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Effects of Truncation on Reaction Time Analysis

Rolf Ulrich and Jeff Miller

Many reaction time (RT) researchers truncate their data sets, excluding as spurious all RTs falling
outside a prespecified range. Such truncation can introduce bias because extreme but valid RTs may
be excluded. This article examines biasing effects of truncation under various assumptions about
the underlying distributions of valid and spurious RTs. For the mean, median, standard deviation,
and skewness of RT, truncation bias is larger than some often-studied experimental effects.
Truncation can also seriously distort linear relations between RT and an independent variable,
additive RT patterns in factorial designs, and hazard functions, but it has little effect on statistical
power. The authors report a promising maximum likelihood procedure for estimating properties of
an untruncated distribution from a truncated sample and present in an appendix a set of procedures
to control for truncation biases when testing hypotheses.

Researchers who collect reaction times (RTs) usually ob-
tain a certain percentage of observations that are spurious in
the sense of being strongly influenced by processes other
than those that the experimenter intends to measure. For ex-
ample, a subject may occasionally anticipate the stimulus
rather than processing it; a physical device may falsely report
that a response was made; or a subject may be distracted from
the task by an incidental visual, auditory, or somatosensory
input or by an intrusion of task-irrelevant cognition (e.g.,
remembering a forgotten appointment). When spurious ob-
servations are extreme, of course, they can distort results
(e.g., mean RT) rather seriously unless they are dealt with (cf,
Barnett & Lewis, 1978).

In the course of data analysis, two basic strategies are
available to minimize the influence of spurious observations
on the outcome of an experiment, and these strategies are
often referred to as accommodation and identification
(Beckman & Cook, 1983, p. 123). The former strategy is to
use what is known in the statistical literature as a robust
estimator—a summary measure of RT that is relatively in-
sensitive to spurious RTs (cf. Stuart & Ord, 1987). For ex-
ample, some researchers use the median RT as a summary
measure of location, as the median is relatively uninfluenced
by spuriously fast or slow RTs. The latter strategy is to use
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an outlier elimination method to exclude spurious RTs from
the analysis. For example, one might truncate the data set to
some a priori cutoffs (e.g., excluding all RTs outside the
range of 200-2,000 ms). Alternatively, one might let the data
suggest which RTs were spurious, excluding all observations
greater than two or three standard deviations from a given
mean.

Even a cursory examination of the RT literature reveals
that different experimenters use different approaches to the
problem of spurious RTs. Consider, for example, the 1992
volume of the Journal of Experimental Psychology: Human
Perception and Performance, which contains 35 articles re-
porting studies of RT. A minority—13 articles—ignored the
possibility of spurious RTs, simply analyzing the mean of all
RTs (though often excluding errors);! in 5 articles, the me-
dian was used; and in 17 articles, an outlier detection pro-
cedure was used, rejecting from 0.3 to 6% of the RTs as
spurious. Of the latter 17 articles, 9 eliminated observations
using truncation (using eight different ranges of acceptable
RTs), 5 eliminated observations more than a criterion number
of standard deviations from the mean (four different criteria
and two different definitions of the mean were used), and 3
used other techniques.

It is striking that 35 arbitrarily selected studies used such
a variety of different computational procedures to obtain the
central tendency of the RTs collected from a given subject in
a given condition. One might naturally wonder why the ex-
perimenters used the method that they did, instead of one of
the other methods. More important, one might wonder
whether the results would have been different had one of the
other methods been used, and one could question how ex-
perimenters ought to minimize the disruptive effects of spu-
rious RTs.

The present article begins to address these questions Sys-
tematically, through a detailed examination of the effects of
truncating RT distributions. Our main goal is to describe the
biasing effects of truncation on different kinds of RT analy-

! The number 13 may be inflated, because we included in this
category all studies that did not explicitly describe some other
procedure for summarizing RT.
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ses. RT experiments are typically designed to test predictions
of explicit or implicit models, which have heretofore made
predictions about full rather than truncated distributions of
RT. Unfortunately, techniques for excluding outliers—
truncation included—usually exclude a certain percentage of
valid observations as well as spurious ones, because it is
rarely possible to discriminate perfectly between spurious
data points and valid but extreme observations. Indeed, most
current RT models describe RT distributions as having an
infinite tail in at least one direction, so it is theoretically quite
reasonable to expect that truncation would eliminate some
valid RTs in addition to some or all of the spurious ones. The
question, then, is to what extent results are biased when ex-
treme but valid RTs are excluded. Is the bias introduced by
truncation so small that it can safely be ignored, or is it
instead large enough to artifactually create or conceal dis-
crepancies between models and data?

Obviously, bias could be a serious problem in experiments
testing quantitative models, because it could perturb the data
values that the quantitative model was designed to fit. Per-
haps surprisingly, bias can also be devilish in experiments
testing for qualitative effects, such as an experiment designed
to find out whether a certain drug increases mean RT in a
given task. Even if the size of the effect is not an issue, only
its presence versus absence, there is the danger that bias may
differ across conditions. For example, eliminating observa-
tions more than a criterion number of standard deviations
from the mean introduces a bias that depends on both the
sample size and the skewness of the RT distribution, and
conditions differing in either one of these characteristics are
differentially biased (Miller, 1991). Bias that depends on
condition is extremely dangerous, even for qualitative com-
parisons, because it can artifactually produce or conceal dif-
ferences between conditions.

We had three main reasons for our choice to focus on the
truncation method. First, we wanted to examine one of the
outlier exclusion methods rather than one of the robust es-
timators (e.g., median). Existing RT models typically make
predictions about traditional summary statistics (e.g., mean
or variance of RT), because such predictions require the few-
est distributional assumptions (cf. Sternberg, 1969). Much
stronger assumptions are needed to make predictions about
robust estimators (e.g., that median RT should increase lin-
early across conditions), so these estimators are generally
only useful in making qualitative comparisons among con-
ditions, not for testing models. Moreover, no single robust
estimation method can be used for all the different RT analy-
ses in which a researcher might be interested, because one
needs a different robust estimator for each type of qualitative
comparison (e.g., central tendency or variability). After out-
lier exclusion, in contrast, it is possible to compute any de-
sired summary of the remaining observed RTs (e.g., mean or
variance), or even to examine their full probability distri-
bution. This generality is particularly important as RT models
become more sophisticated, because model tests may require
simultaneous examination of several summary measures, full
probability distributions of RT, or both (e.g., Meyer, Irwin,
Osman, & Kounios, 1988; Miller, 1982; Roberts & Stern-
berg, 1992). Second, truncation is relatively tractable math-
ematically, because it does not depend on the RTs in the

sample (as does, e.g., exclusion of values more than a cer-
tain number of standard deviations from the mean). Third,
and most important, informal examination of the literature
indicates that truncation is quite common; it is nearly the
standard procedure in some areas of RT research (cf.
Jensen, 1987, p. 110). Even if another method turns out to
be unequivocally superior, it will still be useful to under-
stand truncation effects to interpret the previous studies
that have used this method.

Although the present concerns may seem inappropriate
for an article in a psychological journal, the statistics lit-
erature has not adequately addressed these issues as they
apply to RT research. Statistical treatment of outliers may
be traced back to the beginning of the 18th century (cf.
Anscombe, 1960), but optimal, general techniques have
not been identified, at least partly because the concept of
an outlier is subjective and inherently somewhat ambigu-
ous (cf. Beckman & Cook, 1983). The statistical literature
contains many detailed comparisons of the dozens of alter-
native outlier exclusion methods that have been proposed
(e.g., Andrews et al, 1972; for reviews, see Barnett &
Lewis, 1984; Beckman & Cook, 1983; Hawkins, 1980;
Lovie, 1986; Rousseeuw & Leroy, 1987), but their applica-
bility to the RT domain is limited for two reasons. First, al-
most all the comparisons assume symmetric (i.e., normal)
underlying distributions (cf. Beckman & Cook, 1983), but
RT distributions are skewed (McCormack & Wright, 1964)
and skewness is known to modulate the effects of outlier
exclusion (e.g., Miller, 1988, 1991). These methods might
be useful if RTs could be transformed to achieve normality,
but the appropriate transformation is not known. There are
a few methods appropriate for nonnormal distributions, but
these require specific assumptions that are unlikely to be
met in RT research. Moreover, these methods often require
large sample sizes for effective use (Huber, 1981), and
large samples are often unavailable in RT research, given
that outlier rejection must be done separately for each sub-
ject and condition. Second, within the statistical literature,
the emphasis has been on finding the most effective proce-
dure for outlier exclusion, that is, the procedure that elimi-
nates the most spurious observations and retains the most
valid ones. For RT research, however, the question of bias
is surely even more important, because experimenters must
avoid statistical artifacts that create or conceal small yet
theoretically important differences. Indeed, the results of
Ratcliff (1979, pp. 456-458) suggest that such biasing ef-
fects may be quite substantial. He examined the effects of
truncating observed RT distributions on the estimates of
their higher moments. In these distributions, truncating at
5 s eliminated about 1% of the RTs, whereas truncating at
2 s eliminated 4%. The means were about 20-50 ms
smaller with the 2-s truncation cutoff than with the 5-s cut-
off, variances were about half, and the third and fourth
moments were approximately an order of magnitude
smaller. Thus, his study indicated that truncation can have
a large impact on RT analyses. One of our goals in the
present article, then, is to pursue Ratcliff’s observations
in a more theoretical fashion and a somewhat broader
framework. cl
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Data Analysis Under Truncation, Contamination,
or Both

To evaluate truncation effects, we consider three distinct
Scenarios for data analysis. In the first, called Truncation, No
Contamination, truncation eliminates all spurious RTs, so no
spurious observations contaminate the analysis. However,
truncation also eliminates some valid RTs because of the long
tails on RT distributions. Under this scenario, then, the issue
is whether the exclusion of some valid RTs introduces sub-
stantial biases into the results, and, if so, what those biases
are. This scenario merits examination because (a) the re-
searcher may succeed in eliminating all spurious RTs by trun-
cation or (b) there may be no spurious RTs in the first place.
Of course, researchers would not truncate if they knew there
were no spurious RTs, but they could never be certain of this
in practice and might therefore truncate “to be safe” or in
imitation of common practice. Our analyses indicate that
substantial biases can arise under this scenario.

In a second scenario, called Truncation Plus Contamina-
tion, truncation not only eliminates some valid RTs but also
fails to eliminate some spurious ones, which therefore con-
taminate the analysis. This scenario is generally more real-
istic than the first, because not all spurious RTs necessarily
have sufficiently extreme values to be truncated. Unfortu-
nately, it is also more complicated than the first, because
effects of contamination must be considered in addition to
those of truncation. An optimist might hope that the con-
taminating RTs would roughly compensate for the valid RTs
that are eliminated, leaving approximately unbiased results.
Unfortunately, our results suggest that this view is far too
optimistic in most cases.

Finally, for comparison purposes, we considered a baseline
scenario, called No Truncation, Contamination, in which nei-
ther truncation nor any other form of outlier exclusion is
used. This scenario should be evaluated formally, because it
seems clear that truncation should not be used if it produces
more bias than the spurious RTs it is intended to eliminate.
Perhaps surprisingly, we find that this option is sometimes
best (i.e., the treatment of truncation is worse than the disease
of spurious observations).

‘Two other logically possible scenarios were not examined.
One is the scenario of perfect truncation, which eliminates
all spurious RTs and retains all valid ones. Because this pro-
cedure is clearly superior to any of the others and unattain-
able in practice, there is no need to consider it formally. The
second is that in which truncation retains all valid RTs but
fails to eliminate some spurious ones. As noted above, most
current RT models predict that RT distributions have an in-
finite tail in at least one direction, at Jeast theoretically, so this
scenario is impossible to analyze with current RT models,

Overview of the Article

The remainder of this article is organized as follows. The
next section presents the basic definitions and formulas used
in our analyses of the three scenarios just outlined. The basic
ideas of this section are well-known in the statistical litera-
ture, and derivations of the formulas may be found in stand-
ard texts such as Everitt and Hand (1981), Mood, Graybill,

and Boes (1974), and Parzen (1962). We make no attempt to
present the most general versions of the definitions and for-
mulas but instead give versions specifically tailored to the
analyses conducted here.

After the formulas have been presented, the next section
(Bias Effects of Truncation on Mean, Median, Standard De-
viation, and Skewness) investigates the biasing effects of
truncation on the four indicated summary measures of RT
distributions. The following section (Effects of Truncation on
Tests of Models) examines effects on two specific and very
common types of model-based RT analyses. One subsection,
Effects of Truncation on Linear Increases in RT, deals with
effects on experiments investigating the relation between RT
and a quantitative independent variable (e.g., number of
items in a visual display or memory set and angle of rotation
from upright). These experiments often evaluate the fit of
linear functions relating RT to the independent variable, and
itis of interest to determine how predictions of linearity may
need to be modified when outliers are excluded. Similarly,
the other subsection Effects of Truncation on Additivity of
Factor Effects deals with effects in factorial experiments. In
many experiments, additivity or interaction of the factor ef-
fects is of critical theoretical importance, and so it is of in-
terest to see how truncation changes the predictions of mod-
els associated with these outcomes (cf. Townsend, 1992). In
subsequent sections, we also consider the effects of trunca-
tion on hazard functions and statistical power, and we ex-
amine the ability of a maximum likelihood estimation pro-
cedure to counteract the deleterious effects of truncation.

Many researchers may be more interested in the practical
implications of these analyses than in the analyses them-
selves. To assist these researchers, we present in Appendix
A a set of specific recommendations on how to analyze RT
when some truncation has occurred. These appear to us to be
the most appropriate heuristics available, given the results of
the analyses presented here.

Definitions, Notation, and Formulas

This section presents the basic formalisms underlying the
analyses presented in the remainder of the article. The defi-
nitions and notation are necessary to all readers, but the for-
mulas can be skipped by those who are only interested in
qualitative summaries of the results.

Table 1 summarizes the notation. The left-most column
shows the symbols for an observed RT and various properties
of its distribution: the probability density function (PDF), the
cumulative probability density function (CDF), the mean, the
variance, and the hazard function.? The symbols in the other
columns are described next. Throughout the text, we follow
the usual convention of using boldface letters (e.g., T,) to
denote random variables.

? The hazard function of a distribution is considered only in the
section How Does Truncation Distort Hazard Functions?, and
unfamiliarity with this function will not cause difficulty in under-
standing the other sections.
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Table 1
Symbols Used to Refer to Untruncated and Truncated Distributions of Observed RTs
and to the Underlying Distributions of Valid and Spurious RTs Making Up the

Observed RTs
RT distributions
Observable Underlying
Spuriously Spuriously
Symbol for Untruncated Truncated fast Valid slow
RT T, T T, T, T,
PDF fo(t) Fool2) 5(®) Si(t) J5(t)
CDF Fu(1) Fa(1) F(r) Fy(t) Fy(1)
Mean E[T,] E[T.,) E[T/] E[T,)] E[T,]
Variance Var [T,] Var [T«,]  Var [T,]  Var[T,] Var [T,]
Hazard function h, (1) hao(2) hAt) h(t) hy(t)
Mixture probability — —_— & I-g~gs g
Acceptance probability a, 1.0 ar a, ag

Note. Symbols are used without subscripts [e.g., f(2)] in general formulas that are true for each of
the distributions under consideration (e.g., Equations 1-6). For example, the symbol fin the main
text could refer to either f,, f, f,, or f,, whereas the symbol f, refers to one of their truncated versions
f f.» and f;. The other symbols without subscripts (e.g., a, F, and h) can be interpreted analogously.
RT = reaction time; PDF = probability density function; CDF = cumulative probability density
function.

Truncation, No Contamination With lower and upper truncation cutoffs of L and U, re-

spectively, the acceptance probability for a truncated density
Definitions are as follows: Using truncation, the re- 18

searcher chooses lower (L) and upper (U) cutoffs for RT and a=FU) — F(L) (1)

discards from the sample any observed RT that is less than

L or greater than U.? RTs between the cutoffs are referred to and the truncated density is given by

as accepted RTs, and the probability that an RT falls within

the cutoffs is referred to as the acceptance probability. £.(0) =@ @)
For example, the solid curve in the upper panel of Figure * a’

1 shows a probability distribution of observable RTs, and the

vertical lines indicate truncation cutoffs that a researcher ~ With cumulative form

might adopt. The dashed line shows the resulting probability F(t) - F(L)

distribution after truncation with those cutoffs, which in this F.() = —————

case eliminated the bottom 1.3% and the top 5% of the un-

truncated distribution. Clearly, truncation changes the RT

distribution, except when the entire distribution lies within

the truncation cutoffs, and may have various effects on its [Y ()t

mean, variance, and so forth, depending on the shape of the E[T,] = e C))

distribution and the placement of the cutoffs. In this example,

the mean and standard deviation of the untruncated distri-

bution are 622 and 201, respectively, whereas the corre-

sponding values for the truncated distribution are 593 and TV 2f(t)at

a

) 3)

mean

and variance

132. Var[T, ] — E[T, ]~ 5

We make use of several well-known formulas, shown be-
low, to compute properties of truncated distributions from
those of their untruncated counterparts. Subscripts are omit-
ted from the terms in the formulas [e.g., fz)], because the
formulas apply to all distributions (e.g., valid RTs and ob-
served RTs). To simplify the notation, we use an asterisk to
indicate all truncated distributions and their associated vari-  where F~! is the inverse of F (see Appendix B for proof).
ables, moments, densities, and so forth. For example, the
second column from the left in Table 1 illustrates the notation
for RTs from the truncated distribution of observable RTs. 3 Some RT researchers rerun truncated trials rather than simply
For brevity, the means, PDFs, and so forth of such distri-  throwing them away. This strategy, of course, does not eliminate
butions are referred to as truncated means, truncated PDFs, the statistical effects of outlier exclusion, but merely serves to
and so on. ensure the desired sample size in each condition. .

Finally, the median of T. is given by

F(L) + F(U)}

. ©

Med[T,] = F“‘[
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Figure 1. Anexample illustrating the effects of truncation and spurious observations. Upper panel:
A distribution of observable reaction times (RTs, solid curve) and the truncated version of that
distribution (dashed curve) obtained after truncation at the indicated cutoffs (vertical lines). Lower
panel: The left-most, middle, and right-most curves show the relative frequencies of spuriously fast,
valid, and spuriously slow RTs, respectively, contributing to the observable RT distribution (solid
line) in the upper panel.
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No Truncation, Contamination

As is standard within the statistical literature (e.g., An-
drews et al., 1972), we used a mixture model to study the
contaminating effects of spurious observations.

The definition of a mixture model is as follows: An ob-
servable RT distribution is a mixture distribution if the RTs
come from different underlying probability distributions on
different trials (cf. Luce, 1986; Meyer, Yantis, Osman, &
Smith, 1985; Yantis, Meyer, & Smith, 1991).

In this article, we consider observed RT distributions that
are mixtures of three underlying distributions: spuriously fast
RTs, valid RTs, and spuriously slow RTs, as shown in the
lower panel of Figure 1. The valid RTs come from trials on
which the subject was performing the task as intended, and
these RTs reflect the psychological processes under study.
The spuriously fast and slow RTs come from trials on which
the subject was not performing as intended, and was instead
doing something that led to a relatively fast or slow re-
sponse.* Notation for these three types of distributions is
given in the right side of Table 1. To express the fact that the
observable RTs are a mixture of the spuriously fast, valid, and
spuriously slow RTs, we write,

T, with probability I — g, — g,, 7

. T, with probability g
' T, with probability g,

which is more simply written as

T, = mix(T,, T,, T,). ®)

Each distribution underlying the observable mixture (i.e.,
spuriously fast, valid, and spuriously slow) has an associated
mixture probability, which is the probability that an observed
RT comes from that distribution. As indicated in Table I, the
mixture probabilities g5 (1 — g7 — g,), and g, associated with
these three underlying distributions must sum to 1.0, because
each observed RT must be one of the three types. In Figure
1, the mixture probability associated with each underlying
distribution is equal to the area under that distribution. As is
visually suggested by the figure, the observable mixture dis-
tribution is most strongly determined by the underlying dis-
tribution with the highest probability.

The mixture distribution of observable RTs is uniquely
determined by the three underlying distributions and their
associated mixture probabilities, and many properties of the
observable mixture distribution can be calculated directly.
For example, the ith raw moment of the observable mixture
distribution is given by

E[T] = goE[T] + (1 — g— g,) E[Ti] + g, E[T], (9

from which the mean and variance may be computed as

E[T,] = g E[T,] + (1 - g—g)E[T,] + g E[T] (10)

and
Var[T,] =
g E[T T + (1 — g — &) E[T,F + g E[TJ
— {gHT,]+ (1 - g - g)E[T] + g E[T,]?
+(1 - g — g)ValT,] + g Var[T;] + g Var[T,]. (11)

We also make use of the PDF and CDF of the observable
mixture distribution, given by the following formulas:

L) =g f(6) + (1 — g — g)f,(0) + g/, (12)
and

Truncation Plus Contamination

In principle, there is nothing conceptually special about the
case of truncated RT distributions contaminated with some
spurious observations. A truncated mixture distribution is the
same as a mixture of the truncated versions of its underlying
distributions, so one can either apply the formulas for trun-
cation to mixture distributions or apply the mixture formulas
to truncated versions of the underlying distributions, with
identical results. In practice, however, the formulas become
rather cumbersome, as shown next. We again use the asterisk
to indicate truncated versions of the distributions underlying
the mixture, so, for example, T., is an RT from the truncated
distribution of valid RTs.

With lower and upper truncation cutoffs of L and U, re-
spectively, the PDF of the observable mixture distribution of
RTs is

PP /Ol Ul Sl A ARk 2 U

gra;+ (1 — g — g,)a,+ g,a

(14)

for L =t = U, and zero elsewhere. The associated CDF is

g [F 0 - F/(L)] +(1-g-g)r

[F,() — FAL)] + g, [F,(t) — F/(L)]

F,, @) = .
gra;+ (1 - g —g)a,+g-a

15

Integrating the PDF, the ith raw moment (from which
mean, variance, and skewness may be computed) of the trun-
cated distribution of observable RTs is

g [V tfnds + (1 ~ g, — g,)°

; TUEf,(ndt + g, fY 1, (1t
g1 = —LL R0t g SO0
gra;+ (1 - g~ g)a,+g:a

(16)

4 Despite the fact that we consider only three underlying distri-
butions, our analyses do not require the assumption that all RTs
from a given underlying distribution are generated with the subject
in the same state, The underlying distribution of valid RTs may
itself be a mixture distribution, as has sometimes been assumed
(e.g., Luce, 1986; Meyer et al., 1985), and so may the underlying
distributions of spurious RTs. The practical implication of this'is
that, whenever our analyses do not assume specific shapes for the
underlying distributions, the conclusions are valid even if there are
multiple types of spuriously fast, valid, and spuriously slow RTs.
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Bias Effects of Truncation on Mean, Median,
Standard Deviation, and Skewness

In this section we consider how four common summary
measures of RT distributions are influenced by truncation.
Initially, we investigate the behavior of these summary mea-
sures under the scenario of Truncation, No Contamination to
see how model predictions change when valid but extreme
RTs are eliminated. Subsequently, we consider the more re-
alistic scenario in which some spurious RTs remain after
truncation (i.e., Truncation Plus Contamination).

Itis clear on intuitive grounds that truncation can influence
summary measures of a distribution. For example, if one
eliminates responses slower than a certain cutoff, the mean
or median of the truncated distribution will certainly be
smaller than the mean or median of the original (untruncated)
distribution, although the change in the median will generally
be smaller than that in the mean. Similarly, the standard de-
viation of a distribution decreases when observations from
either one or both tails are excluded, and skewness also de-
creases under these conditions, at least if approximately
equal proportions of observations are excluded from each
end of the distribution.

Although the directions of these biases are easily under-
stood, the sizes are not intuitively clear. Because researchers
derive predictions of RT models from assumptions about
untruncated RT distributions (e.g., Luce, 1986; Townsend &
Ashby, 1983), it is important to ascertain the size of the ef-
fects of truncation on the various summary measures. Ba-
sically, the issue is whether truncation biases are so small that
they can safely be ignored, or so large that they must be
considered when deriving and testing predictions of RT mod-
els.

Unfortunately, it is impossible to say exactly how large
truncation effects are in general, because these effects depend
on the exact circumstances. Obviously, the effect of trunca-
tion on a given parameter must depend a great deal on the
shape of the RT distribution and on the percentage of ob-
servations truncated from each tail of the distribution. The
goal of this section, therefore, is to sharpen our intuitions by
investigating the size of truncation effects in a range of plau-
sible cases.

We examine the effects of truncation on three underlying
RT distributions: the special Erlangian, the lognormal, and
the ex-Gaussian. Like empirical RT distributions, these dis-
tributions are all skewed, with long tails extending into the
range of slower responses, and all have been found to give
particularly good fits to empirical RT distributions (Heath-
cote, Popiel, & Mewhort, 1991; Hockley, 1984; Hohle, 1965;
Luce, 1986; Ratcliff & Murdock, 1976; Woodworth &
Schlosberg, 1954).

The biases due to truncation can be evaluated by com-
paring the properties of the truncated distribution with those
of the untruncated distribution, It can be seen, however, that
the former (e.g., Equations 4, 5, and 6) are too general to
evaluate without specific distributional assumptions, so we
proceed to examine some particular cases. As the results
clearly depend on the truncation values L and U, we exam-
ined a range of such values.

The Special Erlangian Distribution

A suitable balance between mathematical tractability and
correspondence to observations is offered by the special Er-
langian distribution, a special case of the gamma distribution
in which the shape parameter m is restricted to integer values.
This distribution corresponds to the sum of m independent
random variables having a common exponential distribution.
The special Erlangian distribution is a popular tool in psy-
chology, having been used in modeling a variety of time-
dependent processes (e.g., Luce, 1986; McGill, 1963; McGill
& Gibbon, 1965; Ratcliff & Murdock, 1976; Townsend &
Ashby, 1983; Ulrich & Wing, 1991).

The PDF of the special Erlangian is given for ¢ > 0 by

)\e—/\r()\t)m—— 1

70 = =

(17)

where A is a positive real, m a positive integer, and ¢ denotes
the time.> The parameter A is only affected by the unit of time
and hence is called the scale parameter of the special Er-
langian. In contrast, the parameter m is unaffected by the unit
of time but controls the shape of the special Erlangian, so it
is called the shape parameter. With m = 1, the distribution
is simply an exponential, with a probability density that is
maximum at t = 0 and decreases monotonically as ¢ in-
creases. For m > 1, the distribution is somewhat bell-shaped,
with probability density first increasing then decreasing as
increases. For m = 2 the distribution is highly skewed, with
the mode and median equal to approximately 50% and 84%
of the mean, respectively. As m increases, the shape of the
special Erlangian distribution rapidly approaches that of the
normal distribution, with a mode and median of approxi-
mately 90% and 97% of the mean for m = 10. The mean and
variance are E[T] = (m/\) and Var[T] = (m/A2), respectively,
and the CDF is given by

m=1 r
Fiy=1- 3¢ r(!)"). (18)
r=0

When the untruncated distribution is a special Erlangian,
the expected raw moments of T, are easily calculated using
Proposition 1: If T follows a special Erlangian distribution
with parameters m and A, then the ith raw moment of T, is
given by

m+i-1 _GU) - G(L)
(m — 1)! FU) - F(L)’

B[] = ¢ 19

where L and U are the lower and upper truncation points,

% It may seem that the special Erlangian is a poor model for RTs,
even with m > 1, because the density is positive for all values of
t greater than 0. This problem is easily avoided by a generalization
of Equation 17, in which ¢ is replaced by t — ro, where ry > 0
represents an irreducible minimum RT; that is, the response can
never occur before r, units of time have elapsed. The consequences
of this generalization are trivial in most cases; the nontrivial cases
are considered further on.
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respectively. Function F is the CDF of a special Erlangian
with parameters A and m, and function G is the CDF of a
special Erlangian with scale parameter A and shape param-
eter (m + i). (Proof of Proposition 1 is given in Appendix
B.)

From Equation 19 one can easily compute central mo-
ments as needed. For example, the variance of T is

VarT,] = E[T]] - E[T,T" (20)

We defined skewness itself as

Skew[T,]= \/E[(T, — E[T, )’} @1)

Although this is not the most conventional measure of skew-
ness, it provides a skewness measurement with the same
units as the three other summary measures (i.e., mean, me-
dian, and standard deviation) that we consider.

Using Proposition 1, we investigated the influence of
truncation on special Erlangian distributions with m =
2, ..., 35. For computational purposes, the scale parameter
A was adjusted in such a way that the expected mean of T
was always equal to 150 ms, although, as described below,
the final results are independent of the value of the scale
parameter A.

For each value of the shape parameter m, the bias of the
mean, median, standard deviation, and skewness were com-
puted as a function of the percentages p and ¢ eliminated
from the lower and upper tails of f, respectively. These per-
centages were varied orthogonally from 0% to 16%. The
truncation cutoffs L and U corresponding to p and g, re-
spectively, were determined with a numerical search algo-
rithm using Equation 18. These cutoffs were then inserted
into Equation 19 to obtain the first, second, and third raw
moments, from which the first three central moments (mean,
variance, and skewness) of T, were computed. The median
of T. was computed on the basis of Equations 6 and 18.

To summarize the computations, we computed a measure
of the relative bias introduced by truncation for each sum-
mary measure (i.e., mean, median, standard deviation, skew-
ness) as a function of p and g. For example, the relative bias,
S, of the mean E[T,] was defined as

E[T,] — E[T]

B[] 100%.

b(p, q) = 22)

Note that a negative (positive) value of & indicates that the
parameter of T, underestimates (overestimates) the corre-
sponding parameter of T. The relative biases of the median,
standard deviation, and skewness were defined analogously.

The upper panels of Figures 2-5 summarize the results of
the bias computations, showing the relative bias of each sum-
mary measure as a function of p and ¢. The panels on the right
side of each figure show the results for m = 2 and the panels
on the left, m = 10. (Note that the ordinates of these four
figures have different scales.)

Mean. As expected, the mean of T, overestimates (un-
derestimates) the mean of T if the distribution fis truncated
from below (above). Underestimation is also obtained if fis
truncated from below and above to the same extent, p = g,

because of the skew in f, and this underestimation increases
with p. The underestimation diminishes as the shape param-
eter m increases, because f becomes more symmetrical. It is
important to note that even a small value of g can introduce
a meaningful bias; with m = 2, for example, a bias of —5.1%
is observed if the upper 2% of fis truncated (ie., p = 0%
and g = 2%). It is interesting to note that p and g exert nearly
additive effects on 6, as reflected in the near-parallel lines.

Median. In general, p and g affect the median less than
the mean, precisely because the median is less affected by
skewness in the first place. In general, p and ¢ produce nearly
linear and additive effects, and, as was true for the mean, the
bias of the median decreases as fbecomes more symmetrical.
Unlike the mean, truncating f by the same amount from be-
low and above introduces no bias at all into the median.

Standard deviation.  Asisintuitively evident, SD[T,] un-
derestimates the true standard deviation whenever truncation
is used. In general, bias is larger if fis truncated at its upper
tail than its lower tail, and even a small value of g produces
a meaningful bias. The effect of g on & is slightly stronger
for smaller than for larger values of m, whereas the reverse
is true for p.

Skewness. For m = 2, skewness is nearly unaffected if
fis truncated from below, but it is strongly affected if fis
truncated from above. Form = 10, the truncation percentages
p and g produce a bizarre interaction: The effect of g is much
larger when p is small than when p is large.

Irreducible minimum RT and relative bias. It should be
noted that, although the relative biases of the mean and me-
dian are independent of the units of measurement of RT, they
would change if a positive constant ry were added to the
random variable T. The constant , may be conceived as the
irreducible minimum RT (Woodworth & Schlosberg, 1954),
reflecting some relatively invariant sensory or motor time. A
rather conservative estimate of ry is 100 ms (cf. Luce, 1986,
p. 59-62). The constant 7, would increase the denominator
but not the numerator of Equation 22, thereby decreasing the
relative biases of both mean and median. In the above bias
computations, we assumed r, = 0, and hence the analyses
yielded the maximum possible relative biases of the mean
and median.

It is easy to use the above computations even when
ro > 0. For example, the relative 8(p, ¢) can be used to
compute the untruncated mean from the truncated mean by
rearranging the definition of Equation 22, namely

E[T,]

B = T, 00

23)

To correct for 7y > 0, Equation 23 should be rewritten as

E[T*] — T

BIT] =10+ 1550, 97100

24)

As relative biases of medians were also computed assuming
ro = 0, Equation 24 should also be used in that case, replacing
means with medians. Relative biases of standard deviations
and skewness were computed without this assumption, how-
ever, so a comparable adjustment is not needed and an equa-
tion analogous to Equation 23 can be used to correct these
summary measures. (The same consideration applies to the
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Figure 2. Relative bias of mean as a function of p (percentage of observations truncated from
lower tail of f) and g (percentage truncated from upper tail of f). Within each panel, each line
denotes a different value of p = 0, 2, 4, 6, 8, 10, 12, 14, 16, but only the most extreme values (i.e.,
p = 0% and p = 16%) are indicated because the effects of p are monotonic from p = 0 to p = 16,
ER = Erlangian distribution; LN = lognormal distribution; EG = ex-Gaussian distribution.
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Table 2
Constants A, B, C, and D for the Best Fitting Power Function Approximation 8 D, q) of Mean Reaction Time as a
Function of m and of Theoretical Distribution

Erlangian distribution Lognormal distribution Ex-Gaussian distribution

m A B C D A B C D A B C D

2 1.015 943 -3.045 762 921 918 -3.730 .689 1.371 862 -3.176 739
3 951 925 -2.335 T75 851 913 -2.809 716 1.230 855 -2.467 746
4 .894 914 -1.942 783 797 909 -2.300 732 1.114 853 -2.063 751
5 .844 .906 -1.688 788 754 905 -1.974 744 1.025 852 -1.799 756
6 .801 .900 -1.508 793 718 901 -1.745 752 956 851 -1.608 760
7 764 895 -1.372 796 687 .898 -1.574 759 808 850 -1.464 .763
8 732 891 -1.265 799 .660 .896 -1.440 764 849 850 -1.349 766
9 704 888 ~-1.178 801 637 .894 -1.333 769 808 .849 -1.257 768
10 679 .886 -1.706 803 616 .892 ~1.245 173 a72 .849 -1.178 771
11 656 .884 -1.045 804 597 .890 -1.170 776 742 .849 -1.112 773
12 636 .882 -.993 806 580 .888 -1.107 179 714 .849 -1.056 J75
13 617 880 -.947 807 565 887 -1.052 .782 690 .848 -1.007 776
14 .600 878 -.907 808 551 .886 -1.004 184 668 .848 -.963 779
15 585 877 -.871 809 538 884 -.961 786 648 848 -.926 .780
20 523 872 -.738 813 485 .880 -.804 794 570 .848 -.782 .786
25 4717 .869 -.650 816 446 876 =702 799 S13 847 -.683 791
30 443 .866 -.586 818 415 873 -.629 .803 473 847 -.616 795
35 415 .864 -.538 820 .391 871 -574 .806 439 847 -.563 797

Note. The correlation coefficient of each approximation is better than 0.9997, 0.9996, and 0.9998 for the special Erlangian, lognormal,
and the ex-Gaussian distributions, respectively. The mean absolute deviation between approximated and true bias is .04%, .05%, and .04%
for the special Erlangian, lognormal, and ex-Gaussian distributions, respectively.

values between O (i.e., symmetrical distribution) and 0.31
(i.e., exponential distribution) are to be expected for RTs.

lognormal and ex-Gaussian distributions discussed in sub-
sequent sections.)

A useful approximation for relative bias. Appendix A
describes procedures that can be used to counteract some of
the effects of the substantial truncation biases evident in Fig-
ures 2-5. Because these procedures require many relative
bias computations, it is convenient to have a simple function
that can be used to compute approximate relative bias, to
avoid the laborious computations needed to obtain the values
shown in Figures 2-5. Fortunately, we found that the power
function

The Lognormal Distribution

Another useful model of RT distributions is the so-called
lognormal distribution, which has given good fits in several
RT analyses (e.g., Bree, 1975; Hockley, 1984; Ratcliff &
Murdock, 1976; Woodworth & Schlosberg, 1954) and which
could be generated by any of several plausible stochastic
latency mechanisms (Ulrich & Miller, in press).

The lognormal distribution is usually defined by saying
that the time T follows a lognormal distribution if the loga-
rithm In(T) of time T is normally distributed with mean
E[In(T)] = w and standard deviation SD[In(T)] = o There-
fore, T is necessarily a positive random variable. The log-
normal distribution is usually considered as a possible model
in statistics whenever a random variable with a positive
skewness is needed (e.g., Crow & Shimizu, 1988).

8(p.q) = Ap” + C-¢° (25)
provides an excellent approximation of 8(p, g) for the mean,
median, and standard deviation shown in Figures 24, al-
though not for skewness (Figure 5). The fitted power coef-
ficient B (D) is equal to 1 if p (g) has a linear effect on 6,
less than 1 if the effect is sublinear, and larger than 1 if the
effect is superlinear. Tables 2, 3, and 4 provide the numerical
values of A, B, C, and D for the best-fitting approximations
to the relative biases of the mean, standard deviation, and
median, respectively, for each value of the shape parameter
m. (The tables also include results for the lognormal and

ex-Gaussian distributions, which are discussed next.) These
values are needed for the procedures presented in Appendix
AS

Unfortunately, Equation 25 cannot be used to approximate
the relative bias of skewness. However, one may use (E[T.]
- Med[T,])/SD[T.] as an alternative measure to assess trun-
cation effects on skewness, This alternative measure lies be-
tween —1 and +1 (cf. Stuart & Ord, 1987, p. 116), although

6 To ensure that the approximations would be adequate across
the range 0 < p < 10% and 0 < g < 10%, we computed values of
A-D that minimized the sum of squared errors of the approxima-
tions for p and g values in this range. As an example, consider
the computation of the relative bias of the mean for the special
Erlangian with m = 2, p = 4%, and ¢ = 8%. On the basis of Table
2 one computes the approximation 8(4, 8) = 1.015:4°% -
3.045-8762 = ~11.1. For practical work, this is clearly a satisfac-
tory approximation to the true relative bias of §(4, 8) = -11.2.
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Table 3

Constants A, B, C, and D for the Best Fitting Approximation S(p,

Theoretical Distribution

ROLF ULRICH AND JEFF MILLER

q) of Standard Deviation as a Function of m and of

Erlangian distribution

Lognormal distribution

Ex-Gaussian distribution

m A B C D A B C D A B C D
2 -0.320  1.081  -8932 588  -0.148 1177 -14.695 486 -0991 820 -9.68 .562
3 -0.626 958 -7.757 603 -0345  1.025 -12.045 519 -1388 792 -8.673 566
4 -0.859 904  -7.080 613 0517 959 -10544 540 -1.624 775 -8.043 570
5 -1.040 873 -6.629 620 -0.662 922 -9.565 555 -1.788 765  -7.605 .574
6 -1.186 852 -6.303 626  -0.786 897 -8.869  .567 -1.909 759 -7.248 578
7 -1.306 837 -6.054 631 -0.893 .878 ~-8345 576 -2.001 754 -6.986 581
8 -1.407 826 -5.855 .634  -0.986 .864 -1934 584 2070 751 -6.772 584
9 -1.493 817 -5.693 638 -1.069 853 -7601 590 -2.141 747 -6.584 588
10 -1.569 809  -5.557 640  -1.143 844 =7.325 595 -2.195 744  -6.421 590
11 -1.635 803 5441 643 -1.209 837 ~-7093 600 -2247 742  -6272 593
12 -1.694 798 5340 645  -1.269 830 -6.893 604 -2284 740 -6.159 595
13 -1.747 793 -5.252 647 -1.324 824 —-6.720 608  -2336 736 -6.034 599
14 ~1.794 789 -5.174 649 -1.374 819 -0.568  .611  -2355 737 5948  .600
15 ~1.838 786 5104 650 -1.420 815 —-6.433 614 -2381 736 -5.872 .601

20 ~2.009 J73 4842 657  -1.608 798 =5.932 626 2494 731 5536 610

25 -2.130 765 4666 661  -1.745 788 -5.604 634 -2573 728 -5296 616

30 -2.221 759 -4538 665  -1.853 780 =-5369  .640 2636 725 -5.109 .622

35 ~2.293 754 4439 667 -1.939 74 —5.191  .644 2675 724 -4988 626

Note. The correlation coefficient of each approximation is better than 0.9986, 0.9988, and 0.9998 for the special Erlangian, lognormal,
and the ex-Gaussian distributions, respectively. The mean absolute deviation between approximated and true bias is .37%, .45%, and .44%

for the special Erlangian, lognormal, and

The PDF of the Lognormal is unimodal and for ¢ > 0 given

by
1 (Int - p,)z]
1) = e - 26
1) _\/2—7]_0[ Xp l: 207 (26)
and the corresponding CDF is
Int —
F(t) = CI{ - ] %))

where the function ® denotes the CDF of the Standard Nor-
mal distribution. Its mean and variance are

0.2
+ —
w3 ]

Var[T] = exp (2u + 0?) X [exp(0?) — 1],

E[T] = exp [ (28)

and
(29)

respectively. Finally,
by

the quantile £, as a function of pis given

t,=exp[u + oD (p)], (30)

where function ®~! denotes the inverse CDF of a standard
normal distribution (see Shimizu & Crow, 1988, pp. 9-10).

The parameter o> ( determines the shape of the lognormal
distribution. For small values of o (smaller than 0.2) the
lognormal is almost symmetrical and hence difficult to dis-
tinguish from the normal distribution (Kotz, 1973). Skew-
ness increases with o.

The raw moments of T, for a truncated lognormal distri-
bution can be computed on the basis of the corresponding

ex-Gaussian distributions, respectively.

untruncated distribution, as Proposition 2 shows: If T has a
lognormal distribution with shape parameter o and scale pa-
rameter w, then the ith raw moment of T, is given by

]
|9

i*a?

E[T,] = exp {ip, + 5

A

where L is the lower and U the upper truncation point. (Proof
of Proposition 2 is given in Appendix B.)

On the basis of Proposition 2, we performed a bias analysis
similar to the one already conducted with the special Erlan-
gian distribution. For ease of comparison the values of the
shape parameter o were chosen so that the coefficients of
variation for the lognormal distribution would match those
of the special Erlangian conditions already studied. The co-
efficient of variation for the special Erlangian distribution is
given by

InU—io* - pn

(og

InL —io? -~
o

, (31
(I)[an - MJ B (D[InL ~ p,] (31
o o

SD[T] 1 32)
E[T]  \/m
and the one for the lognormal is given by
SD[T] 5
—E_[TT— Vexpo?) — 1 (33)

By equating Equations 32 and 33, one finds o
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Table 4
Constants A, B, C, and D for the Best Fitting Approximation 8(p, q) of Median as a Function of m and of Theoretical
Distribution
Erlangian distribution Lognormal distribution Ex-Gaussian distribution
m A B C D A B C D A B c D
2 946 1.009 -.955 993 793 1.011 -.803 .992 822 1.007 -.829 995
3 755 1.007 -.761 995 .668 1.009 -.675 .993 667 1.005 -.671 997
4 .647 1.006 -.651 .996 589 1.008 -.595 994 580 1.004 -.582 997
5 575 1.005 -.578 .996 533 1.007 537 995 521 1.004 -.523 .998
6 522 1.005 -.525 .997 490 1.007 -.494 995 478 1.004 -.479 998
7 482 1.005 ~-.484 997 456 1.006 ~459 995 444 1.003 -.445 .998
8 450 1.004 -.452 997 429 1.006 -431 996 416 1.003 -417 999
9 423 1.004 -.425 997 405 1.006 ~408 .996 393 1.003 -.395 999
10 401 1.004 -.403 998 .386 1.005 -.388 .996 374 1.003 =375 999
11 382 1.004 -.383 998 369 1.005 -.371 .996 .358 1.003 -.359 999
12 365 1.004 -.367 998 354 1.005 -.355 997 343 1.003 -.344 .999
13 351 1.004 -.352 998 .340 1.005 -342 997 330 1.003 -.331 .999
14 338 1.003 -.339 .998 328 1.005 -330 997 319 1.003 =320 999
15 326 1.003 -.327 998 318 1.005 -319 997 .309 1.002 -.309 .999
20 282 1.003 -.283 999 276 1.004 -277 997 269 1.002 =270 999
25 252 1.003 -.252 999 248 1.004 -.249 998 241 1.002 -.241 999
30 230 1.003 -.230 .999 227 1.003 =227 .998 221 1.002 =221 1.000
35 212 1.002 -213 999 210 1.003 =211 .998 205 1.002 -.205 1.000

Note. The correlation coefficient of each approximation is better than 0.9999, 0.9998, and 0.9999 for the special Erlangian, lognormal,
and the ex-Gaussian distributions, respectively. The mean absolute deviation between approximated and true bias is .01%, .02%, and .01%

for the special Erlangian, lognormal, and ex-Gaussian distributions, respectively.

V In(1/m + 1). For example, the corresponding shape val-
ves form = 2 and m = 10 are o = .64 and o = 31, re-
spectively. For each value of o, the scale parameter p was
chosen to hold E[T] constant at 150.

Figures 2-5 show the results of the bias analyses for o
equal to .64 and .31, the values matching coefficients of
variation with special Erlangians having m = 2 and m = 10.
It can be seen that the magnitudes of the biases are similar
to those obtained with the special Erlangians. Bias approxi-
mations form = 2, ..., 35 are provided by Tables 2, 3, and
4 for the mean, median, and standard deviation of the log-
normal, respectively.

The Ex-Gaussian Distribution

The third and last distribution included in our analysis is
the distribution of the sum of independent normal and ex-
ponential random variables, termed the ex-Gaussian by Bur-
beck and Luce (1982). This distribution is mathematically
less tractable than either the lognormal or the special Erlan-
gian, but it has nonetheless played an important role in RT
modeling (cf. Luce, 1986). The distribution was first con-
sidered in detail by Hohle (1965), who reported remarkably
good fits of the ex-Gaussian to empirical RT distributions of
individual subjects. Since then, the ex-Gaussian has often
been used to describe RT distributions in an economical way
(e.g., Heathcote et al., 1991; Hockley, 1984; Ratcliff, 1978;
Ratcliff & Murdock, 1976).

An ex-Gaussian random variable T may be defined as the
sum of two stochastically independent random components:
(a) an exponentially distributed component with mean’ Tand
(b) a normally distributed or Gaussian component with mean

. and standard deviation o. Thus, the three parameters w, o,
and 7 completely specify the shape of the ex-Gaussian and
allow for its rather large flexibility in shape. The ex-Gaussian
distribution has the theoretical disadvantage that it allows
negative RTs, because the Gaussian component can in prin-
ciple be an arbitrarily large negative number. In practical use
this theoretical difficulty is unimportant, however, because
the probability of a negative RT is very nearly zero as long
as w is relatively large compared to o. For example, with w
= 300, o = 50, and T = 100, this probability is less than 1
in 1,000,000,000.

The PDF of the ex-Gaussian is computed by convoluting
a normal with an exponential PDF and is given by

S e U ) |l
f(t)-—q_exp[ . +2Tz] (I)[ - T:l. 34)

The parameter pu determines the location of the ex-Gaussian
on the time axis without affecting its shape, so w is a pure
location or displacement parameter. Both o and 7 affect the
shape of the ex-Gaussian. For relatively large values of o, the
distribution is bell-shaped, but for relatively small values of
o itis J-shaped, like an exponential distribution displaced by
w units to the right along the time axis. Roughly speaking,
w and o affect the leading edge of the distribution (the mini-
mum of T), and T determines the thickness of the distribu-
tion’s right tail and thus its positive skew.

7 Note that the relationship between the rate A and the mean 7 of
an exponential random variable is 7 = I/A.
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Figure 3. Relative bias of median as a function of P (percentage of observations truncated from
lower tail of f) and g (percentage truncated from upper tail of f). Within each panel, each line
denotes a different value of p = (), 2, 4,6, 8, 10, 12, 14, 16, but only the most extreme values (ie.,
p = 0% and p = 16%) are indicated because the effects of p are monotonic from p = 0 to p = 16.
ER = Erlangian distribution; LN = lognormal distribution; EG = ex-Gaussian distribution.
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Figure 4. Relative bias of standard deviation as a function of p (percentage of observations
truncated from lower tail of f) and g (percentage truncated from upper tail of f). Within each panel,
each line denotes a different value of p = 0, 2, 4, 6, 8, 10, 12, 14, 16, but only the most extreme
values (i.e., p = 0% and p = 16%) are indicated because the effects of p are monotonic from p =
0 to p = 16. ER = Erlangian distribution; LN = lognormal distribution; EG = ex-Gaussian
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Integrating Equation 34 yields the CDF of the ex-
Gaussian,

r— -t o
F(t)=¢[TM:|vexp{MT +§?}
t—p o
-(IJ[ - —;] (35)

The mean and the variance of the ex-Gaussian are
ETl=p+r (36)

and
Var[T] = 0% + 7%, (37

respectively. The skewness of the ex-Gaussian is determined
solely by the exponential component and is given by

Skew[T] = 2'r. (38)

The ith raw moment of a doubly truncated ex-Gaussian can
be expressed as

L

ETIL<T=<U}= (39)

F(L) — F(U) ’

where the function F is given by Equation 35. Romberg’s
numerical integration method (see Press, Flannery, Teukol-
sky, & Vetterling, 1986, p. 114-115) was used to evaluate
Equation 39.

For ease of comparison, the ex-Gaussian was matched with
the special Erlangian for various values of shape parameters
m. It can be shown that an ex-Gaussian with parameters

m— m\
b= 40)
m — m?3
o= 5 (41)
and
m3
T = T (42)

matches the mean, standard deviation, and skewness of a
special Erlangian with parameters m and \. For example, an
ex-Gaussian with u = 56, ¢ = 48, and 7 = 94 matches the
mean, standard deviation, and the skewness of a special Er-
Jangian with m = 2 and A = 1/75. Because the special Er-
langian becomes more symmetrical with larger m, the ratio

T m'A 1

;:\/m—mm:\/m"s-—- 1

decreases with m, that is, the contribution of the ex-
Gaussian’s exponential component diminishes with increas-

(43)

ing m. For each value of m, the scale parameter A was chosen
such that E[T] was constant at 150, so all the matched ex-
Gaussians in these bias computations had a mean of 150 ms.

Figures 2-5 show the results of the bias analyses for dis-
tributions matched with Erlangians having ms equal to 2 and
10. The results are very similar to those obtained with the
Erlangian and lognormal. Tables 2—4 provide bias approxi-
mations for the ex-Gaussian in the range of ms = 2-35.
This corresponds to values of /o ranging from 1.96 to
0.66. Because some studies (Heathcote et al., 1991; Hock-
ley, 1984; Hohle, 1965; Ratcliff & Murdock, 1976) have
reported more extreme values of 7/o—between 3 and 15—
additional computations were performed to examine this
range. The results of these additional computations are
summarized in Table 5.

Summary of Truncation Bias

The main results depicted in Figures 2-5 clearly indicate
that the effects of truncation are too large to ignore. Trun-
cation can easily alter mean and median RT by 10% or more,
so its effects are as large as those of many common experi-
mental manipulations. The effects on standard deviation and
skewness are considerably larger still, indicating that trun-
cation would likely have extremely serious consequences on
distributional analyses. The high degree of consistency of
truncation effects across distributional types (i.e., Erlangian,
lognormal, and ex-Gaussian) strongly suggests that trunca-
tion biases will be approximately this large regardless of the
exact distribution of observable RTs, and not just a problem
associated with certain theoretical distributions.

Bias Effects With Contaminated RTs

The preceding analyses investigated truncation biases un-
der the assumption that all spurious observations (i.e., un-

Table 5
Constants of the Best Fitting Power Function

Approximations 8(p, q) for Mean, Standard Deviation,
and Median of ex-Gaussians for Extreme 7 to o Ratios

Constants
Statistic and m  T/o A B C D
M
1.01339 15 1.167 .934 -4.837 733
1.02098 12 1.186 .930 -4.820 733
1.03750 9 1220 923 -4.768 733
1.37174 3 1417 877 -4.018 734
SD
1.01339 15 359 0422 -12.338 542
1.02098 12 -.105 986 -11.616 .562
1.03750 9 =075 1.237 -11.654 .560
1.37174 3 -518 909 -10.768 .560
Mdn.
1.01339 15  1.409 1.013 -1.430 .989
1.02098 12 1.396 1.013 -1417 989
1.03750 9 1.369 1.013 -~1.390 .989
1.37174 3 1.040 1.011 -1.053 992

Note. The correlation coefficient of each fit is better than r =
0.999. The mean absolute deviations are .23, .57, and .12 for the
mean, standard deviation, and median, respectively.
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usually fast or slow RTs produced by aberrant processes)
were eliminated by truncation. In practice, however, trun-
cation does not eliminate all spurious observations, o Ty, is
contaminated by a certain number of data values that ought
to be classified as outliers but are not. Our purpose in this
section is to investigate bias effects in this more realistic
situation.

As discussed earlier, the contamination of true RTs with
spurious observations is best described by the mixture dis-
tribution given in Equation 8, and the properties of such
distributions were reviewed earlier (e.g., Equations 9-13).
We conducted extensive computations using Equation 9 to
investigate the biasing effects of truncation when the ob-
served RTs are a mixture distribution contaminated by vari-
ous percentages of spuriously fast and slow observations. As
before, the relative bias & was computed for each summary
measure (mean, median, standard deviation, and skewness).
For example, the relative bias, 8, of SD[T,,] is now defined
as

SD[T,,] — SD[T]
SD[T]

8(p, q) = (44)

The definition of & for the remaining summary measures is
analogous.

In all computations, ex-Gaussian distributions were used
for £,(1), £.(2), and JAt), with parameter combinations (u, =
500, o, = 100, 7, = 100), (u, = 1200, o, = 110, 7, = 100),
and (ur = 300, oy = 30, 7 = 10), respectively. The choice
of the ex-Gaussian as the model for spurious times is
somewhat arbitrary, but we could find no useful data on
the RT distributions generated by spurious processes. In
the end, we selected the ex-Gaussian because its Gaussian
and exponential components correspond intuitively to
plausible sorts of spurious processes. A Gaussian compo-
nent could be produced by a number of independent, addi-
tive sources of delay, and an exponential delay could be
produced by a distraction away from the task. In any case,
the ex-Gaussian, Erlangian, and lognormal distributions
can mimic one another very well, so it probably does
not matter much which of them is used as the model for
outliers.

The values of 0, .025, .05, and .1 were used in a factorial
combination for the mixture probabilities grand g;. The pa-
rameters for spuriously fast and slow RTs were chosen to
maximize the effects of spurious observations while preserv-
ing (approximately) the usual unimodal character of the dis-
tribution of RT. To satisfy these criteria, we shifted the dis-
tribution of spuriously fast RTs to the left until a small second
peak was apparent in the PDF of the mixture. Analogously,
we shifted f,(7) to the right until a small peak emerged on the
right tail of the mixture PDE. Thus, we attempted to maxi-
mally separate f() and f(t) under the constraint that the
resulting mixture distribution would have secondary modes
too small to be detectable with reasonable sample sizes. Fig-
ure 6 illustrates the resulting PDF of T, for mixture prob-
ability combinations (g5 g;) of (0, 0), (0, .05), (.05, 0), and
(.05, .05). The resulting means of these mixtures, computed
with Equation 10, are 600, 635, 586, and 621 ms, respec-
tively, corresponding to relative biases of 0, 5.8,-24, and

3.4%. The corresponding relative biases of the standard de-
viations are 0, 47.3, 7.3, and 54.0%. These values clearly
demonstrate how contamination may seriously distort the
parameters of a valid RT distribution.

For each of the 16 combinations of grand g, relative bias
was computed for each summary measure and for each of the
49 combinations of upper and lower truncation probabilities
(P, q)- The resulting 784 bias values for each summary meas-
ure were analyzed as a 4 X 4 X 7 X 7 factorial design, and
the four main effects accounted for 96.4, 91.7, 99.75, and
91.0% of the variance in the bias values for the mean, stand-
ard deviation, median, and skewness, respectively. Note that
these computations also include the special case of contami-
nated but untruncated RTs (i.e., p=q =0).

Because the main effects were responsible for most of the
variance, Table 6 shows only the marginal means of the bias
values for each summary measure. Each marginal mean was
obtained by averaging all bias values at the indicated factor
level, averaging across levels of the other factors. Qualita-
tively, each factor has exactly the effects that would be pre-
dicted. As seen previously (e.g., Figures 2-5), mean, median,
and skewness increase with the proportion truncated from the
lower tail (p) and decrease with the proportion truncated
from the upper tail (¢). Standard deviation also decreases as
more observations are truncated from either tail, but the ef-
fect is much larger with truncation from the upper tail than
with truncation from the lower tail. Variation of the propor-
tion of contaminating observations indicates that mean, me-
dian, and skewness increase with the proportion of spuri-
ously slow observations (g,) and decrease with the
proportion of spuriously fast ones ( gs). The effects on mean
and median are reassuringly small. Standard deviation in-
creases with the proportion of spurious observations of either
type, but the effect is much larger for spuriously slow ob-
servations than spuriously fast ones.

Because the main effects accounted for most of the vari-
ance in the factorial analyses, results for the full set of 784
conditions can be estimated adequately from the values in
Table 6. Specifically, the estimate is the sum of the marginal
mean biases for the four parameter values of interest minus
three times the overall mean bias, which can be obtained by
averaging any row. For example, from the table, one would
estimate the bias in skewness to be 4.5 + 29.4 - 1.3 - 17.6
~3 X 1.52 = 10.4 for the condition, with p = .04, q = .02,
gr= .05, and g; = .025, where 4.5, 29.4, -1.3,and -17.6 are
the marginal mean biases for p = .04, g = .02, g = .05, and
8s = .025, respectively, and 1.52 is the overall mean skew-
ness obtained by averaging any of the rows for skewness.
This estimate agrees reasonably well with the actual value of
6.3, at least relative to the full range (200 to 100) of values
for bias in skewness.

Besides the main effects shown in Table 6, the only other
sizable source of variance was the g X g, interaction, which
accounted for 3.34, 7.89, 0.1, and 4.29% of the variance in
the four summary measures. The form of this interaction was
quite simple: Variation in g, had less effect on bias as q
increased. This is to be expected, because increasing ¢ tends
to exclude the spurious observations that cause the main ef-
fect of g,. The analogous interaction was present for p X g
but its effects on the four measures were much smaller (less
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Figure 6. Mixture distributions for four combinations of mixture probabilities (g5 g;). Left upper
panel: (0.00, 0.00). Right upper panel: (0.00, 0.05). Left lower panel: (0.05, 0.00). Right lower panel:

(0.05, 0.05). (See text for more details.)

than 0.2% of the variance), because the effect of g-was much
smaller in the first place.

Bias Effects: Summary and Conclusions

The major point established by these analyses is that trun-
cation can indeed have nonnegligible effects on summary
measures estimated from RT distributions. The most com-
monly estimated summary measure, the mean, could easily
be off by 4%-5% with truncation of as few as 2% of the true
RTs. This translates into a bias effect of approximately 25 to
50 ms for tasks with mean RTs in the range of 500-1,000 ms,
and this bias effect is larger than some well-studied experi-
mental effects. In view of the noticeable effects of truncation
bias on mean RT, it is important to examine the effects of such
bias on particular sorts of experimental comparisons among
means, and this is the topic of the next section.

In general, the median suffers rather less bias than the
mean (generally around one fourth as much). Unfortunately,
it will not suffice to adopt this as the universal measure of
central tendency, because this statistic has an inherent bias
that varies with sample size (Miller, 1988) and because many
RT models make predictions about mean RT but not about
median RT (e.g., Sternberg, 1969). Not surprisingly, standard
deviation and skewness estimates suffer much greater trun-
cation bias effects than the mean and median. The importance

of these large biases, of course, will increase as more RT
models become sophisticated enough to make predictions
about these summary measures in addition to their predic-
tions about central tendency.

The situation is more complicated when spuriously fast or
slow RTs contaminate the RT distribution used in the analy-
sis, because these contaminating observations could coun-
teract the effects of truncation fairly effectively, especially
when only mean RT is considered. For example, in the pre-
sent computations the presence of 10% spuriously slow ob-
servations increased the mean by just about as much as trun-
cating 16% of the distribution decreased it, leaving a nearly
unbiased estimate of the mean under these conditions. In
practice, however, it is obviously very risky to count on such
counteracting effects to yield unbiased estimates, unless one
has extremely good information about the probabilities and
distributions of spurious RTs. Furthermore, spurious obser-
vations cause more severe problems in the estimation of
higher moments, so model tests using higher distributional
moments or full distributions will be quite sensitive to such
observations.

Effects of Truncation on Tests of Models

This section examines the effects of truncation on certain
common tests of RT models. Such models generally make
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Table 6 . .
Relative Bias of Mean, Standard Deviation, Median,
and Skewness as a Function of p%, q%, g5 and g,

Parameter
value M SD Mdn. < Skewness
=

i 0 -0.9 18.5 -1.3 -12.5
5 -0.6 17.4 -1.2 ~-8.5
1 ~0.3 16.5 -1.0 -5.8
2 0.2 14.9 -0.7 -1.7
4 1.2 12.2 -0.1 4.5
8 3.1 7.9 1.1 134
16 6.5 2.0 36 21.2

q%=
0 5.3 39.9 14 80.1
5 4.5 33.0 1.2 62.2
1 3.9 28.0 1.1 50.9
2 2.8 19.5 0.8 29.4
4 0.8 6.5 0.2 ~-7.9
8 =21 -10.5 -1.0 -~70.5
16 -6.2 -27.0 -3.5 -133.7

&r=
(0] 3.3 73 1.3 11.3
.025 22 104 0.6 4.3
.05 1.0 13.6 -0.1 -13
.1 -14 19.8 -1.7 -8.2

8s=
0 =26 -12.9 -1.3 -64.6
.025 -.07 0.9 -0.6 -17.6
.05 1.6 16.6 0.2 18.4
N 6.8 46.5 1.8 69.9

Note. Only the marginal means of relative bias are presented
because these factors had approximately additive effects on bias.
p% = proportion truncated from lower tail; g% = proportion
truncated from upper tail; g- = proportion of spuriously fast ob-
servations; g, = proportion of spuriously slow observations.

predictions concerning the means of full, untruncated RT
distributions. Thus, if the models are tested by comparing
their predictions against the observed means of truncated RT
distributions, it is possible that truncation will alter the re-
sults, either by introducing apparent violations of the model
or by concealing actual violations. The question, then, is
whether truncation effects are so small that they can safely
be ignored, as is commonly done.

Itis clearly impossible to provide a universal answer to this
question, because the effect of truncation depends to some
degree on the type of model prediction being tested. It is
possible to examine certain common types of tests, however,
and this may improve our intuition about the extent of
truncation problems in general. Specifically, this section
presents an analysis of the effect of truncation bias in two
hypothesis-testing paradigms that have played partic-
ularly important roles in RT research. The first paradigm
examines the question of whether RT is a linear function
of an independent variable, and the second concerns
additivity of factor effects in factorial experiments. With-
in each paradigm, we consider the three scenarios dis-
cussed in the introduction: Truncation, No Contami-
nation, No Truncation, Contamination, and Truncation Plus
Contamination.

Possible Distributions of Spurious RTs

Because these hypothesis-testing paradigms involve more
than one experimental condition, it is necessary to make
some assumptions about how the spurious RTs vary across
conditions. We assumed, first, that the probabilities and dis-
tributions of spuriously fast RTs were the same in all con-
ditions. If subjects were making more very fast responses
(e.g., fast guesses) in one condition than another, then these
responses should probably be regarded as part of a Strategic
adaptation to the condition, and not as spurious observations.

We also assumed that the probabilities of spuriously slow
RTs were independent of condition. In principle, this assump-
tion is not very attractive, because conditions with longer RTs
provide more opportunity for a distracting event (e.g., a
sneeze) to occur. In typical RT experiments, though, condi-
tions differ by at most 10%—15% of the mean RT, so the extra
opportunity for distracting events should cause only small
violations of this assumption.

With respect to the latencies of the spuriously slow RTs,
we considered two possibilities. One, called condition in-
dependent, is that these RTs have the same distribution in all
conditions, as they might if the subject used a special pro-
cessing strategy, one insensitive to conditions, on all such
trials. For this model the observed RTs in condition j are
given by the mixture model

T, = mix(T, T, T,), (45)

where T; denotes valid RTs under condition J-

The other possibility, called delayed startup, is that the
spuriously slow RTs show the same effects of experimental
conditions as the valid trials but are merely slower (and pos-
sibly more variable) overall owing to the addition of a ran-
dom delay D on spurious trials. For example, processing
might start D ms after stimulus onset because of inattention
and then proceed normally once this delay is over. Assuming
that the distribution of D does not depend on experimental
condition, this set of assumptions yields the alternative mix-
ture model

T, = mix(T, T,,D + T)), (46)

in which T is replaced by the sum D + T,

Effects of Truncation on Linear Increases in RT

Many researchers have tested models predicting a linear
increase in the mean (and sometimes variance) of RT as a
function of an independent variable such as positive set size
in memory scanning tasks, display size in visual search tasks,
logarithm of the number of alternatives in choice RT tasks,
or angle of stimulus orientation in mental rotation tasks. In
the basic linear model (e.g., Sternberg, 1969), an RT in con-
dition j, T}, can be represented by the sum

J
T,=3 7 +R, 47)

k=1

where Z,, .. ., Z; represent random variables with the com-
mon mean m and R is a residual component with mean c.
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In many experiments of this type, observed RT increases
nearly linearly as a function of the independent variable.
There are, however, sometimes hints that the function is
slightly negatively accelerated. For example, Briggs (1974)
reanalyzed a number of published studies using the memory
scanning task (e.g., Sternberg, 1967). Across a total of 145
studies, he found that a negatively accelerated RT function
provided a better fit than a linear RT function in 90 out of
155 cases. Indeed, the curvilinear relationship between mean
RT and set size appears to be quite a common observation,
judging from Baddeley’s (1990) comment that “his [Stern-
berg’s] results have proved to be replicable, although not
everyone manages to get such elegant straight lines” (pp.
277-278). It seems possible that minor differences in trun-
cation, contamination, or both might influence deviations
from linearity, and thereby account for some of the discrep-
ancies among results. In the next three parts of this section,
then, we consider the three scenarios of truncation, contami-
nation, or both in this paradigm, to see whether any of these
might contribute substantially to deviations from linearity.

Truncation, No Contamination. Intuitively, it seems
clear that truncation of the RT distributions might account for
some of the negative acceleration seen in functions relating
RT to an independent variable. With exclusion of RTs longer
than some fixed value (e.g., 2 s), it is clear that the percentage
of slow but valid RTs truncated from a condition would in-
crease with the true mean of the condition. As shown earlier
(e.g., Figure 2), this means that, as true mean RT increases,
the mean of the truncated distribution increasingly under-
estimates the mean of the true distribution. If this underes-
timation is a linear effect, it would simply decrease the slope
of the function relating RT to the independent variable. If
underestimation increases more than linearty with the mean
of the true distribution, however, then it could be responsible
for the negative acceleration often observed in truncated
mean RT functions, even if the true mean RT function is
linear.

To see whether negatively accelerated RT functions might
be an artifact of outlier exclusion, we carried out a series of
computations with the ex-Gaussian distribution, using pa-
rameter estimates of w, o, and 7 reported by Hockley (1984).
These estimates were obtained from measurements of RT as
a function of positive set size, j, in a memory scanning task,
and they appear to be particularly useful for the present pur-
poses because they were based on large numbers of obser-
vations and because very few trials were omitted from the
estimation procedure.

As the ex-Gaussian distribution denotes the sum of a Gaus-
sian component and an exponential component, any increase
in mean RT with j may reflect an influence of j on w, 7, or
both. Specifically,

where the index j denotes positive set size. In memory scan-
ning experiments, for example, the increase in mean RT
seems mainly to reflect an increase of T (Hockley, 1984;
Hockley & Corballis, 1982). In visual search tasks, on the
other hand, the increase can be due to either w or 7, depending
on the arrangement of the stimuli in the display. With linear
stimulus arrays the increase is usually due to p (Hockley,

1984), whereas with rectangular or circular displays large
shifts in 7 are observed (Heathcote & Mewhort, 1993).

For positive responses in a memory search task, Hockley
(1984) found that the increase in mean RT with j was well
described by these equations:

wy = 4.2 + 4308 (49)
=432+ 296 (50)
o, =~ 10. (51

Without truncation, Equations 48, 49, and 50 combine to
yield the overall RT function

E[T,] = 47.4+j + 460.4. (52)

To investigate the effect of truncation on these linear RT
functions, a lower cutoff L, was computed so that it truncated
a specified proportion p, from the lower tail of PDF f; in the
condition with j = 1. Analogously, an upper cutoff Ug trun-
cated a proportion of g from the upper tail of f; in the con-
dition with j = 6. The values (0, .005, .01, .02, .04, .08) were
used for p; and g, and were varied orthogonally. For each
combination (p, ge), the truncated mean E[T.;] = E[T;|L,
=< T, = Ug] was computed for all six conditions (j =
l,...,6).

The distorting effects of truncation on linearity were sum-
marized using two measures. First, a second-order polyno-
mial

P()=cy+ ¢+ ¢ (53)

was fitted by the method of least squares to the set of six
truncated means obtained under each truncation combination
(P1, ge)- This second-order polynomial provided a virtually
perfect fit to the obtained RT functions, accounting in each
case for more than 99.99% of the variance. The coefficient
¢, in Equation 53 provides a convenient index of the non-
linear distortion introduced by truncation. To the extent that
¢y is negative (positive), then the RT function through the
truncated means is negatively (positively) accelerated.

A second index of nonlinearity was the difference between
the increments in mean RT produced by the second and sixth
items in the positive set. Let A; = E[T\] - E[T.], forj =
2,...,6, be the difference between each pair of adjacent
truncated means. In the case of linear RT functions, these
differences are all equal. With a negatively (positively) ac-
celerated function, however, these differences will decrease
(increase) as j increases. Thus, another easily interpretable
index of deviation from linearity is

A'= A, — A, (54)

Like coefficient c,, the index A’ is negative (positive) if the
RT function is negatively (positively) accelerated, and its
absolute value, | A’ [, provides information about the size of
the nonlinearity.

Table 7 shows the nonlinearity indices ¢, and A’ for the
functions relating mean RT to j for each combination of trun-
cation proportions (p;, ge). Truncation at the upper end
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clearly produces a noticeable negative acceleration in the RT
function. For example, consider the difference A of two ad-
jacent truncated means. For p; = 0 and g¢ = .02, the obtained
values of A; were 47, 47, 44, 40, and 36msforj=2,...,6,
respectively. Clearly, these values display a meaningful
negative acceleration; this negative acceleration is also ap-
parent in the summary indices A" and ¢5.

Surprisingly, linearity of mean RTs is nearly uninfluenced
if the distributions are truncated from below. As an example,
for the combination p; = .02 and (g6 = 0) the corresponding
Ajs are 46, 47, 47, 47, and 47 ms, respectively, indicating an
extremely slight positive acceleration. Clearly, however, the
influence of g4 dominates, so a negatively accelerated dis-
tortion is the most likely case.

The distortion of linearity produced by truncation from
above has the additional consequences that the true slope m
will be underestimated and the true intercept ¢ will be over-
estimated. For example, if 8% of RTs are truncated from
above, m decreases from 47 to 35 ms and ¢ increases from
460 to 483 ms.

These computations using parameter estimates from
Hockley (1984) reveal the size of truncation effects when set
size has approximately 90% of its effect on the exponential
component and 10% on the normal component (cf. Equations
49 and 50), parameters for which the skewness as well as
the mean of RT increases with set size. Intuitively, it seems
that truncation would produce less distortion of linearity if
skewness increased less—or even decreased—with set
size. To check on the influence of skewness we conducted
additional sets of computations comparable to those shown
in Table 7, varying the dependence of w and 7 on j. When
the set size effect was split equally between w and T, for
example, the distortion was about two thirds the size of
that shown in Table 7. Distorting effects were small—only
about 30%-40% as large as those in the table—when 90%
of the set size effect was in u and 10% was in 7, but in
this case the skewness of the RT distributions was unreal-
istically small, with respect not only to the parameter esti-
mates given by Hockley (1984) but also to those reported
by other investigators (e.g., Heathcote et al., 1991; Ratc-
liff, 1979).

Overall, then, negatively accelerated mean RT functions
must be interpreted cautiously when truncation is used, be-
cause of the possibility that the true function is linear and
the observed negative acceleration is an artifact of trunca-
tion. It is difficult to estimate the effects of truncation on
most previously reported studies, because few researchers
specify their truncation cutoffs or report the percentage of
observations excluded. Clearly, then, one implication of
these results is that future researchers should report these
values. In certain cases, of course, the true function may
actually be negatively accelerated, as is sometimes pre-
dicted on theoretical grounds (e.g., Schneider & Shiffrin,
1977; Shiffrin & Schneider, 1977; Townsend & Ashby,
1983). In the memory search task, for example, Jones and
Anderson (1982) found that RT increased linearly with set
size early in practice and that the function became nega-
tively accelerated later in practice. The truncation artifact
should decrease with practice, so it appears likely that the

Table 7

Effects of Truncation on Linear Relation of RT to
Set Size j Across Six Conditions Having ex-Gaussian
Distributions

D1 Effect % (%)
(%) measure 00 05 10 20 4.0 8.0

0.0 A’ o -4 -7 -11 -17 -23

C 00 -05 -09 -14 =21 =30
0.5 A 0 -5 -1 -11 -17 =23
1) 01 06 -09 -14 =22 =30
1.0 A -0 -4 -7 -12 -18 -22
) -00 -05 -09 ~-15 -23 -29
2.0 A’ 1 -4 -6 =11 =16 -22
C, 01 -05 -08 -14 -21 -26
4.0 A’ 1 -3 -6 -10 -16 =22
o 01 -03 -08 -14 =21 -29
8.0 A’ 1 -3 -7 -10 -15 -21
C2 02 -04 -08 -12 =20 -29

Note, For each combination of p,% (proportion truncated from
lower tail of fi) and g¢% (proportion truncated from upper tail of
fs), the tabled values are A’ = Ag ~ A, and ¢,; —both are measures
of deviation from linearity (compare with text). The value of A’ is
rounded to the nearest millisecond, and ¢, is rounded to the nearest
ms/10.

true function really was negatively accelerated after prac-
tice in this experiment,®

Calculations parallel to those reported earlier were also
carried out for variances of RT, to examine truncation effects
on that summary measure, and the overall results were quite
straightforward. Note that, even without truncation, Equa-
tions 49-51 yield positively accelerated rather than linear
functions relating the variance of RT to set size (i.e., ¢, =~ .12
X ¢y in a second-order polynomial analogous to Equation
53). It was nonetheless possible to assess the effects of trun-
cation by seeing how it altered the shape of the function
obtained in the untruncated case. Truncation from below de-
creased total variance by as much as 15%-20%, but had little
effect on the shape of the function. Truncation from above,
on the other hand, changed the shape quite dramatically. The
positive acceleration was virtually eliminated with ¢ = 2%,
and a nontrivial negative acceleration was present with ¢ =
8% (i.e., ¢, = —.10 X ¢}). Thus, the function relating variance
of RT to a quantitative independent variable can be affected
quite drastically by truncation.

No Truncation, Contamination. Next, we consider the
situation in which spurious RTs are present but truncation is
not used. Surprisingly, our analyses indicate that model pre-
dictions are unaffected by the presence of spurious RTs,
whether spuriously slow RTs are generated in accordance
with the condition-independent model or the delayed-startup
model.

For the condition-independent mixture model, the com-
bination of Equations 45 and 47 implies the following overall

8 We are indebted to Andrew Heathcote for pointing out this
example.
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RT function:
E[mix(T, T}, T,)] = gE[T,] + g,"E[T,]
+(1 - g —g)mj+c)=c,+m;j (55

Thus, the mean RT function remains linear in the presence
of contamination, but its intercept and slope shift to ¢, =
g EITy + g-B[T,] + (1 - ge—g,)-candm, = (1 - g,
gs)'m, respectively. Similarly, the alternative delayed-startup
mixture model given by Equation 46 implies the RT function
E[mix(T;, T,, D + T,)] = g~E[T,] + g, E[D]

P

t (= g)imj+c)=c,+mj (56)

with intercept and slope shifting to ¢, = g, E[T/ + g,E[D]
+ (1 -gp-cand m, = (1 — g¢)-m, respectively. In the absence
of truncation, then, contamination does not distort underlying
linearity of mean RT under either mixture model, although
the slope of the linear function can be greatly reduced if the
proportion of contaminating observations is high.

The variance of RT can also be used to test serial models
(e.g., Schneider & Shiffrin, 1977; Sternberg, 1969;
Townsend & Ashby, 1983), so it is of further interest to ex-
amine the effects of contamination on this summary measure.
Again, we proceed from Equation 47 and invoke the common
assumptions thatZ,, . . ., Z;R are pairwise uncorrelated and
that Var[Z,] = Var[Z] for k = 1,...,j. Given these as-
sumptions, the true variance function, Var[T,] = j-Var{Z] +
Var[R], increases linearly with j.

Unfortunately, the linear increase in variance can be totally
destroyed by contamination. Using Equation 11, one obtains
for the condition-independent mixture model

Var[mix(T,, T;, T,)] = g7 (E[T,} + Var[T,]) + g,(E[T,

+ Var[T,]) — {E[T/]-g, + (E[R] + JE[Z]))(1 ~ g — g,)

+E[T,]¢} + (1 - g — &){(E[R] + j-E[Z])* + Var[R]
+ j-Var[Z]}.  (57)

Thus, under these conditions Var[T,,] is a quadratic function
of j rather than a linear function, and sample computations
reveal that the form of Equation 57 strongly depends on g¢
and g,. To give a numerical example, assume that E[T/] =
310, Var[T/] = 36.6% E[T,] = 1,300, Var[T,] = 148.7%,E[Z]
= 47.4, Var[Z] = 43.2%, E[R] = 460.4, and Var[R] = 100°.
(The last four values are estimates derived from the study of
Hockley, 1984; the remaining ones correspond to the pa-
rameter values used above for spurious RTs.) For g, = .05
and g; = .025, one obtains

Var[T, ] = 28,442.5 + 545.1:j + 155.9-j2  (58)
and for gr = .025 and g, = .05
Var[T, ] = 44,740.2 — 1,625.3:j + 155.9:2.  (59)

Both numerical examples clearly demonstrate that g and g;
perturb the true underlying linearity (10,000 + 1,866.4:j).
Nevertheless, Equation 58 represents an almost perfect linear
increase in Var[T,] forj = 1,..., 6 (* =~ .98). However,
Equation 59 represents a strong decrease in variance for j =

I,...,6. Rearranging Equation 57 yields the weight of the
j? term, which is given by E[Z]*(g; + g1 - gr — &)
Hence, the linear distortion of the true underlying variance
function depends only on the percentage of spurious RTs but
not, surprisingly, on the distributions of spurious RTs.

Similar variance perturbations are obtained for the alter-
native delayed-startup mixture model Equation 46. For this
model one obtains

Var[mix(T,, T,, T, + D)] = g, (E[T,} + VarT,])
+ g,-{(E[D] + E[R] + j-E[Z])* + Var[D] + Var[R]
+j-Var[Z]} — {E[T;]-g,+ (E[R] + J-E[Z])(1 ~ g)
+ E[D]-g, ) + (1 — g — &){(E[R] + j-E[Z])* + Var[R]
+ j-Var[Z]}. (60)

Again, Var[T,;] is a quadratic function of j rather than a linear
function and again Equation 60 depends strongly on grand
gs. To give a numerical example, assume the same parameter
values that were used for the condition-independent mixture
model. For purposes of comparison we assume E[D] = 1,300
and Var[D] = 148.7%; note that these values were also chosen
for E[T,] and Var[T,], respectively, in the previous compu-
tation. Under these assumptions, one computes for g- = .05
and g, = .025

Var[T,] = 52,876.8 + 2,604.2:j + 106.7-/*  (61)
and for g, = .025 and g, = .05
Var[T,] = 92,204.2 + 2,321.1j + 54.8:/%  (62)

Rearranging Equation 61 yields the general weight,
E[Z]-g(1 ~ gp), for the j* term. Interestingly, this weight
depends neither on D nor on g,.

In summary, on the one hand contamination does not per-
turb underlying linearity of mean RT functions, although it
does cause underestimation of the slopes of these functions.
On the other hand, contamination does perturb—possibly
quite seriously—linear increases in the variance of RT. In
general, the distortion of a truly linear variance function de-
pends only on the percentage but not on the distributions of
spurious RTs.

Truncation Plus Contamination. 'The combined effects
of truncation and contamination on linear RT functions were
investigated by including spuriously fast and slow observa-
tions into the same distributions of valid RTs examined in
Table 7. Truncation cutoffs were adjusted to give p; and g
values of .005, .01, .02, .04, and .08, varied orthogonally, as
in Table 7. For each combination of p, and gs, the distortion
of linearity was examined for 144 different mixture models
defined by a factorial design based on four values of g (0,
.025, .05, .1), the same four values of g, three values of ar
(.1, .2, .3), and the same three values of a,. The distribution
of spuriously fast RTs was assumed to be ex-Gaussian with
parameters u = ug 0 = 30, and 7 = 10, where u,was adjusted
to give the desired probability of acceptance ay (given fixed
values of o and 7, uyis uniquely determined by the selected
values of ayand the lower truncation cutoff dictated by p;).
The distribution of spuriously slow RTs was assumed to be
ex-Gaussian with parameters u = ug, o = 110, and 7= 100,
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where u, was similarly adjusted to give the desired accep-
tance probability a, for the predetermined upper truncation
cutoff, Note that the proportion of accepted RTs that are spu-
rious can be computed from these probabilities. For example,
ifa; = .1and g, = .05, then.1 X .05 = .005 is the proportion
of accepted RTs from the spuriously slow distribution.

Table 8 shows obtained distortions of linearity, measured
with A’, for a subset of the conditions examined. Results are
shown for each value of gg, because, as with uncontaminated
truncated distributions (Table 7), the extent of truncation
from above had a large effect on the amount of negative
acceleration. Table 8 shows results only for extreme values
of the other parameters (g5 g, a5 ds, and p;), however, be-
cause these had small effects on negative acceleration. If the
results are compared with those of Table 7, it seems clear that
truncation still produces substantial negative acceleration of
linear RT functions even when reasonable amounts of con-
tamination are present. Thus, contamination provides no pro-
tection against the biasing effects of truncation.

Effects of Truncation on Additivity of Factor Effects

Another very common type of hypothesis testing in RT
research is to check for the additivity or interaction of factor
effects on the mean (and possibly variance) of RT in factorial
experiments. This paradigm is common because many mod-
els of specific tasks and processes predict additivity or in-
teraction of a certain pair of factors (e.g., Bundesen, Larsen,
& Farrell, 1981; Cowan & Barron, 1987; Dixon & Just, 1986;
Egeth & Dagenbach, 1991; Lambert & Hockey, 1986; Miller,
1983; Murphy & Eriksen, 1987; Pashler, 1984a, 1984b).

In addition, factorial experiments derive special impor-
tance in RT research because patterns of factor additivity and
interaction have implications about the underlying structure
of information-processing architectures. Originally, Stern-
berg (1969) showed that serial-stage models often predict
additive effects in factorial experiments, and he developed
the Additive Factor Method (AFM) based on this type of
prediction. When the assumptions of this method are met,
interactive (or additive) factor effects on RT can be inter-
preted as evidence that the factors do (or do not) affect a
common stage of mental processing. This potentially pow-
erful tool has not only been used widely (cf. Massaro &
Cowan, 1993) but also continues to be developed (e.g.,
Roberts & Sternberg, 1992). More recently, researchers have
considered the predictions of nonserial RT models with re-
spect to factor additivity and interaction (see Townsend,
1992, for a review). For example, many parallel processing
models predict underadditive interactions of factors affecting
concurrent stages (cf. Miller, 1993; Sternberg, 1969, p. 288;
Townsend, 1984; Townsend & Ashby, 1983, chapter 12). RT
models based on program evaluation and review technique
(PERT) networks, on the other hand, can predict factor ad-
ditivity, underadditivity, or overadditivity, depending on the
precise configuration of the network and the stages affected
by the experimental factors (Schweickert, 1978; Schweickert
& Townsend, 1989; Townsend & Schweickert, 1985, 1989).
Finally, McClelland (1979) offered an explanation of
factor additivity and interactions based on a continuous
information-processing model known as the cascade model.

Thus, patterns of additivity and interaction provide an im-
portant source of evidence for testing between alternative
mental architectures.

Because patterns of additivity and interaction are so im-
portant, it is necessary to consider the possible biasing effects
of truncation, contamination, or both in factorial designs. The
next three parts of this section do so for our standard sce-
narios, restricting consideration to the case of 2 X 2 designs
to simplify the analysis. We consider only experiments with
truly additive mean RTs; the complementary effects (i.e.,
biases when true interactions are present) should be of ap-
proximately the same magnitude.

Some notation is necessary. Let the random variable T,,
denote RTs under the (@, b) combination of factor levels, with
a=1,2andb = 1, 2, indicating the levels of Factors A and
B, respectively. Thus, E[T,;] is the true mean of valid RTs
in the condition with Factor A at level a and Factor B at level
b. Without loss of generality, we label conditions so that
E[T,] < E[T,;] and E[Ty;] < E[T5]. As noted above, for
these analyses, we assume that T,;, conforms to an additive
RT model, so that

T,=7,+2Z,+R, (63)

where the components Z,, and Z, are selectively influenced
by Factors A and B, respectively.

Truncation, No Contamination. Suppose that, for each
condition of the factorial design, the experimenter excludes
observed RTs outside of the interval [L, U]. Now, even if two
factors actually produce additive effects on mean RT, addi-
tivity may not be present for the truncated mean RTs esti-
mated by the experimenter, E[T.,,] = E[T,,IL < T,, < U]
ab=1,2

To examine the effect of truncation on tests of additivity,
we define the distortion of additivity index (D) as

D= Dy 0a 64
D +D, (64)

D=
where D = E[T. 5] — E[Tx,] and D, = E[T.x2;] — E[T21].
Intuitively, D, is the influence of Factor B at Level 1 of Factor
A and D, is the influence of Factor B at Level 2 of Factor
A. Thus, D, — D| measures the change in B’s effect across
the two levels of A. D is simply this difference normalized
by the sum D; + D, to create the reference values D = 100%
and D = ~100% in case of D, = 0 and D, = 0, respectively.
Thus, D < 0 and D > O correspond to underadditive and
overadditive distortions, respectively. For example, if the
truncated means for Tuiy, T2, Ti21, and Tapy are 300, 340,
330, and 350 ms, respectively, then there is an underadditive
distortion of D = -33.3%. As desired, D is independent of
both the scale and the absolute size of the means.

We examined distortions of additivity produced by trun-
cation of ex-Gaussian RT distributions in 2 X 2 factorial
designs with a variety of different parameter values. To do
this, we first had to choose values of the parameters u, o, and
7 for each cell of the design so that the resulting true means
exhibited additivity. Hence, a total of 12 parameters had to
be specified for each factorial design.

To ensure that we used a range of fairly realistic parameter
estimates, we started with a set of RTs observed from 16
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Table 8
Effects of Truncation and Contamination on Linear Relation of Reaction Time to
Set Size j Across Six Conditions Having the Same ex-Gaussian Distributions as in

Table 7
Value of g¢ (%)

& gs ar a pi (%) 5 1 2 4 8

0 1 — 1 5 -4.3 -1.7 -11.2 -16.5 -22.5

0 1 — 3 5 -4.1 -6.8 -10.7 -15.9 -21.7
1 0 .1 — 5 ~-4.4 =12 -11.3 -16.7 -22.7
1 0 3 — 5 -4.3 -1.1 -11.2 -16.5 -22.5
.1 1 1 1 S5 -4.3 -7.6 -11.0 -16.3 -22.3
1 1 1 3 .5 -4.0 -6.7 -10.6 -15.7 -21.5
1 1 3 .1 5 -4.2 15 -10.8 -16.1 -22.0
1 1 3 3 5 -4.0 -6.6 -104 -15.5 -21.2

0 1 —_ 1 8. 2.4 -4.7 -9.4 -14.8 -20.8

0 1 — 3 8. -14 -4.3 -8.4 -11.7 -19.6
1 0 A — 8. -2.8 -5.6 -9.9 -15.3 -21.2
.1 0 3 — 8. -2.8 -55 -9.6 -15.0 -20.8
1 A .1 1 8. -2.3 4.5 9.2 -14.6 -20.5
1 1 1 3 8. -1.2 -4.1 -8.1 -11.3 -19.3
1 1 3 A 8. -2.2 -4.4 -9.1 -14.4 -20.2
1 1 3 3 8. -12 -4.0 -8.0 -11.1 -19.0

Note. Tabled values are A’ = Ag — A, shown as a function of g¢% (percentage truncated from

upper tail of fg), g (proportion of spuriously fast trials), g, (proportion of spuriously slow trials), ay
(proportion of spuriously fast trials escaping truncation), a, (proportion of spuriously slow trials
escaping truncation), and p, % (percentage truncated from lower tail of f;. Note that the value of a,
is irrelevant when g, = 0, and similarly for a, and g

subjects tested in three different2 X 2 factorial experiments.’
We obtained maximum likelihood estimates of w, o, and T
separately for each subject and cell, and the ranges of ob-
tained parameter estimates are summarized in Table 9.

Given these 16 sets of 12 parameter estimates, we pro-
ceeded to examine the distorting effects of truncation as fol-
lows. First, to ensure that all the distortion was due to trun-
cation, we adjusted each subject’s estimates of w for the four
cells so that additivity of means was perfect for the untrun-
cated distributions; the adjustments were small for every sub-
ject. Next we obtained for each subject the lower cutoffs L,
truncating p = 0, .5, 1, 2, 4, or 8% from the lower tail of
density fi;, and upper cutoffs U, truncating the same pro-
portions from the upper tail of density f»a. Using all possible
pairs of these lower and upper cutoffs for a given subject, we
computed the distortion of additivity D resulting from that
combination of lower and upper truncation cutoffs, resulting
in the different conditions (py1, ¢22) of truncation shown in
Table 10 being examined separately for each subject. The
distortion from additivity with the appropriately truncated
distributions was computed for each subject, and the values
in Table 10 show the means, minima, and maxima (across
subjects) of the distortions thus computed.

The results are not entirely clear-cut. The largest mean
distortion was —5.7%, which is barely large enough to be
detected in typical RT experiments. On the other hand, the
minimum and maximum distortion effects were fairly severe,
showing 10%-15% distortions toward either under- or
overadditive interactions. Thus, although the average dis-
tortion effects were relatively small across these three ex-
periments, it is certainly possible that considerably larger

distortion effects could be obtained in other experiments with
reasonable parameter combinations. Examination of the dis-
tortions obtained for individual subjects indicated that dis-
tortions tended to be most severe when (a) there was more
overlap of RT distributions in different cells of the designand
/(b) factors influenced T rather than p.

We also examined the effects of truncation on the pat-
tern of variances across the four cells of the designs. With
the parameter values summarized in Table 9, variances
were not generally additive in the first place; distortions of
additivity D, computed in terms of effects on variances
rather than effects on means, ranged over approximately
+150%. Nonetheless, we looked at how truncation altered
the original D values. As in the paradigm examining lin-
earity of RT, truncation from below had relatively little ef-
fect on the pattern of variances. Truncation from above, on
the other hand, changed variance patterns fairly dramati-
cally in the direction of underadditivity, typically reducing
D by 50%-200%.

No Truncation, Contamination. If spurious RTs are pre-
sent but truncation is not used, additive models are imper-
vious to contamination effects in mean RT but not in the
variance of RT, as were underlying linear models. For the

9 We thank Saul Sternberg and Seth Roberts for providing these
data, which are those of the Detection, Identification, na = 2, and
Identification, na = 8 experiments discussed by Roberts and Stern-
berg (1992). The numbers of RTs per subject per cell were ap-
proximately 95, 175, and 250 in the three experiments. Following
Roberts and Sternberg, we omitted from all analyses one subject
who showed virtually no effect of one experimental factor.
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Table 9
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Mean, Minimum (min), and Maximum (max) of Estimated Parameter Values, u
and 7, for 16 Subjects in Each Cell of Three 2 X 2 Experiments

Factor A level

1 2
B
Fal(;t\?cfl Parameter M Min Max M Min Max
Level 1 n 271.1 171.7 408.9 313.6 202.0 550.0
o 23.9 10.0 56.6 254 8.5 59.8
T 14.4 5.6 31.6 25.0 11.6 44.1
Level 2 M 293.3 178.3 448 4 335.8 198.2 568.4
o 24.9 8.2 62.7 28.0 6.6 60.3
T 22.9 5.6 53.0 332 14.1 73.7

condition-independent mixture model, the mean contami-
nated RT is

E[mix(T,, T,,, T,)] =
8 E[T;] + g, E[T,]+ (1 - g ~ g)E[R]
+ (1 - gf - gs)E[Za] + (1 - gf - gt)E[Zb] (65)

Thus, additivity of factor effects (i.e., on Z, and Z,) will be
preserved as long as contamination is invariant across con-
ditions, although the main effect of each factor will be at-
tenuated by a factor of (I — g — g;). A similar result is
obtained for the delayed-startup mixture model

E[mix(T,, T,,, T,)] =
gf'E[Tf:I + g E[D]+ (1 - gf)E[R]
+ (1 = g)E[Z,]+ (1 - g)E[Z,] (66)

Again, additivity of factor effects is preserved. Only spuri-
ously fast RTs attenuate the main effect of each factor.

As was found with linearity, however, additive factor ef-
fects on RT variance are destroyed by contamination. From
Equation 63 and the common assumption that Z,,Z,, andR
are pairwise uncorrelated, the true variance function
Var[T,,] = Var[Z,] + Var[Z,] + Var[R] shows additive
effects on variance.

The elimination of variance additivity by contamination is
most easily shown for the condition-independent mixture
model in Equation 45. Given that the true RTs of the mixture
conform to the additive model in Equation 63, the variance
in each experimental condition can be computed from Equa-
tion 11:

Var[mix(Ty, T,, T,,)] = gE[T,F + (1 ~ g, — ¢,)(E[Z,]
+E[Z,] + E[R]) + E[T,]-¢, ~ {E[T)-g, + (E[Z,]
+E[Z,] + ER])(1 — g~ g,) +E[T,] g,

+ g Var[T,] + g, Var[T,] + (1 — ¢, - g,)-(Var[Z, ]
+ Var[Z, ] + Var[R]). (67)
Rearranging Equation 67 yields the nonadditive term
2(1 ~ 8 — &.)(g + g,)E[Z,]E[Z,)], (68)

which destroys the true additivity of factor effects on vari-

ance, producing overadditivity instead, except in the degen-
erate case where E[Z,] and E[Z,] do not vary across con-
ditions of the factorial design. It is interesting to note that
the multiplier of E[Z,] E[Z,] in the nonadditive term, and
hence the distortion of additivity, depends only on the per-
centages of spurious RTs and not on their distributional
properties.

Similar variance perturbations are obtained for the
delayed-startup mixture model. With this model, the distor-
tion term is 2(1 - 887 ElZ.]-E[Z,), which depends only
on the percentage of spuriously fast RTs. In principle, the
different distortions of variance additivity produced by the
delayed-onset and condition-independent mixture models
could be useful in testing between these contamination
models.

Truncation Plus Contamination. The combined effects
of truncation and contamination on additive patterns of RT
were investigated by including spuriously fast, slow, or both
types of RTS into the same distributions of valid RTs exam-
ined in Table 10. The method used was similar to that used
in the previous examination of the combined effects on linear
RT functions. For the parameter values estimated for each of
the 16 subjects included in Table 10, truncation cutoffs were
adjusted to give p,; and gy, values of .005, .01, .02, .04, and
.08, varied orthogonally, as in the earlier table. For each sub-
Ject and combination of p;; and g5, the distortion of addi-
tivity was examined for 144 different mixture models defined
by a factorial design based on four values of & (0, .025, .05,
.1), the same four values of g,, three values of ar(.1, .2, .3),
and the same three values of a,. The distribution of spuriously
fast RTs was assumed to be ex-Gaussian with parameters g
= Ug 0 = 30, and 7 = 10, where uy was adjusted to give the
desired probability of acceptance ar (given fixed values of o
and 7, uyis uniquely determined by the selected values of ar
and the lower truncation cutoff dictated by p;;). The distri-
bution of spuriously slow RTs was assumed to be ex-
Gaussian with parameters . = u,, ¢ = 110, and T = 100,
where u; was similarly adjusted to give the desired accep-
tance probability a, for the predetermined upper truncation
cutoff.

Table 11 shows the obtained mean, minimum, and maxi-
mum (across 16 subjects) distortions of additivity D, for a
subset of the conditions examined. The table shows results
for three values of g,,, because, as with uncontaminated trun-
cated distributions (Table 10), the extent of truncation from
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Table 10

Mean, Minimum, and Maximum Distortion of Additivity, D, as a Function of the
Proportions (p, q) Truncated From the Lower Tail of the Fastest Condition and the

Upper Tail of the Slowest Condition

0
Distortion 9%
p (%) measure 0.0 0.5 1.0 2.0 4.0 8.0
0.0 M 0.2 -0.6 -1.1 -2.0 -3.6 -5.7
Minimum -0.2 -2.4 -2.9 -52 -9.9 -14.8
Maximum 2.4 2.0 1.8 1.5 1.5 1.1
0.5 M 0.7 0.1 ~0.7 -1.4 -2.9 ~5.0
Minimum -0.4 ~1.0 -2.2 -4.,1 -7.3 -12.1
Maximum 3.9 4.4 1.5 1.7 1.7 1.3
1.0 M 1.1 04 -0.1 ~1.1 -2.6 -4.7
Minimum -0.7 ~22 -3.4 -4.9 -7.4 -11.5
Maximum 104 8.7 8.3 59 34 1.5
2.0 M 1.1 04 ~0.2 -1.1 -2.6 -4.8
Minimum -0.5 -1.8 -2.8 -4.5 -6.9 -10.5
Maximum 5.1 3.7 2.4 2.1 2.1 1.7
4.0 M 1.9 1.1 0.6 -0.4 -1.9 -4.1
Minimum -0.5 -2.0 -3.1 -4.8 -7.2 -99
Maximum 8.4 6.8 5.6 3.6 2.6 2.2
8.0 M 3.0 2.3 1.8 0.8 -0.7 -2.9
Minimum ~0.9 -2.5 -3.6 -5.4 -7.9 -10.7
Maximum 12.8 11.3 10.1 8.2 5.1 3.0

Note. p = proportion truncated from lower tail of fastest condition; g = proportion truncated from

upper tail of slowest condition.

above had a large effect on the distortion of additivity. The
table shows results only for extreme values of the other pa-
rameters (g5 g, a5 s, and pyy), however, because these had
smaller and monotonic effects on D.

The results indicate that these reasonable amounts of con-
tamination have truly negligible effects on the distortion of
additivity that is caused by truncation. For any given values
of py; and go,, virtually identical distortions are obtained
regardless of the percentages and acceptance probabilities of
fast and slow spurious observations. Indeed, these distortions
are nearly identical to those obtained with the same values
of py; and g, with no truncation (cf. Table 10).

Summary: Truncation, Contamination,
and Model Testing

Somewhat paradoxically, our analyses strongly suggest
that researchers should ignore the problem of spurious ob-
servations when testing the predictions of linear or additive
models for mean RT, and that it may be quite important
that truncation not be used to exclude outliers. Under very
realistic assumptions about the true distributions of RTS,
truncation can clearly perturb the results enough to muddy
the waters with respect to either of these types of model
tests. Truncation produces particularly large biases in tests
of linearity, and it appears extremely likely that truncation
would alter the results enough to produce invalid conclu-
sions. The biases introduced by truncation are approxi-
mately the same whether or not spuriously fast and slow
RTs are present in the data set, so there is no reason to be-
lieve that residual effects of untruncated spurious observa-
tions provide any protection from truncation bias. Perhaps

most important, there is no major advantage to be gained
from truncation in the first place. If the mean RTs on valid
trials follow linear or additive patterns, then, under fairly
general and reasonable assumptions about the nature of the
spurious RT, it is likely that they will still do so even if
some responses that are spuriously fast and slow contami-
nate the data set. Thus, the attempt to remove such spuri-
ous observations by truncation is likely to cause more
harm than the spurious observations themselves, which
only introduce noise, not bias.

Unfortunately, researchers attempting to test predictions
about RT variance face a much more difficult situation, be-
cause in this case there are potentially very harmful effects,
both of including spurious observations in the analysis and
of using truncation to eliminate them. At this point, the only
recommendation we can make for researchers interested in
evaluating such predictions is to take extreme caution that the
experimental procedure minimizes the number of spurious
observations.

Additional Considerations
How Does Truncation Distort Hazard Functions?

Hazard functions with uncontaminated distributions.
The hazard function of an RT distribution can be represented
as a plot, as a function of time, of the probability that the
response will occur in the next small unit of time given that
it has not already occurred. Hazard functions reveal prop-
erties of RT distributions that are very difficult to detect in
standard PDF plots (see Luce, 1986, and the references
therein). In fact, although many theoretically different PDFs
of RTs look very similar in shape (usually bell shaped and
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Table 11
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Mean, Minimum (min), and Maximum (max) Distortion of Additivity, D, as a Function of the Proportions Truncated
From the Lower Tail of the Fastest Condition and the Upper Tail of the Slowest Condition, g5 g, az and a;

Value of ¢,, (%)

Proportion 5 2 8
& & as a, P (%) M Min Max M Min Max M Min Max
0 1 .1 5 0.0 -1.0 2.9 -1.4 -4.1 2.0 =52  -12.0 14
0 1 3 5 0.1 -0.9 33 -14 -4.0 2.0 ~5.1 -11.9 1.3
.1 0 .1 3 0.0 -1.0 2.8 -1.5 -4.2 2.0 -53 -12.1 13
1 0 3 5 0.0 -1.0 2.8 -1.5 -4.2 2.0 ~5.4 -12.3 1.3
.1 Bl .1 1 5 0.0 -1.0 2.8 -1.4 -4.1 2.0 -5.2 -12.1 1.3
.1 1 1 3 .5 0.1 —0.9 33 ~1.4 -4.0 2.0 =52 -12.0 1.3
1 1 3 .1 5 0.0 -1.0 2.8 -1.5 -4.1 2.0 -54 -12.3 1.3
N Bl 3 3 5 0.1 -0.9 33 -1.4 -4.1 2.0 =53 -12.2 1.2
0 Bl 1 8. 25 =24 11.7 1.0 -53 8.5 =27 -10.6 3.0
0 Bl 3 8. 2.8 -2.1 12.3 1.2 -5.0 9.1 ~2.5 -10.3 3.1
.1 0 .1 8. 23 =235 11.3 0.9 -5.3 8.2 -2.9 -10.8 3.0
| 0 3 8. 2.4 -24 11.3 0.9 -53 8.2 -29 ~10.9 3.0
1 A .1 .1 8. 2.5 -2.3 11.7 1.0 -5.2 8.6 =27 -10.6 3.0
.1 A .1 3 8. 29 =21 124 1.3 -4.9 92 =25 -104 31
1 1 3 1 8. 2.6 ~2.3 11.7 1.1 -5.2 8.5 2.8 -10.8 3.0
1 1 3 3 8. 3.0 =2.0 124 14 -4.9 9.1 -2.6 -10.5 3.1

Note. Note that the value of ayls irrelevant when g = 0, and similarly for as and g,
of fastest condition and upper tail of the slowest condition, respectively; g,

p and g = proportions truncated from lower tail
= proportion of spuriously fast trials; g, = proportion of

spuriously slow trials, a, = proportion of spuriously fast trials escaping truncation; a, = proportion of spuriously slow trials escaping

truncation,

skewed to the right), the corresponding shapes of their hazard
functions may differ quite remarkably (see examples pro-
vided by Luce, 1986, p. 18) and thus provide additional in-
formation, Unfortunately, hazard functions must be inter-
preted cautiously when the distribution of RTs has been
truncated, because truncation can drastically alter the shape
of the hazard function, as is illustrated in this section.

The hazard function % of a random variable T is
defined as

AU

h(t) = =y

(69)

where functions F and f denote the CDF and the PDF of T.
Hence, h characterizes the instantaneous probability of oc-
currence of a response at T = ¢, conditioned on the lack of
a response by that time.

To illustrate the fact that quite similar PDFs may have
rather different ks, we note that # is an increasing function
of t for the special Erlangian distribution, a constant function
for the exponential distribution, a first increasing and then
decreasing function for the lognormal, and an increasing
function for the ex-Gaussian (see Barlow & Proschan, 1965;
pp. 14-15; Luce, 1986, pp. 507-511).

If the PDF of T is truncated, then the associated hazard
function is given by the following (see Elandt-Johnson &
Johnson, 1980, pp. 54-55):

< eqn__ SO
h(tlL—T_.U)—m (70)

_ o L= F)

R w

The shape of the true hazard function is not altered by trun-
cation of scores from the bottom tail of the distribution, as
is obvious from the fact that the hazard function for the trun-
cated distribution does not depend on L.

However, truncation of the upper tail can considerably dis-
tort the true shape. Consider, for example, the exponential
distribution. The constant value of its hazard function is
equal to its rate \, A(t) = A, but the hazard function of the
truncated distribution equals

htIT=U) =M1 - exph¢c — D). (72)
This function increases with ¢, and in fact the increase is quite
rapid as ¢ nears the upper cutoff U. Thus, truncation can
produce substantial shape distortions of true hazard func-
tions, especially near the upper cutoff, Clearly, hazard func-
tions will have limited usefulness in RT research when
RT distributions have to be truncated from above, be-cause
the shape of hazard functions is not robust against this trun-
cation.

Hazard  functions with contaminated distributions.
When some contamination by outliers remains even after
truncation of the RT distributions, the spurious RTs and trun-
cation will both act to distort the shape of the true hazard
function. The exact nature of the combined shape distortion
is not clear, but an optimist might hope that these effects
would fortuitously counteract each other, thereby allowing
interpretation of observed hazard functions with contami-
nated, truncated RT distributions, even though uncontami-
nated truncated distributions yield seriously distorted hazard
functions. As might be expected, our investigations indicate
that this optimism is ill-founded.
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Figure 7. Hazard functions for four combinations of mixture probabilities (gs &). Left upper
panel: (0.00, 0.00). Right upper panel: (0.00, 0.05). Left lower panel: (0.05, 0.00). Right lower panel:
(0.05, 0.05). The corresponding probability density functions are shown in Figure 6. (See text for

more details.)

The hazard function of the mixture distribution given by
Equation 8 is

gih(1)S,(1)
&S + (1 — g, — g)S,(0) +gS,()

where Si(t) = 1 = Fy(t) for i = f, s, v (see Bain, 1978, p.
117-118). Note that k, can be interpreted as the weighted
average of hs h,, and hq.

We investigated the distorting effects of spuriously fast and
slow RTs on the hazard function & of true RTs, using Equation
73 based on the mixture model T, = mix(Ty, T,, T,). Figure
7 shows h, for four different mixtures of the distributions
shown in Figure 6, with mixture probability combinations
(g &) of (0, 0), (.05, 0), (0, .05), and (.05, .05). It can be
seen that the true A, shown in (0, 0), increases to an asymp-
totic value of A = .01.1° As is to be expected, spuriously fast
RTs produce only slight distortions of the true hazard func-
tion. Spuriously slow RTs, however, dramatically change the
asymptotic property of the hazard function, as can be seen
in the panels with (0, .05) and (.05, .05). The effect of spu-
riously slow RTs s so large, in fact, that it creates doubt about
whether anything can be inferred from observed hazard func-
tions, except in experiments where great pains are taken to
ensure that such RTs never occur.

(73)

h,(?)

Clearly, the combination of truncation and spuriously slow
RTs does not magically solve the problem, as is illustrated
by Figure 8, which shows hazard functions for the same
distributions truncated at ¢ = 1,400. (Similar results are ob-
tained with other truncation points.) In the present reasonable
case, at least, it appears that the distorting effects of trun-
cation and spuriously slow RTs reinforce each other rather
than compensating, so the observed hazard functions have
shapes nothing like the true, underlying ones.

How Is Statistical Power Affected by Truncation?

Power with uncontaminated distributions. It is well
known that the power of a statistical test increases with
sample size. In particular, a given difference in population
mean RTs of two experimental conditions is more likely to
yield a statistically significant difference between sample
means with large samples than with small ones. As truncation
decreases sample sizes, it appears that a given mean RT dif-
ference should be more difficult to detect with truncation
than without it. We investigated this question to see whether
truncation seriously decreases statistical power.

10 See Appendix C for a discussion of models in which bazard
functions approach asymptotic values.
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Figure 8. Hazard functions of truncated probability density functions for four combinations of
mixture probabilities (g, g.). The truncation point in each panel is 1,400. Left upper panel: (0.00,
0.00). Right upper panel: (0.00, 0.05). Left lower panel: (0.05, 0.00). Right lower panel: (0.05, 0.05).
The corresponding untruncated probability density functions are shown in Figure 6. (See text for

more details.)

The investigations were carried out using Monte Carlo
simulations, and they were limited to the case of experiments
comparing two conditions with different mean RTs. In a first
set of simulations we examined truncation effects in the lim-
iting case without spurious observations (i.e., when research-
ers truncate because they incorrectly suspect that there may
be outliers). In a second set of simulations described next, we
examined truncation effects when spurious observations
were actually present.

As the basis for each simulation in the first set, we assumed
two untruncated PDFs, f, and f,, with the mean E[Y] of Iy
being larger than the mean E{X] of f,. The simulations imple-
mented a scenario in which two researchers analyzed the
same data. Researcher A used untruncated samples in the
analysis, whereas Researcher B used truncated samples.
Thus, independent random samples X,...,Xy and
Yy, ..., Yy were drawn from f, and f,, respectively. Each
researcher tested the null hypothesis Hy: E[Y] = E[X]
against the alternative hypothesis H,: E[Y] > E[X], using a
Z test:

7= M, - M, 74
\/SD[YP + SDIX} 74
N

where M, and M, are the sample means and SD[X] and
SD[Y] are the population!! standard deviations of the dis-
tributions f, and f,, respectively.

For any given set of sample values, Researcher A rejected
Hy in favor of H if the statistic Z was larger than a given
threshold value (e.g., 1.65). Researcher B analyzed the same
samples X;, ..., Xyand Yy, . .., Yyused by Researcher A,
and he also tested Hj against H,. However, unlike Researcher
A, Researcher B included in the z test only those sample
values within a prespecified interval (e.g., between 100 ms
and 2,000 ms). Clearly, Researcher B tended to have smaller

'"'In a real experiment, the values of SD[X] and SD[Y] are of
course unknown, and they are therefore estimated by the corre-
sponding sample values. In this case, the random variable Z only
approaches a standard normal distribution for large sample sizes,
and a ¢ test is often used instead of a z test. Nonetheless, we used
the z test for our simulations, because this test allowed us to more
easily equate the power of the test across the various untruncated
conditions; for sample sizes larger than 30, which we used, the z
and ¢ tests are nearly identical anyway. Furthermore, our simula-
tion results were nearly uninfluenced by whether population stand-
ard deviations or corresponding sample estimates were used for
computing the Z statistics, so we only report the results with
sample standard deviations involved in computing Z.
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samples for the z test than Researcher A, and having a smaller
sample tends to reduce the power of B’s test relative to the
power of A’s. In addition, the difference in means of the
truncated distributions E[Y.) — E[X.] may well be smaller
than the difference in means of the untruncated distributions
E[Y] - E[X], which would further lower B’s power. On the
other hand, the standard deviations SD[X..] and SD[Y.] of
the truncated populations are smaller than those of the un-
truncated populations. Because the power of Equation 74
increases as population standard deviations decrease, this
could partly compensate for the power loss produced by the
reduction in sample size and mean difference. Hence, the
question arises: How much is the power of Researcher B’s
statistical test (with truncation) lowered relative to the power
of Researcher A’s test (without truncation)?

We ran Monte Carlo simulations to investigate this ques-
tion under a number of conditions. The main dependent vari-
able of the simulations was the statistical power for Re-
searcher B’s analysis (with truncation). The main features of
these simulations were as follows:

1. Independent samples of size N were drawn from f and
f,» which were Erlangian distributions with shape parameters
m,and m, = m, + 1 andrates A, = A, (additional simulations
using ex-Gaussian distributions are reported in the next sec-
tion). Across simulations the parameter ., was set to 2,4,
or 6, and the rates were adjusted so that the mean of f, was
always equal to 150 ms. The sample size N in each simulation
was adjusted so that a power 1 — B = .8 of the z test was
obtained in the untruncated case.'

2. The lower truncation point L was set at a value that
would truncate one of six proportions from the corresponding
tail of f,: px = 0, .005, .01, .02, .04, or .08. Analogously, the
upper truncation point U was set to cut off the same pro-
portions from the upper tail of f,, and p and ¢, were varied
orthogonally. The percentages truncated from the other two
tails (i.e., top of f, and bottom of f;) were uniquely deter-
mined by the truncation points U and L.

3. Estimates of the power of the truncated analysis were
obtained for each combination of levels of the independent
variables. Each estimate was based on 10,000 repetitions of
the following series of steps: (a) Two random samples of size
N, X,,...,Xyand Yy,..., Yy, were drawn from the un-
truncated PDFs f, and f,, respectively. (b) The Z statistic was
computed using all of the observations, and it was checked
to see whether the event {Z > 1.65} had occurred. This en-
abled us to estimate the statistical power for the untruncated
analysis. Because the probability of this event could be com-
puted from the assumptions, this served as a check on the
calculations. (c) Observations outside of the interval [L, U]
were excluded, and the Z, statistic was computed for the
reduced sample. This value was checked to see whether the
event {Z, > 1.65) had occurred. This permitted us to estimate
the statistical power for the truncated analysis.

Table 12 summarizes the estimated power for truncated
PDFs of the special Erlangian as a function of p, gy, and m,.
It can be observed that the power of the z test is clearly
affected by excluding extreme values. However, this effect
is asymmetrical: Power is reduced much less if extreme
values from the upper tails of the RT distributions are dis-
carded than if values from the lower tails are discarded.

Table 12
Estimated Power as a Function of my, p.%, and q,%

p%) my 00 05 10 20 40 80

0.0 2 81 80 .80 .81 79 78
4 81 g0 .80 .79 78 76
6 80 80 .80 .78 71 75
0.5 2 80 80 .80 .79 79 76
4 79 79 78 8 76 74
6 79 78 18T 74 73
1.0 2 80 79 79 9 78 77
4 79 79 8. .71 76 74
6 79 76 77 .76 74 71
20 2 78 78 18 7T 76 75
4 77 7776 5 74 71
6 76 76 75 .3 72 70
4.0 2 75 76 76 74 73 73
4 74 74 5 72 71 67
6 74 730721 69 67
8.0 2 72 73 72 0 69 66
4 J0 70 .69 68 65 .61
6 69 68 .68 67 64 .59

Note. m, = shape parameter of f;; g, = proportion truncated from
upper tail of f,; P = proportion truncated from the lower tail of f,.

The exclusion of extremely large observations reduces
variance more than the exclusion of extremely small obser-
vations (because of the skew), and power increases as yari-
ance decreases. In fact, there is almost no power loss if ex-
treme values from the upper tails are discarded, especially
for the more skewed distributions (i.e., smaller values of
m, and m,).

Power with contaminated distributions. It is also appro-
priate to consider the case in which some spurious obser-
vations contaminate the RT distributions even after trunca-
tion. Thus, we conducted a second set of simulations in which
observations were taken from mixture distributions of valid
RTs, spuriously fast RTs, and spuriously slow RTs (Equation
8). We assumed that identical processes would produce spu-
rious RTs in the two experimental conditions, so both the
proportions and the distributions of spuriously fast and slow
RTs were equated across the two conditions.

As in the previous simulations examining power, there
were two PDFs of valid RTs, denoted by f; and f,, corre-
sponding to the two different experimental conditions, and

12 Given that the Central Limit Theorem holds approximately
for sample means M, and M,, the relation between sample size N
and power (1 - B) is N = {(VaX] + VaY]/(E[X]—
E[Y])?} X [®@°'(1 - ) + ®-'(1 - B)J%, where function &-!
denotes the inverse CDF of the standard normal distribution and o
the Type I error. For example, with a = .05, B = .10, SD[X] = 50,
SD[Y] = 80, E[X] = 400, E[Y] = 440 one obtains

507+ 80? . -
N = oo aaoy X (2799 ®-1(.90)]

= 5.56 X [1.65 + 1.28T

=477

~ 48,

Thus a sample size of N = 48 is expected to yield the desired
power of Pr{Z > 20s!H)) = 1 - B =~ 90 in this example
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Table 13
Estimated Power P, for Untruncated Samples
as a Function of g; and gy

gs (%)

&r (%) Measure 0.0 2.5 5.0 10.0
00 P, 80 6 51 38
max[P;] 80 79 77 12

Dx .00 .00 .00 .00

q, .00 .04 .08 10

25 P, 75 58 49 34
max[Py] 77 4 T2 67

P 0 04 02 04

7 0 04 08 .16

5.0 P, .70 .55 46 32
max(Ps] 74 72 69 64

P 04 04 08 08

q, .00 .04 04 .16

100 B, 61 41 38 28
max[Pj] .70 .67 65 58

P 08 08 08 08

q, 00 .04 08 16

Note. Max[Pg] denotes the maximal power for each combination
of g, and g, under an optimal selection of the values p, and Gy
P, = power for untruncated samples; g, = proportion of spuri-
ously slow trials; g = proportion of spuriously fast trials; p, =
proportion truncated from lower tail of f,; g, = proportion trun-
cated from upper tail of f,.

the mean of f, was larger than the mean of f,. Thus, the
observed RTs in the two conditions were given by the mix-
tures f,. and f,,. Again, Researcher A used untruncated
samples and Researcher B used truncated samples, and both
evaluated the null hypothesis Hy: E[Y] = E[X] against the
alternative hypothesis H: E[Y] > E[X] using a 7 test. As
before, the dependent variable of the simulation was the sta-
tistical power for each researcher’s analysis.

The parametric assumptions and independent variables of
this set of simulations were as follows:

1. In all simulations, ex-Gaussians were used for the dis-
tributions of valid RTs f;, f,, and for the distributions of spu-
riously fast and slow RTs fand f,, with parameter settings of
(x = 500, o = 100, 7, = 100), (u, = 545, o, = 105, 7,
= 105), (s = 300, oy = 30, 7, = 10), and (u, = 1200, o,
= 110, 7, = 100), respectively. With these parameters the
true mean and standard deviation are 600 and 141 for f, and
650 and 148 for f;. A sample size of 104 is needed to detect
this mean difference with a power probability of .8 in the
untruncated and uncontaminated case. This basic sample size
was kept constant across all simulations, although the ef-
fective sample size of Researcher B was always smaller, de-
pending on the extent of truncation.

2. The truncation points L and U were set to values that
cut off proportions p, and g, from the lower tail of f,, and
the upper tail of £, respectively, and p, and gy were varied
factorially over the values 0, .01, .02, .04, .08, and .16.

3. The mixture probabilities gr and g, were also varied
factorially, using values of 0, .025, .05, and .1.

4. Estimates of power were obtained for the 576 combi-
nations of the independent variables p,, ¢,, g5 and g,. Each
estimate was based on 10,000 repetitions of the same three
steps described for the first simulation set.

Table 13 summarizes the main results of the simulation.
For each combination (g4 g;), the table presents the esti-
mated power for Researcher A, P4, who used contaminated
samples untreated by truncation. P, is attenuated very
strongly as the amount of contamination increases, consis-
tent with the intuition on which truncation is based in the
first place. For example, it is attenuated by more than 20%
for the relatively moderate values g, = .025 and g, = .025.
As expected, P, is more attenuated by increases in g, than
by increases in g The table also presents max[Pg], which
is the maximum power of Researcher B under each combi-
nation (gs &), using optimal values of p, and g,, which
are also shown in the table."® For example, with g, = .025
and g, = .1, Researcher B’s power would be maximal for
px = .04 and g, = .16, namely, max[Pz] = .67. Note that
this maximal value is almost twice as large as Researcher
A’s power (P4 = .34). Thus, it is clear from the simulation
results that appropriate truncation cutoffs can remove al-
most all of the negative effect of contamination on statisti-
cal power.

Summary of Truncation Effects

Truncation of RT distributions seems to be one of the most
common methods of outlier exclusion, presumably because
it is conceptually simple and can easily be implemented in
computer-controlled experiments. For example, trials on
which the measured RT does not fall within a preselected
interval are sometimes excluded and repeated later in the
same experimental block, thereby assuring a “complete”
data set.

The results presented thus far, however, make it clear that
various nontrivial distortions can occur when RT distribu-
tions are truncated from below, above, or both. We consid-
ered both the case in which all spurious observations are
successfully eliminated by truncation and the case in which
some spurious observations fall within the truncation
bounds and therefore contaminate the distribution used for
analysis. First, we examined truncation-induced bias in the
mean, median, standard deviation, and skewness of RT.
This analysis was performed for three important RT distri-
butions: the special Erlangian, the lognormal, and the ex-
Gaussian. Interestingly, effects of truncation were much
the same for all three. In each case, bias depended on both
the skewness of the underlying RT distribution and the
amount truncated from above and below. Truncation
tended to have a small to moderate biasing effect on the
mean and median, but it had rather larger biasing effects
on the standard deviation and skewness. With a lot of luck,
spurious observations that fall within the truncation bound-
aries could counteract the effects of truncation on the mean
or median, but this appears virtually impossible for the
standard deviation and skewness. As discussed further in
Appendix A, the tables presented here can be used to esti-
mate bias effects in actual data.

-13 Note that max[Pg] was determined on the basis of the 16
combinations of the (p,, g,) used in the simulation. Thus, max [Pg]
is expected to be somewhat smaller than the true maximum power.
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Second, we examined the distorting effects of truncation
on linear RT functions, and the results indicate that mean-
ingful distortions can result under fairly ordinary condi-
tions. Distortions usually make truly linear mean RT func-
tions appear to be negatively accelerated, consistent with a
number of empirical findings, and would also tend to make
positively accelerated mean RT functions appear more lin-
ear. Interestingly, under several plausible models, contami-
nation by spurious observations does not disturb the linear-
ity of a mean RT function, although it can change the
slope and intercept. In analyses examining RT variance
rather than mean, truncation and contamination both de-
stroy underlying linear functions.

Third, we examined the effects of truncation on RT in
factorial experiments. Truncation produced small to mod-
erate underadditive distortions on mean RT, at least within
the conditions examined in our analysis. As with linear
functions, contamination by spurious observations had no
effect on the additivity or interaction of factor effects on
mean RT, but additivity of RT variances was seriously per-
turbed by both truncation and contamination.

Fourth, we analyzed the effects of truncation on hazard
functions. These can be substantial, with truncation pro-
ducing large qualitative changes in a hazard function’s
shape. Contamination by spurious observations also pro-
duces major qualitative changes, and it does not appear
that contamination and truncation are likely to counteract
each other’s effects.

Fifth, we evaluated changes in statistical power as a func-
tion of truncation. These changes were remarkably small.
Contamination by spurious observations, however, did se-
riously reduce power, but appropriate truncation could coun-
teract this reduction very effectively.

Given the sizable distortions that can occur when RT dis-
tributions are truncated, we next describe a maximum like-
lihood method for counteracting the effects of truncation and
recovering information about the untruncated distribution of
RTs from a truncated sample. This method appears quite
general, and should therefore be considered seriously when-
ever truncation is used, even when spurious observations
contaminate the data set.

Compensating for Truncation Effects

For certain types of analyses, researchers will find it highly
desirable to eliminate spurious observations from the data
set, because of these observations’ pernicious effects on the
analysis being conducted. As just seen, for example, spurious
observations can greatly reduce experimental power, and
truncation can combat their effects fairly effectively. In ad-
dition, spurious observations seriously disturb a model’s pre-
dictions about the mean and variance of RT, as discussed
earlier, so it may be necessary to remove these observations
before testing the model’s predictions. When truncation is
used to remove spurious observations, however, it is neces-
sary to try to correct the analysis to remove the biasing effects
that truncation has been found to produce.

Fortunately, if the family of the RT distribution can be
specified (e.g., ex-Gaussian), it may be possible to remove

some or all of the truncation bias using a modified maximum
likelihood approach. In this section, we show how research-
ers can estimate the true parameters of the underlying un-
truncated PDF f from the truncated sample and can then use
these parameter estimates to infer (approximately) unbiased
statistics of the full untruncated PDF. In addition, simulations
indicate that this compensation procedure works surprisingly
well even when the family of the RT distribution is unknown
and occasional spurious observations occur either inside,
outside, or inside and outside the truncation interval.

Intuitively, the likelihood of a data set corresponds to the
overall probability of observing that data set. It is computed
by assuming a particular underlying model, determining the
likelihood of each individual observation given that model,
and (with independent observations) finding the product of
all the individual likelihoods. For example, with a data set of
continuous, independent RTs (#, f, ..., ty) from the ex-
Gaussian distribution, the likelihood function is

N
L, ... typo ) ={[lfeIn o0} 75
i=1

where f is the ex-Gaussian probability density function and
u, o, 7 are particular values of its three parameters. Maxi-
mum likelihood estimates are simply numerical values of the
parameters (in this case u, 0, and 7) that maximize Equation
75 for a given set ;, . . . , ¢y of observed RTs; in many prac-
tical situations, these values can be obtained by numerical
search algorithms.

In general, when fast and slow spurious RTs may be pre-
sent in the data set, the likelihood function for a set of ob-
served RT5s is

N
L, ... ty10) ={II £ O}, (76)

i=1

where f, is the probability density of a mixture, given by
Equation 12, and © is the set of parameters on which the
mixture depends (i.e., g5 g and all the parameters of the
distributions f; f,, and f;). Unfortunately, to find parameter
estimates that maximize this likelihood, researchers would
have to specify a particular distributional family (e.g., ex-
Gaussian) for the fast and slow spurious RTs, and in practice
there is never enough information about the spurious RTs to
be able to do this with confidence. Thus, it is not practical
to try to maximize the likelihood of the full data set.

Nonetheless, we thought a simplified version of this ap-
proach, one that did not require any assumptions about the
distributions of spurious RTs, might be useful. We actually
examined three different simplifications; we report first and
in most detail the one which worked the best. At the end, the
others are mentioned briefly.

One simplified approach is to use a likelihood function
assuming that there are no spurious observations (e, &=
gs = 0) and still protect against biasing effects of spurious
observations (in case the assumption is wrong) by truncating
extreme RTs. Theoretically, this approach appears somewhat
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self-contradictory, but it could still be useful in practice be-
cause the biasing effects of truncating valid RTs could ap-
proximately offset the biasing effects of the spurious RTs that
are being ignored. In addition, we show later that, when g,
and g are not too far from zero, this approach provides an
approximation to a more realistic, yet more difficult to mini-
mize, likelihood function given by Equation 80.

Let f(#10) be the untruncated PDF, which depends on the
parameters © = (,,..., 0;), let, ..., 1y be the observed
RTs in the acceptance interval [L, U], and assume that there
are Ny, observed RTs less than L and Ny, observed RTs greater
than U (ie., N = N, + N, + Ny observations in total).
Under these assumptions, the likelihood function L
(t),...,ty, N, N, O) for the data set is given by (Kendall
& Stuart, 1967, Vol. 2, Equation 32.37)

Lty ... 1y, N, N,1©)

= {F(L1 ©)}" x {fl f(t,.IQ)} X {1l — FUIO)W. (17)

i=1

The parameter values that maximize the likelihood function
L, say 6, are the maximum likelihood estimates of param-
eters ©, and numerical methods are available for discovering
these values (e.g., Press et al., 1986, chapter 10). Once the
maximum likelihood estimates have been obtained, research-
ers can recover estimates of the desired statistics (e.g., mean,
median, or variance) of the untruncated PDF f. Assuming the
ex-Gaussian distribution, for example, if . and % are the
maximum likelihood estimates for a given subject and con-
dition, then the maximum likelihood estimate of E[T] is sim-
ply i + 7. Analogously, any other statistic can be estimated
for the untruncated distribution, given estimates of the pa-
rameters of the full distribution. In an actual experiment,
then, the researcher could obtain such estimates for each
subject and condition, and analyze these estimates to test the
hypotheses of interest.

We conducted nine groups of simulations to evaluate this
strategy of compensating for truncation effects in studies of
mean, or standard deviation of RT. In each group of simu-
lations, valid RTs were generated from one of three distri-
butions (i.e., ex-Gaussian, Erlangian, or lognormal), and the
maximum likelihood parameter estimates were obtained
for one of the three different models. For example, in one
group of simulations the data were generated from an un-
derlying ex-Gaussian distribution and maximum likelihood
estimates were obtained for the best-fitting lognormal
model for the randomly generated data. In fitting a model
other than the one used to generate the data (i.e., fitting the
“wrong” model), we intended to examine the robustness of
each fitted model to violations of its assumptions about the
distribution of the underlying data. We used three-
parameter versions of the models both for generating the
data and for fitting the simulated RTs, and parameter val-
ues used to generate the data were chosen to make the re-
sults as comparable as possible across simulations. For the
Erlangian, the three parameters were m, A, and a constant
added to all the RTs, which were set to values of 2, 0.013,
and 450, respectively, for generating RTs. For the lognor-
mal, the three parameters were w, o, and a constant added

to all the RTs, which were set to values of 4.81, 0.64, and
450, respectively, for generating RTs. For the ex-Gaussian,
the three parameters were w, o, and 7, which were set to
values of 500, 20, and 100, respectively, for generating
RTs. With these parameter values, the mean of the untrun-
cated distribution was 600 in all three cases, and the stand-
ard deviations ranged from 102 to 106.

Within each of the nine groups of simulations, 16 indi-
vidual simulations were conducted, structured according to
a4 X 2 X 2 factorial design with the following factors:

1. The sample size N of the simulated experiment was 10,
20, 40, or 100.

2. The truncation cutoff was either the 90th or the 68th
percentile point of the distribution used to generate the data.
Thus, in different simulations either the top 10% or the top
32% of the observations were removed by truncation. Al-
though 32% is clearly an unrealistically large percentage of
observations to exclude by truncation in practice, we in-
cluded this value in the simulations to see if the procedure
failed catastrophically at larger truncation percentages. No
truncation at the lower end of the distribution was used, be-
cause the results of the section Bias Effects of Truncation on
Mean, Median, Standard Deviation, and Skewness indicate
that such truncation creates smaller biases in the first place
(e.g., Figure 2).

3. To check on the robustness of the procedure, the prob-
ability of a spuriously slow observation was set to either 0%
or 10%. After all, Equation 77 is based on the assumption that
only valid RTs are thrown out (i.e., 0% true outliers), but in
practice researchers may also exclude some spurious obser-
vations exceeding the truncation cutoff. This tends to in-
crease Ny, thereby influencing the parameter estimates that
maximize Equation 77, and spurious observations may ul-
timately bias the maximum likelihood estimates. The simu-
lations with 10% true outliers were conducted to check for
such bias, and we assume that the bias obtained in these
simulations is a reasonable upper bound on the bias in most
common experimental settings. For these simulations, it was
assumed that all spuriously slow RTs were sufficiently ex-
treme to exceed the truncation cutoff, so that they would not
contaminate the analysis after truncation. The case in which
spuriously slow RTs come from a less extreme distribution,
and therefore do contaminate the analysis, is considered be-
low.

For each of the 144 different individual simulations de-
scribed above (3 valid data distributions X 3 fitted distri-
butions X 4 sample sizes X 2 truncation cutoffs X 2 prob-
abilities of spuriously slow RTs), we simulated 500 identical
subjects. The first step in simulating each subject was to
generate a sample of N RTs. In the simulations with 0%
spuriously slow observations, each RT was randomly gen-
erated from the valid data distribution being used for all the
subjects in that simulation. In the simulations with 10% spu-
riously slow observations, each RT was generated from the
valid data distribution with probability .9, and a spuriously
slow RT exceeding the cutoff was generated with the comple-
mentary probability of .1. After the sample had been gen-
erated, all Ny, RTs exceeding the truncation cutoff were ex-
cluded. Then, using those N, sample RTs remaining after
truncation, maximum likelihood estimates were obtained by
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maximizing Equation 77 for the model being fitted.'* Finally,
the untruncated mean, median, and standard deviation for
that subject were estimated by calculating the mean, median,
and standard deviation of the fitted distribution having pa-
rameter values equal to the obtained maximum likelihood
estimates.

Across the 500 subjects in each simulation, we computed
the averages of the untruncated mean, untruncated median,
and untruncated standard deviation. To the extent that the
procedure is successful in recovering the true, untruncated
parameters (i.e., in removing truncation bias), these averages
should be close to the true means, medians, and standard
deviations of the valid data distributions from which the RTs
were generated. For comparability with our earlier analyses
(see, e.g., Equation 22 and Figure 2), these computations
were summarized by computing relative bias, defined as the
percentage deviation of each average (i.e., mean, median,
and standard deviation) from the corresponding true value.
For example, the relative bias, 8, of the estimated mean fi was
defined as

5=t . £ 100%. (78)

The results of these simulations are summarized in Tables
14 and 15 for 0% and 10% spuriously slow RTS, respec-
tively. For recovering means of the data distributions, the
procedure worked rather well, especially when parameters
were estimated by fitting the special Erlangian.’s With this
fitted distribution, relative bias of the estimated means was
no more than =1.5% in any of the different simulation
conditions. In contrast, the truncated means themselves
had much greater relative biases (averaging -4.3% and
-9.2% with 10% and 32% truncation, respectively). Thus,
the maximum likelihood procedure yielded means that
were much less biased than the means of the truncated
samples, suggesting that this procedure might be of con-
siderable practical value.

In addition to having small biases, the procedure appears
to be robust for the estimation of means, given that the special
Erlangian is used as the fitted distribution. This conclusion
is suggested by the fact that the procedure produced good
estimates of mean regardless of whether the true distribution
of valid RTs was Erlangian, lognormal, or ex-Gaussian dis-
tribution and regardless of whether 0% or 10% spuriously
slow RTs were present. This robustness suggests that the
special Erlangian may safely be used to compensate for
truncation effects on the mean in real experiments, when
the true underlying distribution and proportion of outliers
are unknown.

Finally, the means estimated using the special Erlangian
also have acceptably low variance. This was measured by
r, the ratio of the standard deviation of the 500 subject
means estimated by the maximum likelihood procedure to
the standard deviation of the actual subject means calcu-
lated from the 500 untruncated samples. With this defini-
tion, r values less than 1 indicate that the means obtained
from the maximum likelihood procedure were less variable
than the means of the samples themselves, and ratios
greater than 1 indicate that the maximum likelihood proce-

dure yielded more variable means. As the r values are
close to 1, it is clear using the maximum likelihood proce-
dure to reduce bias does not add substantial random noise
to the estimation process.

It is interesting to note that in a few cases the estimated
means obtained with the maximum likelihood procedure
actually had lower variance than the means of the full
sample (i.e., cases with r < 1). Clearly, maximum likeli-
hood estimators from a truncated sample use fewer obser-
vations than estimators from the untruncated distribution.
As the accuracy of the estimation process increases with
sample size, one might expect that estimates from a trun-
cated sample would have greater variance than estimates
from a full sample. However, this is not necessarily true
(Rao, 1958, cited in Kendall & Stuart, 1967). As found
here, an increase in estimation efficiency can result under
moderate amounts of truncation (Kendall & Stuart, 1967,
p. 524).

As with the mean, recovery of the median with the maxi-
mum likelihood procedure was also quite good, with relative
biases less than =2.3% when the special Erlangian was used
as the fitted distribution, Unfortunately, recovery of the
standard deviation was not nearly as successful as recovery
of the mean and median. To recover the standard deviation,
it seems best to fit the ex-Gaussian distribution, but this pro-
cedure still led to relative biases exceeding 10% in some
cases. Still, the recovered standard deviations were much less
biased than those obtained by using truncated samples (e.g.,
Figure 2), and so the procedure should still be seriously con-
sidered when examining standard deviations of truncated
samples.

Compensation With Contaminated Distributions

To examine the situation in which spuriously fast or slow
RTs contaminate the observed RT distributions even after
truncation, we ran 16 additional sets of simulations in which
the observed RTs were mixtures of valid RTs, spuriously fast
RTs, and spuriously slow RTs. The spuriously fast and slow
RTs came from ex-Gaussian distributions with parameters of
(i = 300, oy = 30, 7, = 10) and (p, = 1,200, o, = 110,
. = 100), respectively. The 16 sets of simulations differed
with respect to the probabilities of spuriously fast and slow
RTs, which varied factorially over the values of 0, .025, 0.05,
and .1.

Each of the 16 sets of simulations had the structure
shown in Table 14 (i.e., 3 distributions used to generate
valid RTs X 3 distributions used to fit maximum likeli-

14 The first factor on the right side of the equation was always
one, as no truncation from below was used.

1S When fitting the lognormal distribution, the estimation pro-
cedure converged to unreasonable parameter values for a small
percentage of samples (approximately 0.4% overall, but as many
as 4% in some conditions with sample sizes of 10). These param-
eter values yielded estimates of the untruncated mean greater than
2,000 ms, or else yielded estimates of the untruncated standard
deviation that were greater than the mean. These estimates were
excluded when computing the average relative biases reported in
Tables 14 and 15.
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Table 14

Average Relative Biases of Means and Standard Deviations Recovered From Truncated Samples Using Maximum
Likelihood Estimation, and a Measure of Stability of Means From Simulations With 0% Spuriously Slow Reaction Times

Sample size
Truncate 32% Truncate 10%
Fitted Data
distribution ~ distribution =~ Measure 10 20 40 100 10 20 40 100
EG EG M ~0.1 0.0 0.5 0.2 0.9 0.3 0.1 -0.1
SD =122 =3.7 2.0 1.3 6.1 -2.4 03 -0.8
r 1.21 1.32 1.41 1.28 1.18 1.14 1.07 1.10
EG ER M 0.9 1.2 0.8 1.0 0.7 0.0 -0.3 -0.1
SD 34 13.9 14.2 19.3 0.7 4.0 5.7 104
r 1.51 1.70 1.59 1.50 1.37 1.15 1.10 1.15
EG LN M 0.1 -0.1 0.1 0.2 0.6 -0.1 0.1 -0.2
SD -12.5 -8.2 -2.1 -1.9 -12.5 -8.2 -4.2 -3.8
r 1.10 1.23 1.32 1.22 1.06 0.98 1.05 1.01
ER EG M -15 -1.3 -1.2 -1.4 0.5 -0.3 -0.3 -0.5
SD -28.3 -22.6 -20.8 -20.3 -18.5 -16.1 -145 -13.1
r 0.96 1.04 0.96 0.96 1.00 0.98 0.99 0.97
ER ER M -1.2 -0.9 -0.7 -0.7 -0.5 -0.4 -0.7 ~0.6
SD -17.4 ~11.8 -8.2 -6.1 -14.6 -9.9 -84 =53
r 1.08 1.19 1.15 1.17 1.05 1.05 1.05 1.04
ER LN M -1.0 -14 -1.2 -1.3 -0.4 -0.9 -0.6 -0.5
SD -27.9 -25.8 -22.7 -21.9 -24.1 -22.9 -19.0 -16.9
r 1.02 0.94 0.94 0.97 0.94 0.89 091 0.90
LN EG M -0.8 -0.9 -1.1 -1.7 0.1 -0.2 -0.4 ~0.7
SD -18.8 -18.1 ~19.4 —20.9 -12.3 -9.6 ~11.4 -12.8
r 1.15 1.24 1.07 1.01 1.06 1.04 0.99 1.00
LN ER M 2.4 2.7 3.1 2.1 1.8 1.2 0.7 0.8
SD 52.3 52.9 57.5 42.8 37.8 30.9 28.7 294
r 2.12 2.11 2.52 2.16 1.53 1.35 1.34 1.34
LN LN M 1.3 1.1 0.0 0.0 0.5 0.0 0.1 ~0.3
SD 12.8 7.9 -1.5 -0.4 -2.9 -3.0 -0.8 -2.8
r 1.72 2.11 1.40 1.87 1.25 1.03 1.05 1.05
Note. EG = ex-Gaussian; ER = Erlangian; LN = lognormal; r = measure of stability of means.

hood estimates X 4 sample sizes X 2 levels of truncation
from the upper tail of the valid RT distribution). Aside
from the spuriously fast and slow RTs generated from the
ex-Gaussian distributions, no additional outliers were gen-
erated, so the simulations were analogous to those in Table
14 rather than Table 15.

The results are summarized in Tables 16 and 17, which
present the average relative biases of the recovered means
and standard deviations, as well as the stability estimate r,
as a function of the fitted distribution, the underlying data
distribution used for the valid RTs, the percentage of ob-
servations truncated, and the probability of slow spurious
observations. The tables show results averaged over
sample size, which had negligible effects, separately for
the simulations with 0% and 10% spuriously fast observa-
tions, which produced the most extreme results.

It is evident that the recovered means are still nearly un-
biased, with relative bias values not too far from zero, and
are reasonably stable, especially when the special Erlangian
distribution is fitted. Recovery of the standard deviation was
not, however, particularly successful.

Overall, the results of these simulations indicate that the
maximum likelihood procedure for recovering the true
mean from a truncated data set is rather robust. Even when
spuriously fast and slow observations contaminate the RT
distribution, the estimation procedure recovers nearly unbi-

ased estimates of the means of the distributions of valid
RTs. Moreover, when the data are generated from a mix-
ture distribution, estimated means are in many cases much
more stable using truncation and maximum likelihood esti-
mation than using the actual observed mean of all observa-
tions, particularly when the mean is estimated using the
special Erlangian distribution. Of course, the high variabil-
ity of the untruncated sample mean obtained from a mix-
ture distribution is one of the main arguments in favor of
truncation, but it appears that this maximum likelihood
procedure can reduce this variability without introducing
the substantial bias that is characteristic of truncation by it-
self. In sum, the simulations with untruncated spurious ob-
servations reinforce the conclusion that a combination of
truncation with the maximum likelihood procedure may be
a very useful approach in the presence of observations that
are spuriously fast, observations that are spuriously slow,
or both.

Other Maximum Likelihood Approaches

Asnoted above, we ran similar sets of simulations to evalu-
ate two other modified maximum likelihood estimation pro-
cedures, but neither worked nearly as well as the one reported
above. One was to maximize the likelihood function for the
observations within the truncation interval, ignoring both the
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Table 15

69

Average Relative Biases of Means and Standard Deviations Recovered From Truncated Samples Using Maximum
Likelihood Estimation, and a Measure of Stability of Means From Simulations With 10% Spuriously Slow

Reaction Times

Sample size
Fitted Data Truncate 32% Truncate 10%
distribution  distribution =~ Measure 10 20 40 100 10 20 40 100
EG EG M 0.7 1.2 1.5 1.2 1.3 1.5 0.8 0.6
SD -5.1 34 8.5 7.7 -7.1 5.1 4.2 35
r 1.28 1.51 1.56 1.44 1.29 1.38 1.17 1.16
EG ER M 1.2 22 2.7 2.3 1.6 0.9 0.4 03
SD 5.1 159 26.1 277 3.9 6.5 10.3 134
r 1.47 1.81 1.76 1.72 1.46 1.41 1.20 123
EG LN M 0.0 0.9 1.1 14 1.2 0.7 0.4 04
SD -14.1 —4.5 1.8 5.6 -10.0 -6.2 -2.1 -0.3
r 1.30 1.42 1.49 1.46 1.27 1.10 1.15 1.14
ER EG M -0.8 -0.4 -0.5 -0.5 -0.1 0.2 0.1 0.0
SD -23.3 -17.8 -17.0 -16.2 -21.2 -15.6 -12.8 -11.0
r 1.04 1.27 1.14 1.06 1.09 1.08 1.04 1.06
ER ER M 0.0 0.5 0.5 0.2 0.4 -0.1 -0.2 -0.1
SD -12.5 5.7 -3.1 -1.6 -13.0 -8.7 -5.8 -2.8
r 1.14 1.32 1.34 1.28 1.17 1.12 1.13 1.13
ER LN M -0.7 -0.2 -0.2 -0.6 -0.2 -0.1 -0.2 -0.3
SD -26.2 -21.0 -19.7 -18.9 -24.9 -20.2 -17.4 -15.9
r 0.96 1.19 1.17 1.03 1.01 1.00 1.02 0.95
LN EG M -0.4 -0.1 -0.7 -0.6 1.1 0.3 0.2 -0.2
SD -16.1 -13.8 -16.0 -153 -3.8 -7.2 -7.8 -94
r 1.08 1.14 1.05 1.14 1.25 1.11 1.13 1.14
LN ER M 2.7 5.0 54 4.5 2.5 24 1.4 1.3
SD 51.0 78.6 82.4 67.9 43.5 434 33.9 34,3
r 1.83 2.48 2.84 2.51 1.71 1.58 1.45 145
LN LN M 0.6 1.1 1.3 1.0 1.0 1.1 04 0.3
SD 4.3 5.3 7.0 5.1 0.5 6.7 1.1 2.0
r 1.49 1.59 1.57 1.36 1.29 1.25 1.15 122
Note. r = measure of stability of means; EG = ex-Gaussian; ER = Erlangian; LN = lognormal.

observations outside this interval and the possibility of spu-
rious observations. In this case the likelihood function is as
follows (cf. Kendall & Stuart, 1967, p. 523):

Y f(2,10)
[F(U16) — FILIO)™

Lity,...,1,10) = (79)

Unfortunately, with many samples (especially small ones)
the parameter values that maximize this likelihood function
do so by driving the denominator toward zero, thereby lead-
ing to unreasonable estimates. Ratcliff (1993) also examined
the possibility of using this likelihood function to correct for
truncation effects, and he found that it worked reasonably
well with samples of 1,000 RTs uncontaminated by spurious
observations.

The third modified maximum likelihood approach we con-
sidered attempted to allow for spurious observations outside
the truncation interval. In this case, the likelihood function
is
Lt,. ..,

tys Ny Nyl ©) = {g,+ (1 — g, — g) F(LIO)}*

X (1 - & gs)NAX{H " f1 ©)}
X{g, + (1 — g~ g)[l — FUIO)Y,

where grand g; are the probabilities of fast and slow spurious

(80)

observations falling outside the truncation interval. Note that
this likelihood function reduces to Equation 77 when gr =
gs = 0, so Equation 77 can be viewed as an approximation
of it when grand g, are close to zero. This likelihood function
was more difficult to maximize than Equation 77 because
there are two additional parameters ( grand g,). More im-
portant, it was less successful in reducing truncation bias.

Recommendations

Two kinds of recommendations emerge from the system-
atic analyses undertaken here. The first type, general rec-
ommendations about handling outliers in general and about
using truncation in particular, are presented in this section.
The second set, a set of specific computational procedures
for use with truncated data sets, are presented in Appendix
A. The latter lays out reasonable heuristics for counteract-
ing truncation biases in a variety of common experimental
settings.

Our investigations lead us to recommend that researchers
pay much more attention to the consequences of their outlier
rejection methods. In particular, either RT distributions
should not be truncated at all or they should be truncated with
such extreme cutoffs that at most a tiny fraction (<.5%) of
valid RTs are excluded. There are two main reasons for thls
recommendation. i
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Table 16
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Average Relative Biases of Means and Standard Deviations Recovered From Truncated Samples Using Maximum
Likelihood Estimation, and Measure of Stability of Means for Mixture Distributions With 0% Spuriously

Fast Observations

Percentage of slow spurious RTs

Truncate 32%

Truncate 10%

Fitted Data
distribution  distribution ~ Measure 0 2.5 5 10 0 2.5 S 10
EG EG M 0.17 0.93 1.50 3.10 0.35 1.30 2.75 5.40
SD —-2.60 1.80 5.55 15.08 -2.75 4.22 13.78 30.40
r 1.31 0.97 0.83 0.73 1.12 0.80 0.77 0.71
EG ER M -1.33 -0.68 -0.05 1.20 -0.47 0.68 1.70 3.83
SD -22.50  -1973  -16.03 -10.65 -1658  -10.68 -5.05 5.28
r 1.00 0.68 0.61 0.53 0.97 0.70 0.64 0.59
EG LN M -1.13 -0.80 0.03 1.38 ~0.45 0.83 1.83 4.65
SD -19.08 -1677 -12.60 =545  ~11.88 -4.03 4.07 23.63
r 1.08 0.77 0.66 0.60 1.02 0.78 0.73 0.72
ER EG M 0.90 1.95 2.80 4.75 0.00 1.20 2.53 5.60
SD 12.75 19.05 2278 35.13 445 12.98 21.02 39.53
r 1.57 1.18 0.99 0.87 1.15 0.89 0.81 0.79
ER ER M ~0.53 -0.33 0.68 220 -0.60 0.65 1.58 3.93
SD -9.10 -8.43 ~3.63 3.10 -9.63 -3.35 1.13 11.93
r 1.19 0.85 0.70 0.64 1.04 0.79 0.69 0.63
ER LN M 335 4.72 5.63 8.10 0.73 2.58 4.35 8.15
SD 60.33 73.50 80.68  107.47 27.42 46.28 6138  100.58
r 2.15 1.59 1.35 1.27 1.37 1.12 1.01 1.03
LN EG M 0.00 0.95 1.60 325 -0.05 1.25 2.33 5.28
SD -6.93 -1.50 3.00 11.65 -8.08 0.88 7.33 24.68
r 1.24 0.95 0.85 0.71 1.03 0.82 0.74 0.69
LN ER M -1.35 -0.70 -0.20 1.20 -0.53 0.57 1.53 3.63
SD -2545 -2238 -19.88 -1380 -20.77 -1530 -10.35 -0.65
r 0.95 0.73 0.60 0.52 0.90 0.70 0.62 0.59
LN LN M 0.38 0.95 1.95 3.73 0.08 1.28 2.98 5.85
SD 0.58 545 12.03 24.80 ~1.18 8.48 2143 46.35
r 1.29 0.99 0.87 0.81 1.10 0.91 0.81 0.83
Note. r = measure of stability of means; EG = ex-Gaussian; ER = Erlangian, LN = lognormal; RTs = reaction timnes.

First, even truncating a small percentage of the valid RTs
can have a major impact on summary measures of RT dis-
tributions, so it is clearly not safe to truncate extreme ob-
servations and then ignore the fact of truncation, For ex-
ample, truncating RTs changes linear mean RT functions to
nonlinear ones, and vice versa. The very extremity that
causes observations to be excluded also causes them to have
a disproportionately large influence on the results, and so
model predictions change when these observations are ex-
cluded. Obviously, one cannot take much comfort from the
fact that only a small percentage of observations are ex-
cluded, because a small fraction of extreme observations can
have a substantial impact on summary statistics.

Second, we have seen that the effects of spurious obser-
vations may not be so bad after all. For example, when the
goal of an experiment is to check the linearity of the rela-
tionship between mean RT and some independent variable or
to check the additivity of the effects on mean RT of two
experimental factors, such RTs have no influence on the
qualitative predictions of various models in the first place
(i.e., they destroy neither linearity nor factor additivity). As
truncation can change qualitative predictions, substantially
so for linearity, it seems clear that the cure is worse than the
disease, at least for these designs. In most experiments, the
worst effect of spurious observations is the reduction in
power that they produce, and even this effect can generally

be overcome by increasing the number of subjects or ob-
servations per subject.

Of course, there may be research settings in which our
recommendation is impractical, because of the sheer number
of clearly spurious RTs (e.g., in research with clinical popu-
lations). In these cases, truncation or some other form of
outlier exclusion may be needed to improve the signal to
noise ratio of the data being analyzed, especially if it is dif-
ficult to get large samples. Even when truncation is unavoid-
able, though, the results of the present investigation have
some important implications.

For example, given the potential influence of outlier ex-
clusion on RT results, one obvious recommendation is that
researchers should describe in detail the procedure they use
to exclude outliers from their samples. This should be re-
garded as an aspect of statistical procedure that is just as
relevant to the results of the study as the visual angle and
intensity of stimuli, the characteristics of the response ma-
nipulanda, and so forth.

Another obvious recommendation is that the percentage of
excluded trials should clearly be reported, separately for each
of the major conditions of the study. Future workers will be
in a much better position to evaluate a given set of experi-
mental results if the possible effects of outlier exclusion can
be evaluated, and this is most easily accomplished if the
percentage of excluded trials is known. Moreover, if these
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Table 17

Average Relative Biases of Means and Standard Deviations Recovered From Truncated Samples Using Maximum
Likelihood Estimation, and Measure of Stability of Means for Mixture Distributions With 10% Spuriously Fast

Observations
Percentage of slow spurious RTs
Fitted Data Truncate 32% Truncate 10%
distribution distribution Measure 0 2.5 5 10 0 2.5 5 10 ..
EG EG M -5.15 ~4.65 -4.08 -2.83 —4.08 -3.95 -1.83 1.20
SD 0.40 12.13 9.45 14.85 10.93 24.75 30.00 51.48
¥ 0.91 0.75 0.66 0.57 1.00 0.84 0.77 0.72
EG ER M -3.88 -3.30 -2.80 -1.23 -4.13 -3.05 ~1.90 0.30
S§D 12.95 24.83 18.03 27.50 13.90 21.08 24.90 39.80
r 0.92 0.77 0.63 0.56 0.88 0.73 0.66 0.62
EG LN M -2.58 -1.70 ~1.25 0.48 -3.55 -2.35 ~0.68 2.30
SD 27.88 42.08 36.48 48.78 21.23 35.83 42.25 68.25
r 1.23 0.99 0.84 0.81 1.00 0.84 0.81 0.83
ER EG M -3.28 -2.45 -1.73 0.18 -3.40 -2.28 -0.82 2.03
SD 8.58 14.40 19.63 30.68 6.60 16.63 26.28 45.58
r 1.20 0.98 0.89 0.81 0.95 0.82 0.77 0.75
ER ER M -3.80 -3.08 -2.33 -0.78 -3.60 -2.50 ~1.35 1.50
SD -0.25 3.97 8.60 16.25 1.58 9.23 15.53 32.33
r 0.97 0.79 0.71 0.64 0.89 0.74 0.67 0.66
ER LN M -0.85 0.13 0.90 345 -2.38 -0.93 0.68 4.05
SD 43.13 52.45 57.58 80.40 25.38 39.85 52.88 83.75
r 1.55 1.20 1.18 1.13 1.12 0.95 0.90 0.93
LN EG M ~4.35 -3.65 -3.13 -1.43 ~3.35 -2.28 -1.10 2.05
SD -10.68 -6.80 -1.53 6.85 -1.68 6.00 14.63 35.98
r 0.95 0.79 0.69 0.65 0.89 0.76 0.66 0.69
LN ER M -4.00 -3.50 -2.93 -1.35 -3.60 —2.63 -1.43 0.93
SD -10.35 -8.32 ~5.22 2.53 -6.65 ~-1.07 7.25 21.40
r 0.80 0.64 0.56 0.51 0.80 0.67 0.62 0.58
LN LN M -2.40 -1.75 -0.70 1.00 -2.68 ~1.33 -0.08 293
SD 10.28 15.73 23.08 36.50 7.88 20.68 29.52 58.70
r 1.19 0.94 0.92 0.84 0.94 0.82 0.78 0.82
Note.  r = measure of stability of means; EG = ex-Gaussian; ER = Erlangian; LN = lognormal; RTs = reaction times.

percentages are specified, the present computations (e.g.,
Figure 2) can be used to estimate the maximum truncation
biasing effects that might have been present in the experi-
ment, as demonstrated in Appendix A.

Beyond these general recommendations, the results of
these investigations provide a lot of information that RT re-
searchers can use to avoid being misled by biasing effects of
truncation when analyzing truncated data sets. One option is
to use the maximum likelihood procedure described in the
section Compensating for Truncation Effects to estimate the
desired parameters of the untruncated distribution. Specifi-
cally, the special Erlangian can be fit to each set of observed
RTs, and the estimated means and medians can be computed
from the best-fitting special Erlangian.

Another option, which is computationally much less dif-
ficult, is to make some conservative adjustments of the trun-
cated means or medians to allow for the biasing effects of
truncation. Appendix A describes in detail how to do this for
a variety of common experimental designs.

The bottom line is that the head-in-the-sand approach to
truncation presents too many dangers to remain standard in
the field. If extreme observations have been excluded, re-
searchers simply must consider the possible effects of such
exclusion on their hypothesis tests. Furthermore, theorists
should be especially motivated to develop predictions and

hypothesis tests for summary measures that are relatively
uninfluenced by truncation (e.g., median), to minimize the
possibility that biasing effects of truncation will change the
outcome of model tests.

Although this article has considered in detail only one out-
lier exclusion method, it seems safe to conclude that the
general issues raised here will tend to apply to any possible
RT-based method of outlier exclusion. The basic problem,
noted in connection with truncation, is that when the RT is
itself the basis for exclusion, there is no way to avoid the
exclusion of valid but extreme observations. Exclusion of
these observations will necessarily distort estimates of popu-
lation parameters (e.g., E[T] and Var[T]), and the nature of
the distortion may vary slightly across conditions, thereby
influencing hypothesis tests.

For example, one common alternative exclusion method is
based on sample standard deviations. Trials on which the RT
is longer than a fixed number of standard deviations from the
sample mean are excluded. Unfortunately, this procedure
does not take into account the skewness of the RT distribu-
tion, so more RTs will be excluded from the upper than the
lower tail of RT distributions, thereby introducing bias into
the estimated mean and skewness, as well as clearly reducing
the standard deviation. This presents an especially serious
problem in certain types of experiments, because the result-
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ing estimation bias depends on sample size (Miller,
1991).

Another method for accommodating extreme RTS uses
the so-called trimmed mean, which is computed from a ran-
dom sample T; < T, ... <Ty of size N as follows: Choose
a suitable positive integer k, k < N/2, such that the k small-
est observations Ty, . . ., Ty and the k largest observations
Ta» Taets - -« » Ty are deleted from the sample. The av-
erage of the N — 2k intermediate observations g P

Tir2. ..., Ty is called the kth level trimmed mean
N-k T
i=k+1 *i
== 1
M, N -2k @D

The trimmed mean excludes extreme observations from both
tails of the RT distribution. Again, however, this method will
also induce bias in the estimation of the moments of the
untrimmed distribution, because RT distributions are
skewed.

It is beyond the scope of this article to review all existing
outlier identification and exclusion methods (cf. Barnett &
Lewis, 1984; Hawkins, 1980; Lovie, 1986), but it is likely
that each of them will have some effects on the analyses. We
feel it is much more reasonable to understand and attempt to
correct for exclusion biases than to search for a magic ex-
clusion procedure that will be immune to such distortions,
and in this spirit we conducted the present examination of
truncation effects.

References

Andrews, D. F, Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers,
W. H., & Tukey, J. W. (1972). Robust estimates of location: Sur-
vey and advances. Princeton, NJ: Princeton University Press.

Anscombe, F. J. (1960). Rejection of outliers. Technometrics, 2,
123-147.

Ashby, F. G. (1982). Testing the assumptions of exponential, ad-
ditive reaction time models. Memory & Cognition, 10, 125-134.

Baddeley, A. D. (1990). Human memory: Theory and practice.
Hillsdale, NJ: Erlbaum.

Bain, L. J. (1978). Statistical analysis of reliability and life-testing
models. New York: Marcel Dekker.

Barlow, R. E., & Proschan, F. (1965). Mathematical theory of re-
liability. New York: Wiley.

Barnett, V., & Lewis, T. (1978). Outliers in statistical data. New
York: Wiley.

Barnett, V., & Lewis, T. (1984). Outliers in statistical data (2nd ed.).
New York: Wiley.

Beckman, R. J., & Cook, R. D. (1983). Outlier.......... s. Technomet-
rics, 25, 119-149.

Bree, D. S. (1975). The distribution of problem-solving times: An
examination of the stages model. British Journal of Mathematical
and Statistical Psychology, 28, 177-200.

Briggs, G. E. (1974). On the predictor variable for choice reaction
time. Memory & Cognition, 2, 575-580.

Bundesen, C., Larsen, A., & Farrell, J. E. (1981). Mental transfor-
mations of size and orientation. In J. B. Long & A. D. Baddeley
(Eds.), Attention and performance, Vol. 9 (pp. 279-294).
Hillsdale, NJ: Erlbaum.

Burbeck, S. L., & Luce, R. D. (1982). Evidence from auditory
simple reaction times for both change and level detectors. Per-
ception & Psychophysics, 32, 117-133.

“owan, N., & Barron, A. (1987). Cross-modal, auditory-visual

Stroop interference and possible implications for speech memory.
Memory & Cognition, 41, 393-401.

Crow, E. L., & Shimizu, K. (1988). Lognormal distributions:
Theory and applications. New York: Marcel Dekker.

Dixon, P, & Just, M. A. (1986). A chronometric analysis of strategy
preparation in choice reactions. Memory & Cognition, 14, 488~
500.

Egeth, H. E., & Dagenbach, D. (1991). Parallel versus serial pro-
cessing in visual search: Further evidence from subadditive ef-
fects of visual quality. Journal of Experimental Psychology: Hu-
man Perception and Performance, 17, 551-560.

Elandt-Johnson, R. C., & Johnson, N. L. (1980). Survival distri-
butions: Reliability applications in the biomedical sciences. New
York: Wiley.

Everitt, B. S., & Hand, B. J. (1981). Finite mixture distributions.
London: Chapman & Hall.

Hawkins, D. M. (1980). Identification of outliers. London: Chap-
man & Hall.

Heathcote, A., & Mewhort, D. (1993). Representation and selection
of relative position. Journal of Experimental Psychology: Human
Perception and Performance, 19, 488-516.

Heathcote, A., Popiel, S. J., & Mewhort, D. J. K. (1991). Analysis
of response-time distributions: An example using the Stroop task.
Psychological Bulletin, 109, 340-347.

Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1985). Exploring data
tables, trends, and shapes. New York: Wiley.

Hockley, W. E. (1984). Analysis of response time distributions in
the study of cognitive processes. Journal of Experimental Psy-
chology: Learning, Memory and Cognition, 10, 598-615.

Hockley, W. E., & Corballis, M. C. (1982). Tests of serial scanning
in item recognition. Canadian Journal of Psychology, 36, 189—
212.

Hohle, R. H. (1965). Inferred components of reaction times as func-
tions of foreperiod duration. Journal of Experimental Psychology,
69, 382~386.

Huber, P. I. (1981). Robust statistics. New York: Wiley.

Jensen, A. R. (1987). Individual differences in the Hick paradigm.
In P. A. Vernon (Ed.), Speed of information processing and in-
telligence (pp. 101-175). Norwood, NJ: Ablex.

Jones, W. P., & Anderson, J. R. (1982). Semantic categorization and
high-speed scanning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 8, 237-242.

Kendall, M. G., & Stuart, A. (1967). The advanced theory of sta-
tistics. Volume IL: Inference and relationship (2nd ed.). London:
Griffin.

Kotz, S. (1973). Normality vs. lognormality with applications.
Communications in Statistics, 1, 113~132.

Lambert, A. I., & Hockey, R. J. (1986). Selective attention and
performance with a multidimensional visual display. Journal of
Experimental Psychology: Human Perception and Performance,
12, 484-495.

Lovie, P. (1986). Identifying outliers. In A. D. Lovie (Ed.), New
developments in statistics for psychology and the social sciences
(pp. 44-69). New York: Methuen.

Luce, R. D. (1986). Response times: Their role in inferring el-
ementary mental organization. Oxford, England: Oxford Uni-
versity Press.

Massaro, D. W., & Cowan, N. (1993). Information processing mod-
els: Microscopes of the mind. In M. R. Rosenzweig & L. W.
Porter (Eds.), Annual review of psychology (pp. 383-425). Stan-
ford, CA: Annual Reviews.

McClelland, J. L. (1979). On the time relations of mental processes:
A framework for analyzing processes in cascade. Psychological
Review, 86, 287-330.

McCormack, P., & Wright, N. (1964). The positive skew observed
in reaction time. Canadian Journal of Psychology, 18, 43-51.




REACTION TIME AND TRUNCATION 73

McGill, W. (1963). Stochastic latency mechanisms. In R. D. Luce,
R. Bush, & E. Galanter (Eds.), Handbook of mathematical psy-
chology, Vol. 1 (pp. 309-360). New York: Wiley.

McGill, W. J., & Gibbon, J. (1965). The general-gamma distribution
and reaction times. Journal of Mathematical Psychology, 2, 1-18.

Meyer, D. E., Irwin, D. E., Osman, A. M., & Kounios, J. (1988).
The dynamics of cognition and action: Mental processes inferred
from speed—accuracy decomposition. Psychological Review, 95,
183-237.

Meyer, D. E., Yantis, S., Osman, A. M., & Smith, J. E. K. (1985).
Temporal properties of human information processing: Tests of
discrete versus continuous models. Cognitive Psychology, 17,
445-518.

Miller, J. O. (1982). Divided attention: Evidence for coactivation
with redundant signals. Cognitive Psychology, 14, 247-279.
Miller, J. O. (1983). Canresponse preparation begin before stimulus
recognition finishes? Journal of Experimental Psychology: Hu-

man Perception and Performance, 9, 161-182.

Miller, J. O. (1988). A warning about median reaction time. Journal
of Experimental Psychology: Human Perception and Perfor-
mance, 14, 539-543.

Miller, J. O. (1991). Reaction time analysis with outlier exclusion:
Bias varies with sample size. Quarterly Journal of Experimental
Psychology, Section A: Human Experimental Psychology, 43,
907-912.

Miller, J. O. (1993). A queue-series model for reaction time, with
discrete-stage and continuous-flow models as special cases. Psy-
chological Review, 100, 702-715.

Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction
to the theory of statistics (3rd ed.). New York: McGraw-Hill.
Murphy, T. D., & Eriksen, C. W. (1987). Temporal changes in the
distribution of attention in the visual field in response to precues.

Perception & Psychophysics, 42, 576-586.

Parzen, E. (1962). Stochastic processes. San Francisco: Holden-
Day.

Pashler, H. E. (1984a). Evidence against late selection: Stimulus
quality effects in previewed displays. Journal of Experimental
Psychology: Human Perception and Performance, 10, 429-4438.

Pashler, H. E. (1984b). Processing stages in overlapping tasks: Evi-
dence for a central bottleneck. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 10, 358-371.

Press, W. H., Flannery, B. P, Teukolsky, S. A., & Vetterling, W. T.
(1986). Numerical recipes: The art of scientific computing. Cam-
bridge, England: Cambridge University Press.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85, 59-108.

Ratcliff, R. (1979). Group reaction time distributions and an analy-
sis of distribution statistics. Psychological Bulletin, 86, 446-461.

Ratcliff, R. (1993). Methods for dealing with reaction time outliers.
Psychological Bulletin, 114, 510-532.

Ratcliff, R., & Murdock, B. B., Jr. (1976). Retrieval processes in
recognition memory. Psychological Review, 83, 190-214.

Roberts, S., & Sternberg, S. (1992). The meaning of additive
reaction-time effects: Tests of three alternatives. In D. E. Meyer
& S. Kornblum (Eds.), Attention and performance XIV. Synergies
in experimental psychology, artificial intelligence, and cognitive
neuroscience (pp. 611-653). Cambridge, MA: MIT Press.

Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and
outlier detection. New York: Wiley.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic
human information processing: I. Detection, search, and atten-
tion. Psychological Review, 84, 1-66,

Schweickert, R. (1978). A critical path generalization of the additive
factor method: Analysis of a Stroop task. Journal of Mathemati-
cal Psychology, 18, 105-139. :

Schweickert, R., & Townsend, J. T. (1989). A trichotomy: Inter-
actions of factors prolonging sequential and concurrent mental
processes in stochastic discrete mental (PERT) networks. Journal
of Mathematical Psychology, 33, 328-347.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic
human information processing; II. Perceptual learning, automatic
attending, and a general theory. Psychological Review, 84, 127-
190.

Shimizu, K., & Crow, E. L. (1988). History, genesis, and properties.
In E. L. Crow & K. Shimizu (Eds.), Lognormal distributions:
Theory and applications (pp. 1-25). New York: Marcel Dekker.

Sternberg, S. (1967). Two operations in character-recognition:
Some evidence from reaction time measurements. Perception &
Psychophysics, 2, 45-53.

Sternberg, S. (1969). The discovery of processing stages: Exten-

sions of Donders’ method. Acta Psychologica, 30, 276-315.

Stuart, A., & Ord, 1. K. (1987). Kendall’s advanced theory of sta-
tistics. Volume 1: Distributional theory. London: Charles Griffin.

Thomas, E. A. C., & Ross, B. H. (1980). On appropriate procedures
for combining probability distributions within the same family.
Journal of Mathematical Psychology, 21, 136-152.

Townsend, J. T. (1984). Uncovering mental processes with factorial
experiments. Journal of Mathematical Psychology, 28, 363—400.

Townsend, J. T. (1992). On the proper scales for reaction time. In
H. G. Geissler, S. W. Link, & J. T. Townsend (Eds.), Cognition,
information processing, and psychophysics: Basic issues (pp.
105-120). Hillsdale, NJ: Erlbaum.

Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling
of elementary psychological processes. Cambridge, England:
Cambridge University Press.

Townsend, J. T., & Schweickert, R. (1985). Interactive effects of
factors affecting processes in stochastic PERT networks. In G.
d’Ydewalle (Ed.), Cognition, information processing, and mo-
tivation (pp. 255-276). Amsterdam: North-Holland.

Townsend, J. T., & Schweickert, R. (1989). Toward the trichotomy
method of reaction times: Laying the foundation of stochastic
mental networks. Journal of Mathematical Psychology, 33, 309-
327.

Ulrich, R., & Miller, J. O. (in press). Information processing models
generating lognormally distributed reaction times. Journal of
Mathematical Psychology.

Ulrich, R., & Wing, A. M. (1991). A recruitment theory of force-
time relations in the production of brief force pulses: The parallel
force unit model. Psychological Review, 98, 268-294.

Woodworth, R. S., & Schlosberg, H. (1954). Experimental psy-
chology. New York: Henry Holt.

Yantis, S., Meyer, D. E., & Smith, J. E. K. (1991). Analyses of
multinomial mixture distributions: New tests for stochastic mod-
els of cognition and action. Psychological Bulletin, 110,350-374.

(Appendixes follow on next page)




74 ROLF ULRICH AND JEFF MILLER

Appendix A

How to Estimate and Control for Truncation Biases: A Cookbook Approach

This appendix is offered as a practical guide for RT researchers
who wish to allow for potential truncation effects in the analysis of
a given set of truncated data and thereby avoid reaching conclusions
that are really artifacts of the truncation procedure. In particular, it
explains (a) how to estimate potential biases introduced by trun-
cation and (b) how to control potential truncation effects in infer-
ential tests using reaction time (RT).

The procedures described here are applicable to RT experiments
including multiple conditions with the same truncation cutoffs.
Three cases are distinguished, depending on the outcome of the
experiment. If mean RT varies considerably over conditions but the
percentages of RTs discarded from the lower and upper tails of the
RT distributions remain constant, then it is very likely that the trun-
cation procedure eliminated only spurious RTS (i.e., the tails of the
true RT distributions did not extend into the rejection region). In this
case, it does not seem necessary to worry about truncation artifacts.

On the other hand, if the percentages of truncated RTs vary with
mean RT across conditions, then it is very likely that the true RT
distributions extend past the truncation cutoffs, and the possibility
of truncation artifacts must be considered. For example, if the per-
centages of RTs truncated from the lower tails of the distributions
decrease as mean RT increases, this would indicate that extremely
fast yet valid RTs were truncated from the true RT distributions.
Analogously, if the percentages of RTs truncated from the upper
tails increase with mean RT, then this would indicate that valid but
long RTs were discarded from the true distributions. Therefore,
there are three cases in which truncation artifacts are a realistic
possibility, which can be empirically distinguished as follows;

Case 1. As mean RT increases, the percentage P of RTs trun-
cated from the lower tail decreases, and the percentage Q
truncated from the upper tail increases.

Case 2. The percentage P of RTs discarded from the lower tail
decreases as mean RT increases, but the percentage Q of RTs
discarded from the upper tail remains constant.

Case 3. The percentage P of RTs truncated from the lower tail
remains constant as mean RT increases, but the percentage O
of RTs truncated from the upper tail increases.

Assessment of Truncation Effects in a Single
Condition

In this section we describe a procedure to assess truncation effects
on the mean, standard deviation, or median of RT in a single con-
dition. This procedure is then adapted in the following sections for
use in the analysis of multicondition experiments. The computa-
tional steps of the procedure establish an interval estimate for the
desired parameter (i.e., mean, standard deviation, or median). The
procedure is easy to implement on a computer, and the width of the
obtained interval estimate can be narrowed with additional distri-
butional information and computations.

To some extent, this procedure can be regarded as a simpler
alternative to the maximum likelihood approach described in the
text section Compensating for Truncation Effects. However, the
maximum likelihood approach requires a complete data set,
whereas this procedure can also be applied to aggregated data sets.
This feature might be especially useful in examining published re-
sults for potential truncation artifacts. As the procedure requires less
computational effort than the maximum Iikelihood approach, it

might also be routinely applied in RT research. If the procedure
suggests that truncation artifacts may have been large enough to
explain the experimental effects, a researcher should use the maxi-
mum likelihood approach to compensate for truncation artifacts.

Rationale for the Procedure

The idea behind the procedure is fairly simple. If percentages p
and q of valid RTs are truncated from the fast and slow tails, re-
spectively, then the problem is to estimate the relative bias 8(p, q)
for the probability density function (PDF) f. In most practical situ-
ations, however, the researcher will not know the underlying RT
distribution from which the sample was taken; not only its param-
eters but also its shape (e.g., Erlangian, lognormal, or ex-Gaussian)
are therefore unknown. In the presence of this uncertainty, a con-
servative strategy is to allow for the worst case by determining the
most extreme bias values in Table 2. Accordingly, two extreme bias
values would be obtained, namely 8,,;, = min [S,-( P, q)] and 8,
= max[éi( P, )], where i indexes the alternative PDFs considered
in Table 2. These two extreme values define the endpoints of a range
of plausible bias values, encompassing several plausible RT dis-
tributions. Given the range of plausible bias values [8,in, Srmaxls it
is a simple matter to obtain an interval estimate of the untruncated
mean with Equation 24,

The Procedure

We first describe and illustrate how the procedure can be used to
estimate the mean RT, and then we indicate how the steps are modi-
fied to estimate the median or standard deviation. Let M be the
truncated mean and ry be the irreducible minimum of RT. A rea-
sonably conservative estimate of r, is 100 ms (see Luce, 1986, p.
62). Then an interval estimate of the untruncated mean is obtained
with the following steps:

1. 1f Case 1 applies, then set p = Pand ¢ = Q

If Case 2 applies, then set p = Pand g = 0
If Case 3 applies, then setp = 0 and ¢ = Q
2. Compute M,, = M - r,.
3. Determine with Table 2 the smallest bias, that is,

6min = min[Si(pfq)]’

where i runs over all approximated bias functions that are repre-
sented in Table 2. Compute M, = M, /(1 + 8,;,/100) + ;.
4. Analogously, determine

amnx = max[é, (P,Q)]

and calculate M; = M, /(1 + 8.,,,/100) + r,.

5. The untruncated mean RT should be in the interval M, M,).

The interval estimates obtained from this procedure are analo-
gous to, but different from, confidence intervals. Like confidence
intervals, they identify a range of values within which the desired
parameter (i.e., mean, median, or standard deviation of the untrun-
cated distribution) might lie. Unlike confidence intervals, however,
these interval estimates do not allow for sampling error in the data,
only for uncertainty about the effect of truncation, which stems from
uncertainty about the true underlying distribution of valid RTs. If

(Al)

(A2)
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a researcher wanted an interval that allowed for both sorts of un-
certainty, it would be possible to extend the interval computed here
by 2-3 standard errors in each direction, using the appropriate meas-
ure of standard error estimated from the data.

A Numerical Example

Table Al provides a numerical example involving four hypo-
thetical subjects. The percentages P and Q truncated from the lower
and upper tails, respectively, of each subject’s distribution varies
between subjects. The resulting truncated mean, standard deviation,
and median are listed for each subject.

The computational steps listed in the previous section are illus-
trated for the mean of 340 ms for Subject 1 under Case 1:

1. Setp = 0.6 and g = 2.5

2. Assume ry = 100 and compute M,, = 340 - 100 = 240.

3. Use 8 (p, 9) = A-p? + C-¢°. The coefficients A, B, C, D are
given in Table 2 for various distributions. For the Erlangian, we
obtain the following bias values 8(.6,2.5)f0r m=2,...,15:-549,
~4.16, =342, -2.94, -2.61, -2.36, -2.17, -2.01, -1.88, -1.77,
-1.67, -1.59, ~1.52, and -1.45. For the lognormal the bias values
are —6.44, -4.88, -4.00, -3.43, -3.02, -2.72, ~2.48, -2.29, -2.14,
-2.00, -1.89, ~1.79, -1.71, and —1.63. Finally, the bias values for
the ex-Gaussian are -5.37, —-4.09, -3.38, —=2.93, -2.61, -2.36,
-2.17,-2.02,-1.89, -1.78, -1.69, ~1.60, —1.53, and —1.47. Taking
all values into account, we find 8., = —6.44 and 6,,,, = —1.45,
and hence

M, = 240/(1 + (—6.44)/100) + 100 = 357

and
M, = 240/(1 + (—1.45)/100) + 100 = 344,

4, Thus, the obtained interval estimate of the untruncated mean
is [344,357].

Analogous computational steps apply for Cases 2 and 3. Similar
steps are needed to obtain estimates of the median and the standard
deviation of RT. However, r, should always be set to zero in Step
2 when obtaining an interval for the standard deviation, because for
standard deviations the tables are independent of ry,.

Cases 1, 2, and 3 were applied to each hypothetical subject and
each summary measure for comparison. Table A2 summarizes ob-
tained intervals for the mean, standard deviation, and median,

To facilitate this procedure, we computed the most extreme bias
values, 8,,;, and 8,,,,4, oObtained with the mean, median, and standard
deviation for various values of p and g, and these are given in Tables
A3 and A4. Two-dimensional interpolation (Press, Flannery, Teu-
kolsky, & Vetterling, 1986, pp. 95-101) can be used to obtain quite
accurate estimates of 8, and 8, for values of p and g between
those in the tables. These tables greatly simplify the third step in the

Table Al
Data for Numerical Example Using Four Hypothetical
Subjects

Subject M Mdn. SD P (%) Q (%)
1 340 320 65 0.6 2.5
2 295 270 95 1.0 1.5
3 370 345 80 0.5 3.0
4 415 385 100 0.3 5.0
Average 355 330 85 0.6 3.0
Note. Shown for each subject are the truncated mean, median,

and standard deviation of reaction time (RT), and the percentages
of RTs discarded from the lower (P) and upper (Q) tails of each
subject’s RT distribution.

Table A2
Interval Estimates Obtained for the Hypothetical
Subjects in Table Al

Subject M Mdn. SD P g
Case l: p=Pand g = Q
1 [344,357] [321,324] [73,84] 06 25
2 [296,303] [270,271] [104,116] 1.0 1.5
3 [375,392] [347,351] (90,1077 05 3.0
4 [425,454] [389,398] [118,147] 03 5.0
Average [360,377] [332,336] [96,114]
* [360,375] [332,335] [96,114] 0.6 3.0
Case 2:p=Pandg =0
1 [338,339] [319,320] [65,66] 0.6 0.0
2 [292,294] [268,269] [95,97] 1.0 0.0
3 [368,369] [344,345] [80,81] 0.5 0.0
4 [413,414] [384,385] [100,101] 0.3 0.0
Average [353,354] [329,330] (85,86]
* [353,354] [329,330] [85,86] 0.6 0.0
Case3:p=0andg = Q
1 [343,358] [322,325] [72,84] 0.0 25
2 [297,305] [271,272] [102,116] 0.0 1.5
3 [376,393] [347,352] [89,107] 0.0 3.0
4 [425,455] [389,399] [117,147] 00 5.0
Average [362,378] [332,337] [95,114]
* [361,377] [332,337] [95,113] 0.0 0.0
Note. The last row in each section, indicated with an asterisk,

shows the intervals obtained when the procedure is applied to the
group average data of Table A1, Intervals were computed assuming
ro = 100 ms and 2 = m =< 15. p = proportion truncated from lower
tail; ¢ = proportion truncated from upper tail.

above procedure, as the values of 8., and 3,,., may be obtained

from these tables, obviating the need to compute 8(p, g) for each
of the 42 distributions under consideration.

Extension to Other Summary Measures

The procedure just described can easily be extended to the es-
timation of standard deviation and median, using Tables 3 and 4
instead of Table 2. The only cautionary note concerns the irreducible
minimum of RT: Relative biases of medians were also computed
assuming ro = 0, so Equation 24 should also be used in that case,
replacing means with medians. Relative biases of standard devia-
tions were computed without this assumption, however, so an equa-
tion analogous to Equation 23 must be used with that summary
measure (i.e., set ry = 0).

Bias Correction in Group Data

The procedure described here might also be useful in evaluating
potential truncation artifacts in previously published group data,
where data of single subjects are not available, as illustrated in
Tables Al and A2. The last row in Table Al shows the averages of
mean, standard deviation, median, P, and Q over the four hypo-
thetical subjects. Cases 1-3 were applied to these group means, and
the resulting intervals for the mean, standard deviation, and the
median of the group data are shown in Table A2 (see rows denoted
with an asterisk). These results agree very well with the averages
of the individual subject intervals given in Table A2, suggesting that
approximately the same results are obtained whether one computes
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Table A3
Most Negative Relative Bias (8,,,) of Mean, Standard Deviation, and Median, as a Function of p% and q%
q (%)

p (%) Parameter 0.00 0.25 0.50 1.00 2.00 4.00 6.00 10.00
0.00 M 0.0 -14 -2.3 =37 -6.0 -9.7 -12.8 -18.2
SD 0.0 =15 -10.5 -14.7 -20.6 -28.8 -35.1 -45.0

Mn 0.0 -0.2 -0.5 -1.0 -1.9 ~3.8 -5.7 -9.4

0.25 M 0.2 -1.2 -2.1 =35 -5.8 -9.4 -12.6 -18.0
D -0.9 -75 -10.5 -147 —20.6 289 -35.1 -45.0

Mn 0.1 0.0 -0.2 -0.7 -1.7 =35 -5.4 -9.2

0.50 M 0.3 -0.9 -1.8 =32 -5.5 -9.2 -12.3 -17.7
SD ~-14 -16 -10.6 ~-14.8 -20.6 -28.9 -35.2 ~45.1

Mn 0.2 0.1 0.0 -0.5 -1.4 -3.3 -5.2 -8.9

1.00 M 0.5 -0.5 -14 -2.8 -5.1 -8.8 -11.9 -17.3
SD 2.4 ~7.6 ~10.6 ~14.8 -20.7 ~29.0 -35.3 -45.1

Mn 0.3 0.2 0.2 0.0 -1.0 -2.8 -4.7 -8.5

2.0 M 1.0 0.3 -0.6 -2.0 -4.3 -8.0 -11.1 -16.5
SD -4.0 -7.8 ~-10.8 -15.0 -20.9 -29.2 -354 -45.3

Mn 0.6 0.5 0.5 03 0.0 -1.9 -38 -7.5

4.0 M 1.8 1.5 1.0 -04 -2.7 -6.4 -8.5 -14.9
SD -6.6 -9.2 -11.2 -155 -21.3 -29.6 -35.9 -45.8

Mn 1.2 1.2 1.1 0.9 0.6 0.0 ~-1.8 -5.6

6.0 M 2.6 2.3 2.1 1.0 -1.2 -4.9 -8.0 ~-13.5
SD -8.9 -11.5 -12.8 -15.9 ~21.8 -30.0 -36.3 ~46.2

Mn 1.9 1.8 1.7 1.6 1.2 0.6 0.0 -3.6

10.0 M 4.1 3.8 3.6 32 1.6 =-2.1 =52 -10.6
SD -13.0 -15.5 -16.8 -18.8 -22.8 -31.0 -37.3 -47.2

Mn 3.1 3.0 2.9 238 2.5 1.9 1.3 0.0

Note. 8y, was computed across 42 distributions defined by the Erlangian, lognormal, or ex-Gaussian with parameters corresponding to
2 =m = 15. p = proportion truncated from lower tail; ¢ = proportion truncated from upper tail.

an interval from the averages or computes averages from the in-
tervals.A!

Constraining the Search Through the Bias Tables

The above procedure assumes that the researcher has no infor-
mation about the true underlying distribution of valid RTs and must
therefore allow for the worst case across any of the distributions
contained in the bias tables. If some information about the true
underlying distribution is available, however, the range of distri-
butions can be constrained, and it is very likely that this will produce
a narrower range of [dyin, Omay], producing smaller interval esti-
mates for the untruncated values. As an extreme example, if the
underlying distribution is known to be a special Erlangian with m
= 2, then the untruncated value can be estimated precisely (i.e., the
interval [M,, M,,] contains a single point.)

At issue, then, is the question of which theoretical RT distribu-
tions provide acceptable models for an observed distribution of RTs,
A useful technique for addressing this question is the quantile—
quantile plot, or Q-Q plot (see Hoaglin, Mosteller, & Tukey, 1985,
Chapter 10, for technical details of this technique). This is a plot of
selected quantiles of the observed RT distribution against the same
quantiles calculated from a given theoretical distribution (e.g., the
special Erlangian with m = 2). The resulting plot will be a straight
line when the two distributions have the same shape, so the good-
ness of fit may be measured with a product~moment correlation
coefficient. In fact, linearity will be obtained even if the distribu-
tions differ in scale and location, so the technique does not require
the estimation of such parameters. If the shapes differ, of course,
the plot will curve in some way. To reduce the conservatism of the
present procedure, then, the researcher could use this technique to
assess many different underlying distributions and reject those
yielding significant curvature, thereby reducing the number of dis-

tributions across which minimum and maximum bias are obtained.
In addition, if the researcher is willing to assume that all subjects
have the same underlying distributional shape, the Q-Q plots can
be computed using vincentized RT distributions (Thomas & Ross,
1980).

A'The mathematical relation between these two procedures
shows why they yield almost identical intervals. Let the subjects in
a sample be numbered 1,..., N and let My, ..., My denote the
truncated means of the subjects, respectively. Furthermore, let 8
be the relative bias of mean M;, and define B, = 1/(1 + §,/100).
Then the bias-corrected mean M,; of subject j is given by

M= M;B,.
Using the definition of covariance 8y, of two variables x and y
N
2': XY
Sy T jAl/ 2 - i,

and the bias corrected sample mean M, is computed as

This approximation holds, if s, 5 is close to zero or if it is negli-
gibly small with respect to the product #-B. We found this to be
a reasonable approximation in a variety of realistic simulations.
Furthermore, let 5 = (1/N) 3 ¥, p,and § = (1/N) 2 X, @ Taylor
series expansion of B (cf. Mood, Graybill, & Boes, 1974, p. 181)
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Table A4
Most Positive Relative Bias (8,,,,) of Mean, Standard Deviation, and Median, as a Function of p% and q%
q (%)

p (%) Parameter 0.00 0.25 0.50 1.00 2.00 4.00 6.00 10.00
0.00 M 0.0 -0.3 -0.5 -0.9 -1.5 -2.7 -3.7 ~5.6
SD 0.0 -2.1 -3.3 =51 -8.0 -12.6 -16.4 —22.8

Mn 0.0 -0.1 -0.2 -0.3 -0.6 -1.2 ~-1.9 -3.1

0.25 M 0.4 -0.1 -0.3 0.7 -14 =25 -3.5 5.4
SD -0.0 =27 -3.9 -5.7 -8.6 -13.2 -17.0 -23.4

Mn 0.2 -0.0 -0.1 -0.2 -0.5 -12 -1.8 -3.0

0.50 M 0.8 0.0 ~-0.2 -0.6 -1.2 -24 =34 -5.2
SD -0.1 -3.1 -4.3 -6.2 5.1 -13.6 ~174 -23.9

Mn 0.5 0.2 -0.0 -0.2 -0.5 -1.1 -1.7 -2.9

1.00 M 1.4 0.4 0.1 -0.3 -0.9 -2.1 -3.1 -4.9
SD -0.1 -3.8 =5.1 -6.9 -9.8 ~14.4 -18.2 -24.6

Mn 0.9 0.7 0.5 0.0 -0.3 -0.9 -1.5 -2.8

2.0 M 2.5 1.4 0.8 0.2 -0.4 -1.6 -2.6 -4.4
SD -0.3 -4.6 -6.2 -8.3 =112 -157 -19.5 -26.0

Mn 1.9 1.7 1.4 0.9 0.0 ~0.6 -12 -2.5

4.0 M 4.5 34 2.6 1.6 0.5 -0.6 -1.6 ~3.5
SD -0.8 =54 -1.4 -10.1 ~135 -18.0 -21.8 -28.3

Mn 3.8 3.6 3.4 29 1.9 0.0 -0.6 -1.8

6.0 M 6.4 53 4.5 3.2 1.7 0.2 -0.8 -2.6
SD -1.2 -6.2 -8.2 ~11.2 -15.2 -20.1 =239 -30.3

Mn 5.8 5.5 53 4.8 3.9 2.0 0.1 ~-1.2

10.0 M 10.0 8.8 8.1 6.8 4.7 2.2 0.8 -1.0
SD 2.2 ~7.8 -9.8 ~12.8 -17.3 =234 -27.6 -34.0

Mn 9.7 9.4 9.2 8.7 7.8 5.9 4.0 0.3

Note. 8., was computed across 42 distributions defined by the Erlangian, lognormal, or ex-Gaussian with parameters corresponding to
2 = m =< 15. p = proportion truncated from lower tail; g = proportion truncated from upper tail.

Some Conservative Correction Procedures for
Hypothesis Testing Situations

In many experiments the results will be so clear-cut that they
cannot be explained as truncation artifacts, and it is useful to have
some simple methods capable of establishing that this is the case
without too much work. Such methods are described in this section,
for a variety of different experimental situations and comparisons.
These methods are all conservative, in the sense that they allow at
least enough for the effects of truncation. Thus, if these methods
show that truncation artifacts cannot explain the results, the re-
searcher can proceed to interpret the results confidently, without any
worry that truncation artifacts are responsible. On the other hand,
if these methods indicate that truncation artifacts may have been
large enough to explain the results, then the researcher should use

shows that

_ Ap® + Cqg”™!
B~[1+——1—66—— :

Simulations revealed that this approximation is also excellent.
Finally, if we substitute the previous expression into M, =~ M"B,
then we arrive at the useful approximation

M

T
100

for group data, which was used to correct the group mean in the
numerical example of Table 19. An analogous argument holds for
computation of intervals for the median and standard deviation-
from aggregated data sets.

the more complicated but less conservative maximum likelihood
method to evaluate the truncation artifact hypothesis further.
The basic strategy is the same in all these conservative correction
procedures. Using the observed proportions of RTs truncated from
below and above, a researcher decides which of the three possible
cases discussed above applies to the data and computes estimates
of the true parameter values for untruncated distributions. These
estimates may be made under various distributional assumptions.
From each set of estimates (i.e., each type of distributional as-
sumption), a new value of the hypothesis-testing statistic is com-
puted. If all values are significant (i.e., regardless of distributional
assumptions), then the researcher can confidently reject the null
hypothesis, Hy, even allowing for truncation effects. If none are
significant, then the researcher can confidently conclude that trun-
cation biases were not responsible for the failure to reject Ho. If
some values are significant and others are not, no firm conclusions
can be drawn from these procedures and the less conservative but
more difficult maximum likelihood method should be used.

Experiments Comparing Two Conditions,
H, Rejected

Suppose an experimenter finds a statistically reliable difference
between the means of two conditions. In the present context, the
question is whether the difference might actually have been an ar-
tifact of the truncation procedure, and the answer clearly depends
on the proportions of observations truncated from above and below
in each condition.

A relatively conservative way to address this question is to ask
how small the larger untruncated mean might reasonably be, and to
ask how large the smaller untruncated mean might reasonably be.
We then repeat the statistical test with the two extreme means to find
out whether the result remains statistically reliable. If so, we can
safely reject the possibility that the difference in means isduetoa
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truncation artifact. Thus, the overall strategy is to find the minimal
plausible difference between two untruncated means.

Table AS gives a concrete numerical example. This hypothetical
example displays mean RTs for a sample of 15 subjects, with each
subject tested in two conditions. The averaged truncated means in
Conditions 1 and 2 were 267 and 293 ms, respectively. A ¢ test for
correlated samples on the truncated mean RT revealed a significant
effect 7414 = 5.7, p < .001.

For each subject, hypothetical percentages P and Q of truncated
RTs are also given. The values of P do not vary with condition, but
Qs are larger in Condition 2 than in 1, indicating that the right tail
of the distribution of valid RTs extends into the upper rejection
region. Thus, Case 3 applies. For each subject and condition the
above procedure was used to compute an interval estimate for the
untruncated mean. Because the smaller truncated mean was ob-
served in Condition 1, we selected the largest estimate of the un-
truncated mean, M,,, for each subject in this condition. Similarly, as
the larger truncated mean was obtained under Condition 2, we se-
lected the smallest estimate of the untruncated mean in this con-
dition. Having allowed for truncation bias in this rather conservative
fashion, the resulting group means are 274 and 296 ms under Con-
ditions 1 and 2, respectively, and the ¢ test still shows a significant
effect 7414 = 4.8, p < .001. Thus, we may safely conclude that the
RT difference between Condition 1 and 2 is not an artifact of the
truncation procedure. In experiments with two independent
samples, similar reasoning would apply.

Experiments Comparing Two Conditions,
H, Not Rejected

If Hy is not rejected, of course, interest turns to the issue of
whether or not truncation effects might have concealed a true dif-
ference between means. This is an inherently more difficult prob-
lem, of course, because of the well-known fact that failure to reject
a null hypothesis does not imply the truth of that hypothesis. None-
theless, when considering truncation effects, it makes sense to ask
whether a statistically significant difference might have been con-
cealed by truncation.

Table A5
Numerical Example of Testing for Significant Difference
in Mean Reaction Time Between Two Conditions

Condition 1 Condition 2

Subject M P Q M, M P Q M,
1 250 1.0 1.2 257 300 05 13 302
2 300 1.0 04 304 310 0.8 07 311
3 220 05 0.6 223 250 0.6 1.1 251
4 240 0.5 03 242 240 09 06 241
5 310 08 1.2 319 330 1.0 1.5 333
6 270 05 1.0 277 300 0.6 12 302
7 280 0.8 0.7 285 310 07 1.6 313
8 210 0.6 03 212 240 0.8 05 24l
9 320 13 1.4 331 350 1.1 14 353
10 340 0.8 2.0 355 330 09 23 334
11 350 1.3 25 369 400 1.1 25 406
12 230 04 24 240 280 0.6 22 283
13 220 05 13 226 250 07 18 252
14 210 04 03 212 220 05 08 221
15 250 0.9 09 255 290 1.1 15 292

Average 267 08 1.1 274 293 08 14 296

Note. M, is the maximum value in the interval estimate of the
untruncated mean in Condition 1; M, is the minimum value in the
interval estimate of the Condition 2 mean. Both sets of intervals
were computed assuming that r, = 100 ms and 2 < m < 15. Data
“hown are for 15 hypothetical subjects.

A conservative approach to this question is to find the maximum
difference in means consistent with the observed truncation pro-
portions. If this maximum difference would still have been statis-
tically insignificant, then we can be reasonably sure that truncation
effects were not responsible for the lack of a significant difference.

In this case, the experimenter must examine two complementary
comparisons: (a) Compare the maximum estimates (i.e., M,) in
Condition 1 against the minimum estimates (i.e., M,) in Condition
2 and (b) compare the minimum estimates (i.e., M,) in Condition
1 against the maximum estimates (i.e., M,,) in Condition 2. If H,
cannot be rejected in either comparison, then there is no reason to
suspect that truncation may have concealed a significant effect. If
Hy can be rejected in at least one comparison, however, then it is
possible that the null hypothesis would have been rejected were it
not for the truncation procedure.

Experiments Comparing More Than Two Conditions

When more than two conditions are compared in an experiment,
an analysis of variance provides an omnibus F statistic used to test
the null hypothesis that all conditions have the same true mean. If
this F is significant, we must ask whether the significance might be
due to truncation effects; if it is not significant, we must ask whether
the failure to get a significant F might be due to truncation.

A straightforward, although tedious, extension of the procedure
used in the previous two sections may be applied in this case. Taking
into account whether Case 1, 2, or 3 applies, we can compute the
extreme estimates M, and M, for each condition. For each possible
set of these extreme estimates, we can compute an F. Across the
different sets, we can find the maximum and minimum values of this
F,. If the minimum F, is statistically significant, or if the maximum
F. is statistically nonsignificant, then the conclusion will be ob-
vious, given the conservatism of the procedure. Unfortunately, if the
minimum F, is statistically nonsignificant and the maximum F, is
statistically significant, then it will be necessary to use the maxi-
mum likelihood method to provide a more precise test of the null
hypothesis. .

In experiments comparing more than two conditions, it is fre-
quently useful to make post hoc comparisons involving pairs of
conditions or involving contrasts between the averages of some
conditions and the averages of others. Fortunately, the conservative
approach described above for two-sample comparisons extends eas-
ily to these cases. When comparing a pair of conditions, one would
simply find the minimum or maximum difference between untrun-
cated means (depending on whether the hypothesis was rejected or
not in the truncated comparison), using the methods described ear-
lier. When comparing averages, one would similarly find the mini-
mum or maximum difference in average of untruncated means,
replacing each condition mean with its minimum or maximum un-
truncated estimate as appropriate.

Experiments Examining Linear RT Functions

The linear component across an observed set of conditions is
simply a special type of contrast across those conditions, so the
methods of the previous section apply.

Factorial Experiments

The deviation from additivity across four conditions in a 2 X 2
factorial design is also a special type of contrast, so again the earlier
contrast methods apply. With more levels on one or both of the
factors, the contrast will have to be made separately for each fac-
torial combination of four levels. Alternatively, one could compute
F.s under various assumptions as was done before, and examine the
maximum and minimum F.,s,
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Comparisons of Parameters Other Than Means

The same basic strategy can be used for tests involving other
parameters (e.g., variance). Using the observed proportions of trun-
cated observations, a new value of the test statistic can be computed

for each set of assumptions about the form of the underlying dis-
tribution. If the minimum value of the test statistic is significant, or
the maximum is nonsignificant, then firm conclusions can be
reached. Otherwise, an alternative procedure (e.g., maximum like-
lihood) must be used to reach a decision.

Appendix B

Proofs of Equation 6 and Propositions 1 and 2

Proof of Equation 6

Let 0 < p < 1. A quantile of order p with respect to the truncated
distribution is a value #, (L < t, < U) such that the conditional
probability PIT =t,|L =T < U] = p holds. In particular, the
median is given by the value ¢5s.

The quantile ¢, of the truncated cumulative probability density
function (CDF) is easﬂy expressed in terms of the untruncated CDF
by noting the following relations:

p=PT=<tIL=T=U] (B1)
f fHdt
F(L) (B2)
( - F)
FO) = FO (B3
Rearranging yields,
F(t,) = p[F(U) — F(L)] + F(L) (B4)
=pFU) + (1 - p)-F(L). (BS)
Hence, in general, the quantile ¢, is given by
=F~'[pFU) + (1 = p)-FL)}, (B6)

which yields Equation 6 for p = .5.

Proof of Proposition 1

ETIL<T=U] (B7)
U
f tRe)dt
_ L
" F(U) - F(L)
fU ti)\e—)\l(ht)m—l "
i (m = 1)!
=T RU) - F(D) (B8)
fU Ae—)\l)\mﬂ—ltmh’—l
_J, AL “ (m+i— 1) 5o
RO ~FD -1 (B9)

Note that the integrand of the above integral is simply the PDF of
a special Erlangian with shape parameter (m + i) and scale pa-
rameter A, so the integral is G(U) — G(L), with G defined in the
proposition. The proof is complete.

Proof of Proposition 2

f voof [ (Int — u)z]dt
exp| - —=—5—
. \/ﬂat VP 20°
InU - p InL - '
o[ o[
o o
Because T/ = €™ T, we may rewrite the above equation as

U :lnr (ll’lt — “)2]
- —|dt
\/2_7wt l: 20?

(D[an }.L:I _cb[lnL—p:I
o o

(B11)

ETIL=T=<U]=

(B10)

E[ellnT[L <T= U] =

Define the numerator of Equation B11 as function g(i) and sub-
stitute y for In ¢. This yields

InlU _ 2
o) = xp[ (y2 ”‘)]dy. (B12)

\/2770

Substituting oz + io® + w for y gives
b el(ozﬂa’-@-p.) [ (ZO' + i0.2)2

gli) = a -*_\75—;—6)(1) P

where the lower and upper limits of integration are a = (In L - io™
- w)oand b = (In U - io® - w)/o, respectively. Simplifying the
above expression yields

]dz, (B13)

b

i*g?
g(i) = exp [iu + —2—] X e~?Pd;  (Bl4)
T
20.2
= exp I:zp, + —2—} [B(b) — P(a)]. (B15)

Replacing the numerator of Equation B11 with the right-hand side
of Equation B15 completes the proof.

(Appendix follows on next page)




80 ROLF ULRICH AND JEFF MILLER

Appendix C

Models Predicting Asymptotic Hazard Functions

A asymptotic value of the hazard function is predicted by models
in which RT is a sum of components, at least one of which is
exponential. For example, Luce (1986, pp. 103-105) noted that the
hazard function of a convolution approaches an asymptotic value
of A whenever one of the convolved variables is bounded and the
other is exponential (A) in its tail. Ashby (1982, Theorem 3) showed
that an asymptotic hazard function also results from the convolution
of an exponential with a sum of other components having nonde-
creasing hazard functions. These suggestions can be extended, be-
cause the hazard function of T is asymptotic under even more gen-
eral conditions. To see this, let T = E + R with E having an
exponential distribution with rate A and R being a nonexponential
component. Because f(r) = [{ fz(t — x)fy(x)dx and fx(r) = Ae™™,
it is easily seen that

£l = he™ [ ¥fylx)ax, 1)

and

Fild) = Falt) = e f &%), ()

and hence the hazard function of T is

_ e~ [ eMf (x)dx
hir) = 1= Fy(t) + e [} eMfo(x)dx”

(C3)

Now let G(\t) = [§ e*fr(x)dx; then Equation 77 simplifies to
A

1= Fp(e)

e MG(\ 1)

h(t) = (C9)

G(A,) is simply the moment generating function of R, which
should be finite under plausible distributional assumptions. From
Equation C4, it can be seen that 4(¢) approaches A whenever the tail
probability 1 - Fe(#) decreases to zero faster than the tail probability
1 = Fg (1) = e™. As the upper tail of an exponential distribution
is relatively thick, this will hold for many assumed R distributions,
including unbounded ones.
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