JOURNAL OF MATHEMATICAL PSYCHOLOGY 37, 513-525 (1993)

Information Processing Models Generating
Lognormally Distributed Reaction Times

RoLr ULRICH

Universitidt Konstanz
AND

JEFF MILLER

University of California, San Diego

The lognormal distribution has been fitted successfully to empirical reaction times (RTs),
yet mechanisms that might generate lognormally distributed (RTs are unknown. Thus, the
lognormal has the status of an ad-hoc distribution in RT research. In this paper we describe
mechanisms that could generate the lognormal distribution and show how specific RT models
can be constructed within the framework of general mathematical properties of the lognormal.
It is demonstrated that various conceptually different mechanisms could produce lognormally
distributed RTs.  © 1993 Academic Press, Inc.

INFORMATION PROCESSING MODELS (GENERATING LOGNORMALLY
DiISTRIBUTED REACTION TIMES

The lognormal distribution sometimes provides an excellent fit to empirical RT
distributions. This point was first noted by researchers making direct comparisons
of observed and expected frequencies of responses in given RT ranges (e.g., Brée,
1975; Ratcliff &Murdock, 1976; Schlosberg & Heineman, 1950; Woodworth &
Schlosberg, 1954). More recently, it has been reinforced by the finding that empiri-
cal hazard functions of RT can first increase and then decrease to zero, as does the
hazard function of the lognormal (e.g., Green & Smith, 1982, Fig. 6, 50 ms signals).
In certain experiments the obtained hazard functions do not match the shape
predicted by the lognormal (e.g., Burbeck & Luce, 1982; Green & Smith, 1982,
Fig. 6, 1 s signals), bu the deviations may be due to the practice of throwing out all
RTs greater than a certain fixed upper cutoff (Ulrich & Miller, 1992).

Requests for reprints should be addressed to Rolf Ulrich, Universitidt Konstanz, Fachgruppe
Psychologie, Postfach 5560, 78434 Konstanz, Germany. This work was supported by the Deutsche
Forschungsgemeinschaft (UL 88/2-1) and Grant PHS-40733 from the National Institutes of Mental
Heath to the second author. This work was conducted while the first author was a visting scholar at the
Center for Human Information Processing of the University California, San Diego. We thank Hans
Colonius and two anonymous reviewers for their helpful comments.

513
0022-2496/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.




514 ULRICH AND MILLER

Despite its empirical success as a model of RT distributions, information processing
mechanisms that could potentially generate lognormally distributed RTs are
unknown, so the lognormal has the status of an ad-hoc distribution in RT-research
(Luce, 1986). The purpose of this paper is to describe mechanisms that would
generate lognormal RTs and hence provide a theoretical justification for the
lognormal in RT-research. Interestingly, it turns out that lognormal RTs are easily
generated by certain models that are conceptually very different from traditional
serial RT models (Sternberg, 1969).

1. THE LOGNORMAL

The lognormal distribution is usually defined by saying that the time T follows
a lognormal if the logarithm In(T) of time T is normally distributed with mean
ETIn(T)]=p and standard deviation SD[In(T)]=o0. T is necessarily a positive
random variable, and its mean and variance are exp[ 4 + ¢%/2] and [exp(2x + 02)] %
[exp(o?) — 1], respectively. The lognormal distribution is usually considered as a
possible model in statistics whenever a random variable with a positive skewness is
needed (e.g., Crow & Shimizu, 1988).

The PDF of the lognormal is unimodal and for >0 given by

1 _(In t—,u)zjl

f(t).:\/E;O't CXp[: 252

(1)

The parameters 0 >0 and p are the shape parameter and scale parameter of the
lognormal, respectively. Skewness increases with o.

In addition, T is usually said to follow a lognormal distribution if In(T —¢,) has
a normal distribution, where ¢, is any positive constant. This allows T to have the
lognormal shape but to be displaced by 7, units to the right on the time axis. In this
case, T has a mean ¢, units larger and the same variance.'

The lognormal distribution arises in many branches of biology (Koch, 1966,
1969) and economics (Lawrence, 1988), and it has also been applied to phenomena
in several other areas (see reviews in Crow & Shimizu, 1988), such as psychophysics
(Ennis & Mullen, 1992) and psycholinguistics (Howes, 1971). Thus, there has been
some previous consideration of the types of processes that give rise to this distribu-
tion. Two processes have been of particular significance in the statistical literature
(compare Shimizu & Crow, 1988). The first process arises as the transform of an
underlying fluctuation that follows a normal distribution, while the second process
yields the lognormal distribution directly rather than as a transform of a normal.
As we will show, these processes can also arise in the domain of RT modeling.

't is rather difficult to estimate the three parameters of the (potentially) shifted lognormal distribu-
tion. The most promising approach appears to be a modified method of moments proposed by Cohen
and Whitten (1980) and elaborated by Cohen, Whitten, and Ding (1985) and Cohen (1988).
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Assume that X is normally distributed with parameters x and ¢ and let T be an
observable latency that is related to X as

T = exp(X). (2)

Then T follows a lognormal with parameters u and o. This is easily seen, because
T =exp[In(T)] and hence In(T)=X.
This exponential transform property can be generalized to

T=a-exp(cX+d)+ ¢, (3)

where a, 1,, ¢, and d are any positive constants The distribution of T given by (3)
is a lognormal displayed by ¢, units to the right on the time axis, with mean

2 2

E[T]za.exp[cu—i—d—i—c 'ZG]HO (4)

and variance
Var[T]=a? exp[2(cu + d) + c?6?] x [exp(c’a?) —11]. (5)

The lognormal may also arise directly (i.e., without the existence of an underlying
normal variate) when one random variable is formed as the product of a number
of other ones. Let

X,=11Y, (6)

where {Y,,..,Y,} is a sequence of independent, identically distributed random
variables. Then

n(X,)= 3 In(Y,) (7)

i==1

According to the central limit theorem, the sum on the right side of (7) converges
to a normal distribution—and thus X, converges to a lognormal distribution—
rapidly as n increases, under fairly general conditions (cf,, Feller, 1971, pp. 262-264;
Wolfson, 1985).

2. SpeciFic RT MODELS

In this section we consider specific RT models of the forms outlined in the
preceding section. The first model has a single stage of activation growth, and the
lognormal emerges from the underlying normal distribution of a response criterion
against which activation is compared (cf. Grice, 1968; Schlosberg & Heineman,
1950). The second model is based on the transmission of partial activation across



516 ULRICH AND MILLER

multiple stages, and the lognormal emerges because RT is determined by the
product of many randomly varying rates of activation growth. One might object
that the assumptions underlying these models are just as ad-hoc as the assumption
of lognormally distributed RTs, but this objection misses the point of our enter-
prise. Our goal is to identify underlying mechanisms that can generate lognormal
distributions of RTs, and further research will be needed to determine whether these
mechanisms are actually used in particular experimental paradigms.

Logarithmic Activation Growth

Suppose that a stimulus requiring a speeded response is presented at time =0
and that response activation A(¢) begins to accumulate as a logarithmic function
of 1,

A(t)=k-1n(z). (8)

The response is triggered when A(#) reaches a criterion C>0, and C is subject to
random trial-to-trial fluctuation.

Let T be the point in time when activation A reaches criterion C. Therefore, we
have

AT)y=C (9)
k-In(T)=C (10)

and thus
T =exp(C/k). (11)

According to (11), latency T will be lognormally distributed if C is normally
distributed.? Substituting 1/k for ¢ and letting a=1 and d=0 in (4) and (5) yields,
respectively,

E[T] =exp [%1-%22] | (12)

and variance

0_2

2
Var[T] =exp (7?—#-]{2

)x [exp(c?/k?)—1]. (13)

2In model (11) and the related model (15), it is assumed that T represents the decision latency (see
Luce, 1986, Chap. 3), which is an unobservable component of the total RT. Therefore, both models
neglect motor components of RT. However, there is some empirical (Wing & Kiristofferson, 1973; Ulrich
& Stapf, 1984) and theoretical (Ulrich & Wing, 1991) evidence that the motor component contributes
little to the total variance of RT, so it is not unreasonable to neglect this component for the purpose
of model building. Thus, we assume constant motor processing times within these models.
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The logarithmic activation growth is conceptually similar to the associative
strength model recently discussed by Grice, Canham and Boroughs (1984).
According to their model, associative strength A4 builds exponentially over time,
according to

A(t)y=a—m-exp(—kt). (14)

As before, it is assumed that a response is triggered as soon as A(t) crosses a
normally distributed criterion C> 0. Thus, the associative strength model implies

1 a—C
T=——Eln( = ) (15)

Thus it can be seen that the associative strength model does not imply lognormally
distributed latencies. The distribution resulting from Grice’s model and its fit to
empirical RT distributions are discussed by Luce (1986, pp. 150-151), who reports
a bad fit.?

Partial-Output Models

Starting with the influential paper of McClelland (1979), many theorists have
considered specific models in which RT is determined by a series of processes
cascading activation from an input level to an output level, usually passing through
a number of intervening processing levels along the way. Contrary to traditional
serial processing models (see Miller, 1988, for review and further analyses),
these partial output models allow a given processing level to start transmitting
output (i.e., activation) before it has finished processing (i.e., reached its asymptotic
activation level).

3 Actually, it appears to us that Grice’s model is ill-defined because it predicts a probability larger then
zero that no response will occur on a given trial. To see this, we note that

Pr{T>1t}=Pr{d()<C} (16)
=Pr{a—m-exp(—kt)<C}. (17)
For 1 — o0 and g < oo, we have
Pr{T>(}=Pr{a<C} (18)
=1—-Pr{C<d} (19)
>0, (20)

since C is a normal random variable. This means that there is a non-zero chance that a response will
never occur. Whether or not this probability is negligibly small depends on the mean and variance of
C and the asymptote a.

A similar objection has been made by Ashby (1982) to the.cascade model of McClelland (1979).
For this model, Ashby derived the density of RT conditional on a response occurring and based
further predictions on this density. Unfortunately, we cannot tell from the text of Luce whether such an
adjustment was also used in fitting Grice’s model to empirical RT data.
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In a recent paper, Schweickert (1989) described a general form of such models
having two processes, say x and y, in series. The output g(¢) of process x increases
monotonically with time ¢ and is continuously fed into process y. Similarly, the
output f[ g(¢)] of y is monotonically related to its input g(z) at time . Hence the
output of y is the composition of two monotonic increasing functions, namely g(¢)
and f(1).

The description of partial output models as a composition can be extended to a
chain of » successive processes or units in which the output from unit (i — 1) at time
t serves as the input to unit i The output O,(¢) of the last unit, », in the chain is
given by the composition

On(t):gn("'g3(g2(gl(t)))"')’ (21)

where g;(f) is a monotonic increasing function denoting the output of unit i
(i=1,..,n) at time ¢. It is obvious that O,(¢) will be mathematically intractable
without specific assumptions about the shape of g;(¢). The lognormal arises from
the assumption that the input/output relationship of unit i>1 is a power function,

g:()=A; [g,_1(1)]" (22)

where the slope A, is a positive random variable and b,>0 is a positive constant.
Thus, the output g, is a negatively accelerated function of the input for 0 < b, < 1,
a linear function for b,=1, and a positively accelerated function for b, > 1. The first

unit, /=1, in the chain is called the receptor unit, and its power function is given
by

A (1 —1ty)n if 1>1,

)= 23

&(1) {0 otherwise, (23)

where 1, is a startup delay in the transmission of activation. Finally, it is assumed
that the response to a signal at r =0 is triggered as soon as the output O, () reaches
a constant criterion value ¢. (We later relax this restriction and allow ¢ to vary.)
According to this model, random trial-to-trial fluctuations of latency T are solely
attributable to variation in the slopes A, ..., A,,.

To derive the distribution of T, we apply (23) and (22) to (21). For ¢ > t,, this
yields '

O”(I)___A" 'Af;,Ll ‘A:njzbn—l .“Alfnx s x by (t_to)blx xb,,‘ (24)

Let k;=]1_,,,b;for i=0,..,n—1 and k;=1 for i=n, which enables us to write
(24) more compactly as

0,()= (1= to)ox [] Ak (25)

i=1
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Since a response is triggered when event {O,(T)=c} occurs, one obtains from (25)

c=(T—t)x [] A% (26)
i=1
Taking the natural logarithm on both sides gives
In(e)=ko-I(T—10)+ >, [k;-In(A)]. (27)
i=1

Rearranging yields

In(c)—3>7_, [k;-In(A))]

In(T —¢,) = (28)
ko
Taking the antilog on both sides and rearranging gives
] -5 Tk..In(A.
T=3Xp { n(C) i=1 [ i n( 1)]}+t0 (29)
ko
If we abbreviate X,=In(c)/k, and X,;= —k, -In(A;)/k, then we arrive at
T=exp<z X,-)—}-z‘o. (30)
i=0

Under relatively general conditions of the central limit theorem, the sum in (30) is
expected to approach a normal distribution and thus T should approximately
follow a lognormal distribution shifted by t,. Note that our final result even allows
the criterion ¢ to vary randomly from trial to trial, although it must remain
constant over time within a trial.*

A series of simulations was conducted in order to examine the rate at which the
sum in (30) converged to the normal distribution. The series had a factorial
structure, with each simulation defined by a combination of:

4 Since C and A, must be positive random variables, a positive skewness of their distributions appears
to be most likely. If a positively skewed distribution is log-transformed then it usually becomes more
symmetrical and hence closer to the normal distribution. Therefore, in this case, T is expected to
approximate a lognormal distribution rapidly. Ironically, T would exactly follow a lognormal distribu-
tion if C and A, .., A, were lognormally distributed, because the logarithm of a lognormally distributed
random variable yields a normal random variable and the sum of normal variables is again normally
distributed; thus the exponentiated term in (30) would contain only normal random variables and thus
T would be a (shifted) lognormal variable.

Intuitively, it seems that the distribution of the sum }°7_, X, should be close to a normal distribution
if the individual variances Var[X;] (i=0, .., n) do not differ too much. This ideal condition, however,
imposes a certain restriction on the b/s; namely, k;~ 1 for i =0, ..., n. This restriction, for example, would
be fullfilled if positively and negatively accelerated power functions would alternate in the processing
chain. However, the simulations discussed next clearly demonstrate that this alternation-restriction is not
necessary in order to obtain a close approximation to the normal distribution for 3°7_, X,.

480/37/4-3
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e the number of units », which equalled 1, 2, 3, 4, 6, 8, 10, 15, or 25;
 the value of h,—equal for all units—which was 0.5, 0.75, 1.0, 1.5, or 2.0; and
» the probability distribution for A;, which was either

— uniform ranging from 0.5 to 1.5,

— normal with a mean of 1.0 and a standard deviation of 0.15,
— exponential with a mean of 1.0, or

— gamma: the sum of two exponentials each with mean 0.5.

B:
0.5
200 |
0.75
175 1.0
L 150 L 1.5
N
2.0
Roj25 L
T
100 F ooz
75 -
2.5 5 10 30 50 70 90 95 97.5
Percentile
Br._
0.5
200
0.75
175k 10
L 150 } 1.5
N
R 0 | 2.0
T
100 |
75
2.5 5 10 30 50 70 90 95 97.5

Percentile
FiG. 1. Simulated RT distributions obtained from (30), showing rate of convergence to lognormal.
Simulations were conducted separately for exponential, gamma, normal, and uniform distributions of the
As (Panels A through D, respectively) and for the five values of the b/s indicated by the curve
parameters. The dotted and dashed lines show simulation results for one- and four-unit models (i.e.,
n=1 and n=4), respectively, and the solid lines show exact normal distributions for comparison.
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In each simulation, 10,000 RT values were generated. To generate an RT, values for
A; were first randomly generated independently for each unit, and then (28) was
solved for In(T). Without loss of generality, ¢, was set to zero. The 10,000 In(T)
values generated in each simulation were used to estimate the values of the In(T)
distribution at 20 percentiles ranging from 2.5 to 97.5 in steps of 5.0.

Figure 1 shows representative results from the simulations. The vertical axis
shows the obtained percentile values for In(T) in each simulation. Since the units
of this axis are arbitrary, the In(T) values have been adjusted to different means
for the different values of b, so that the lines would not overlap on the graphs.
Percentiles are shown on the horizontal axis, which has been scaled so that a

B__.
200 |
175
L 150 | =
N
Rop95 |
T
100 |
75 -
2.5 5 10 30 50 70 90 95 97.5
Percentile
B=
0.5
200 |-
0.75
175 - L0
L o150 | 1.5
N
2.0
R o5 |
T
100 |
75k
2.5 5 10 30 50 70 90 95 97.5

Percentile

F16. 1—Continued
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normal distribution appears as a straight line. Thus, the results approach an exact
lognormal to the extent that the simulated data values fall on or near a straight
line.

The graphs show that the simulated values of In(T) approximate the normal
distribution rather well. The simulated values are shown for the cases of n=1
(dotted lines) and n=4 (dashed lines), and exact normal distributions are shown
for comparison purposes (straight lines). It is clear that the results with n =4 give
a very good approximation to a normal distribution. Interestingly, the small
departures from normality were not generally eliminated by increasing the number
of units up to 25.

In a second series of simulations, we measured the convergence of the sum in (30)
to a normal by estimating the power of actual experiments with 50, 100, 200, 400,
or 800 observations to detect the small departures from normality shown in Fig. 1.
This series was restricted to parameter combinations with n=1, 4, 10, or 25 and
b;=0.5, 1.0, or 2.0. For each combination of parameters, 1000 experiments were
simulated. For each experiment, the appropriate numbers of observations was
randomly generated, and Geary’s test of normality (cf, D’Agostino, 1970) was
applied to see whether the hypothesis of normality could be rejected for the
obtained distribution. Thus, the percentage of samples for which normality could be
rejected was the index of goodness of fit to the normal distribution. The results give
a more precise picture of the size of the deviations from normality. For example, in
experiments with 400 observations, the percentage of null hypotheses rejected was
55, 31, 30, and 28 for n=1, 4, 10, and 25, respectively. The pattern was similar for
other numbers of observations, although of course the overall percentage of
rejections was larger with more observations (e.g., for n=1, the percentage of
rejections was 22, 34, 45, and 68 in experiments with 50, 100, 200, and 800
observations, respectively). Convergence to normality was essentially perfect with
b/s equal to 1.0, in the sense that the percentage of rejections was 5% for n=25.

A third set of simulations was conducted to examine the rate of convergence of
(30) when the 4;’s varied randomly. Specifically, simulations included cases in which
the b/’s were uniform ranging from 0.5 to 1.5 or had a gamma distribution formed
by summing two exponentials each with a mean of 0.5. These simulations indicated
that with random b/’s the sum diverges from the normal as # increases; for n > 10,
the Geary test virtually always rejected normality. Thus, it appears that the sum in
(30) converges to approximate normality only when the b/s are (nearly) constant.

The models we have considered thus far have structures quite unlike the serial
models commonly used in stage analysis of RT (e.g., Sternberg, 1969), because in
stage models total RT is the sum of the processing times for individual stages. In
principle, however, the lognormal may also arise from a serial process. Thorin
(1977) has shown that the lognormal may be arbitrarily well approximated by the
convolution of a finite number of gamma densities (cf. Feller, 1971, p. 47). In order
to approximate the lognormal, the gamma densities must differ in their scale and
shape parameters. Thus, a serial model could produce a lognormal distribution
of RTs if the individual stages had an appropriate combination of gamma
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distributions. In practice, however, it appears somewhat unlikely that an appropriate
combination of gamma distributions would arise by chance, at least for serial
models with small numbers of stages. Simulations were conducted with two, four,
and eight stage models. First, the parameters of the gamma distribution for each
stage were randomly selected. The shape parameter was selcted from a uniform
distribution over the range of 1-10. It seems reasonable to allow at most an order
of magnitude variation in the shape parameter, since different stages seem unlikely
to differ more substantially than this in the processes determining their durations.
The scale parameter was selected so that true mean stage durations would be
distributed (across models) normally with a mean of 50 and a standard deviation
of four. In the absence of other information, it seems reasonable to assume that
stage durations are approximately equal. Second, 10,000 RTs were randomly
generated from the model with the selected parameter values. Third, the null
hypothesis of a normal distribution of In(RT) was tested with an appropriately
modified version of the Kolmogorov-Smirnov test (Dallal & Wilkinson, 1986;
Lilliefors, 1967). The null hypothesis could be rejected (o= 0.05) for 92.5%, 77.1%,
and 43.5% of the parameter combinations selected for the two, four, and eight stage
models, respectively. Thus, sequences of small numbers of stages having gamma
durations with independently selected parameter values are unlikely to produce RT
distributions for which the lognormal provides an acceptable fit. In additional
simulations the shape parameter was selected from uniform distributions over the
intervals 1-4 and 1-20. With the narrower range (1-4), power increased dramati-
cally (above 93% in all cases), and with the wider range it decreased to
approximately 87%, 61%, and 40% for two, four, and eight stage models, respec-
tively. Still other simulations used standard deviations of one or ten, instead of four,
but this variation had little effect on simulation outcomes.

3. CONCLUSIONS

In this paper we have identified several types of models that produce either exact
or asymptotic lognormal response latency distributions, and it is evident that there
are several theoretically meaningful ways in which lognormal latency distributions
can arise. The most prominent ones involve either

1. exponentially transformed normal random variables

2. a product of independent random variables

3. or both (since the product of lognormally distributed is also lognormally
distributed).

We have demonstrated that it is possible to construct reasonable RT models with
these mathematical properties, although further research will be needed to deter-
mine the applicability of these models within particular experimental contexts. In
any case, it is interesting to note that these models are conceptually very different
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from the discrete-stage serial models involved in much of the RT-theorizing over
the past 20 years (e.g., Sternberg, 1969), although certain serial models can also
generate the lognormal. Thus, the lognormal distribution, which has been fitted
successfully to empirical RT distributions by several researchers starting with
Schlosberg and Heineman (1950), can now be regarded as having the status of a
theoretically based distribution rather than a totally ad-hoc one in RT research.
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