test would be
violated, despite the lack of violation of the CDF test. In any
case, although it is difficult to provide a general framework
of the models that violate the SOA but not the CDF test, it
is clear that the SOA test provides an additional tool for
discriminating not only non-race models from the standard
race model but also between various classes of non-race
models.

The new test is based on rather general assumptions. Like
the race model inequality, the new test does not require that
the detection times are uncorrelated random variables, nor
does it require particular distributional assumptions about
the detection times. In addition, the new test does not require
distributional assumptions about the motor time. In contrast
to the race model inequality, the diagnostic power of the
new test is not affected by the variance contribution of the
motor time (Ulrich & Giray, 1986).

The new test is based on the assumption of SOA inde-
pendence which bears a strong similarity to the commonly
made assumption of context independence for the CDF test
(Colonius, 1990). SOA independence holds that neither E[ M ]
nor the joint distribution function of 7', and 7', depends on
d. For example, both SOA and context independence would
be violated if the mean of M were larger in single than in
redundant-signals trials. Unfortunately, it seems extremely
difficult to develop a test of race models without invoking
this assumption. Nevertheless, even if the validity of this
assumption is questioned, both the race model inequality
and the new SOA test seem to be helpful tools in directing
experimentation and data analysis to further enhance the
interpretation of the redundant-signals effect.

It is difficult to apply the SOA test to previously reported
RT data, because previous studies have used SOAs that
were too large to provide a sensitive test of whether or not
the average slope at the origin (d=0) differs from 0.5
(Diederich & Colonius, 1987; Giray & Ulrich, 1993; Miller,
1986; Schwarz, 1996). As far as we know, the only study
with small changes in SOA is that of Diederich and Colonius
(1987), who conducted a bimodal detection task with SOAs
from 0 to 80 msec in steps of 10 msec. Unfortunately, only
positive SOA values were used in this study. Nevertheless,
the increase in mean RT when SOA was increased from 0 to
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10 msec was almost 10 msec for all three subjects, suggest-
ing a potential violation of the SOA test for the absolute
average slope at d = 0. Future experimental studies should
incorporate especially small SOA values (both positive and
negative ones), particularly when the outcome of CDF test
is negative, in order to use the SOA test to discriminate
between race and non-race models.
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