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Time resolution of clocks: Effects on reaction
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This paper investigates the measurement of reaction times (RTs) with clocks
of limited time resolution. The questions raised are: (@) What is the
relationship between measured and true RT? (b) Are mean and variance of
measured RT biased, and if so, (¢) how does this bias depend on the clock’s
time resolution? (d) Is it possible to correct this bias? It is concluded that
the bias is practically negligible even if the time resolution of a clock is only
30ms. The results show that a clock of limited time resolution biases mean
and variance of measured RT. Furthermore it is shown that the effect of
time resolution on detecting a true mean RT difference is negligible if the
variance of true RT is relatively large. Formulae are provided to correct the
bias of mean and variance of measured RT. In addition the implication of
time resolution on measured RT for paired observations is analysed. It is
shown that the product moment correlation coefficient but not the
covariance of paired RT measures is affected by time resolution. A
correction formula to remove the bias on the product moment correlation
coefficient is provided.

1. Introduction

Consider a researcher reporting reaction time results from his study in a colloquium.
The audience is fascinated by his new findings. At.the end of the discussion following
his talk someone asks for the time resolution of the clock applied for measuring the
RTs. The speaker hesitates and finally confesses that his RT clock has only a time
resolution of about 40 ms. Whispering of the audience is noticeable and one can feel
that now everybody doubts his results. Is this doubt justified? The present paper
provides an answer to this question.

Although this colloquium situation is rather hypothetical, we feel that many
experimental researchers encounter this problem when they intend to measure RT
with personal computers which provide built-in timing mechanisms with limited time
resolution.

The purpose of this paper is threefold: (a) We examine the effect of time resolution
on detecting mean RT differences and (b) the errors regarding mean and standard
deviation of RT which may be caused by the limited time resolution of a clock.
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(c) We provide simple formulae to correct these errors. Before proceeding to these
topics we define the measurement of RT with a counter clock and analyse the
relationship between true and measured RT.

1.1. Measurement of RT with counter clocks

RT is a continuous random variable with an unknown density functiont fir.
However, if one measures RT with a counter clock the obtained measure is no longer
continuous. To be concrete, when a stimulus requiring a response is presented the
counter is reset to zero. Now the counter generates a discrete sequence of equally
distant time points {t,,¢,,ts,...}. The first time point f, occurs mms after stimulus
presentation. The interval between two consecutive time points defines the time
resolution m of the counter clock; the larger m the worse the time resolution of the
counter clock. Let ¢; and t;,, be the ith and (i+1)th count of the clock, then any
event occurring during this interval is measured as time t,,,. Therefore if the
response occurs at time ¢ with te[t;t;. ) then response time t;, , is recorded. RT* is
alwa's a multiple of time resolution m. Hence in the following considerations we
distinguish between RT and RT*. It is intuitively clear that the true RT is better
recoverable by RT* if m is small than if it is large. Furthermore the probability
distribution functions (pdfs) Fgy and Fgr. of RT and RT* respectively only coincide if
m=0.

1.2. The relationship between the distributions of RT and RT*

Recall that RT* is a discrete random variable with distinct values
(m,2-m,...,i-m,...,v-m) where v denotes the maximal count. v is selected in such a
way that the probability Pr{RT<v-m} =1 holds. The probability Pr{RT*=i-m} of
RT* can be obtained if m and the pdf Fgy of true RT is known

Pr{RT*=i-m}=Pr{(i—1)- m<RT<i-m}

=Frrl[i-m]—Fge[(i—1)-m] (1)

fori=1,...,v.
Equation 1 can be used to compute the mean E[RT*] and the variance var [RT*]
of RT*

E[RT*]=Y i-m-Pr{RT*=i-m) )
i=1
var [RT*] = Z (i-m—E[RT*])2-Pr {RT*=i-m}. 3)
i=1

tWe will use throughout this paper the term density function to denote the first derivative of the
probability distribution function F of a continuous random variable (cf. Kendall & Stuart, 1977, ch. I).
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2. Effects of time resolution on RT results

RT studies are usually conducted to reveal the effects of one or more factors on mean
RT. To simplify matters, assume one factor (e.g. signal intensity) with two factor
levels I, (e.g. low intensity) and I, (e.g. high intensity). Let M, and M, denote the
observed means of measured RT for factor levels [, and [, from independent samples
respectively. Researchers usually perform a statistical test evaluating whether M; and
M, differ significantly.

Proceed on the assumption that the hypothesis #;: u;>p, holds for true RTs.
Then the power of a statistical test is defined as the probability of rejecting the null
hypothesis #, if the alternative, J#,, actually holds. A test is said to be powerful if
this probability is high.

Let us consider two researchers A and B; each conducts the above experiment. The
only difference is that A uses an RT clock with a time resolution of 1 ms while B’s
clock has only a time resolution of 50ms. If we proceed from realistic assumptions
about true RTs (e.g. u; =220, 6,=75, n,=200, 6,=70ms) then one might ask: Is B’s
test about as powerful as A’s test or should B buy a better clock? The next section
provides an answer.

2.1. On detecting differences of mean true RTs

Whether A or B rejects the hypothesis #,: u,=u, or, alternatively, accepts i#7:
[i1> 145, depends on the value of the statistics U=M,;—M,. If U exceeds a specified
constant c, then 5, is rejected. The constant c, is specified such that the probability
Pr{U>c,|#,}=a is small, e.g. a=0.025, where Pr{U>c,|#,} denotes the prob-
ability of event {U >c,} under the condition that 5} holds.

If M, and M, are based on a large number of observations n; and n, (n,,n,=30)
respectively then U is very nearly normally distributed according to the Central
Limit Theorem even if RT* is not normally distributed. Furthermore, if 5 holds
and oy, denotes the standard deviation of U then Z=(U—0)/oy follows closely a
standard normal distribution.t This information is needed to compute ¢,

U-0 -0
Pr{U>c¢[9€”0}=Pr{ > Lo }

gy Ou

=Pr{Z>z,}.

If this probability is equal to «, then it must be true that ¢,=z," gy. Therefore the
rejection probability of 5, i.e. the power of the test, is given by

Pr {U>za°crU|3i”1: Py > o)

+Without loss of generality we assume that the value of ¢, is known to the experimenter. In a more
realistic situation o is of course unknown and therefore has to be substituted by the sample estimate 6.
In this case the random variable Z=(U —0)/é, approaches only a standard normal distribution if the
sample sizes are large. However, for our demonstrations the sampling distribution of Z has to be known.
Therefore we will use o, instead of 6y.
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For any given mean uy=E[M,]—E[M,], the random variable Z'=(U—py)oy
has very nearly a standard normal distribution ®(z)=Pr {Z' <z}. Hence if s, holds
then the rejection probability is

Pr{U>z, oy|s#,}=Pr {Z’>C“—.MU}

Oy
=1 —d)[za——gﬂil (4)
Oy
with
#y=E[M,]—E[M,]=E[RT}]—E[RT%]
and

ot =var[M,—M,]
=var[M,;]+var[M,]—2 cov[M,,M,], (5)

where cov[M,,M,] denotes the covariance of M, and M 2- Since M, and M, are
based on independent samples, we have cov[M,, M,]=0, and hence

o =var[M,]+var[M,]

var[RT¥] var[RT%
_var[RTf] var[RT§] ©
ny n,
Note that the quantities E[RT¥], E[RT%], var [RT*] and var [RT%] are completely
specified if time resolution m and the pdfs of RT, and RT, are known.

2.1.1. A numerical illustration. To evaluate the effect of m on the rejection
probability Pr{U >z, o,|#,}, the following steps were performed:

1. Special Erlangian distributions were used for RT, and RT, (cf. Townsend &
Ashby, 1983). Empirical RT distributions look very similar to special Erlangian
distributions. Therefore special Erlangian distributions have often been used to model
RT distributions (see McGill, 1963). The pdf of a special Erlangian distribution is
given by (cf. Cox, 1970, p. 20)

a_l(/l't)i

Fre(t)=1—e~*" ; (7)

where a is a positive integer and 1>0. The parameters a and A specify the mean and
variance of RT
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E[RT] =§

var[RT]= %

2. Reasonable parameter values for a and 4 were chosen for the pdfs of RT, and
RT, respectively, such that mean and variance of RT,; and RT, agreed with typical
findings reported in the literature (cf. Burbeck & Luce, 1982; Krueger, 1984; Ulrich &
Stapf, 1984). For ease of comparison two constraints were always used: (a)
E[RT;]—E[RT,]=20ms. (b) n,=n,=n; where n was adjusted in such a way that
the rejection probability equals 090 for m=0 (perfect time resolution). This
probability was selected arbitrarily for demonstration purposes and was also
computed by equation (4).

3. A particular value of time resolution m was chosen.

4. The means E[RT¥] and E[RT%*] as well as the standard deviations SD[RT¥]
and SD[RT%] were computed via equations (1), (2), (3) and (7). The obtained values
were used in equation (4) to compute the rejection probability.

5. Steps 3 and 4 were carried out for m=2, 4, 8, 16, 32, 64 and 128 ms.

Results. The results of these computations are shown in Fig. 1 for three different pairs
of pdfs Fgr, and Fgr,. These pairs differ regarding to the variance of RT: small,
medium and large RT variance. Somewhat surprising is the finding that the rejection
probability for these examples is almost unaffected by time resolution if m <64 ms.
Whether the rejection probability declines fast or slowly toward zero with m depends,
all other things being equal,t on RT variance: the decline is faster for small RT
variance. The SDs used for our computations can be regarded as small, relative to
those reported in typical RT studies (cf. Ulrich & Stapf, 1984; but see also
Kristofferson, 1976). Therefore, our computations demonstrate that a clock with a
time resolution of only 30 ms may be sufficient in most cases.

2.2. Effects of time resolution on mean and variance

Does E[RT*] agree with E[RT], and SD[RT*] with SD[RT] or does time resolution
m produce systematic biases on E[RT*] and SD[RT*]? Table 1 provides an answer
to this question:

A special Erlangian distribution with E[RT]=80 and SD[RT]=21ms was
assumed for true RT. Equations (2) and (3) were used to compute E[RT*] and
SD[RT*] respectively for different values of m. As one can see in Table 1, E[RT*]
and SD[RT*] increased with m; a smaller effect of m is observed for SD[RT*] than
for E[RT*].

+Note that the sample sizes n, and n, differ between the curves in Fig. 1 to equalize the rejection
probabilities at m=0 for all curves.
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Figure 1. Rejection probability Pr{U>cgq, Sbﬁ} as a function of time resolution for three
pairs of distributions. Upper graph (large variance): E[RT,]=220, E[RT,]=200, SD[RT,]=
110, SD[RT,}=82ms, and n,=n,=494. Middle graph (medium variance): E[RT,]=120,
E[RT,]=100, SD[RT,]=38, SD[RT,}=33ms, and n, =n,=68. Lower graph (small variance):
E[RT,]=80, E[RT,]=60, SD[RT,;]=27, SD[RT,]=20ms, and n, =n, = 30.

Table 1. Effects of time resolution m on E[RT*] and SD[RT*]
m E[RT*] Corrected SD[RT*] Corrected

0 80 - 21 -
2 81 80 21 21
4 82 80 21 21
8 84 80 22 21
16 88 80 22 21
32 96 80 23 21

64 114 82 30 23
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2.2.1. Bias correction: Adaptation of Sheppard’s method. Fortunately the bias pro-
duced by time resolution m can be corrected quite satisfactorily. A slight modification
of Sheppard’s method for grouping (see Kendall & Stuart, 1977, pp. 77-82) can be
used to correct the measured means and variances. The rationale behind this method
has to be elucidated:

Moments of a continuous random variable are often estimated on the basis of a
frequency distribution with individual values classified into equal sized intervals, that
is, into groups. Each group frequency is assumed to be concentrated at the mid-point
of the corresponding interval. When the estimation of moments is based on group
frequencies and corresponding mid-points, a certain amount of bias is introduced for
all moments of second and higher order. This bias increases with the size of the
intervals.

Sheppard’s method can be used to correct this bias. Because the distribution of
RT* can be regarded as a grouped frequency distribution with interval size m, an
adaptation of Sheppard’s method for grouping can be used to recover the mean and
SD of true RT from RT*.

To adapt this method, the first step is to introduce the random variable RT¢, where
the superscript ¢ denotes the measurement of a hypothetical clock, which indicates
the mid-point (t;+t;4,)/2 if true RT falls into the ith interval [t;,t;,,). Sheppard’s
method is directly applicable to this hypothetical measurement to uncover mean and
variance of true RT (see Kendall & Stuart, 1977, p. 78)

E[RT]=E[RT"] (8)

2

var [RT]=var [RT] - % 9

In the second step we note that the relationship

RT®=RT*— g (10)

must hold between RT* and RT*. Substituting equation (10) into equation (8) and (9)
yields the desired result to uncover mean and variance of RT from RT*

E[RT]=E [RT* - %]

E[RT] = E[RT*]— g (11)

and since translation does not affect variance

+Of course, Sheppard’s method can also be used to uncover third and higher central moments of true
RT. The interested reader should refer to the formulae provided by Kendall & Stuart (1977, p. 78).
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2
var [RT] =var I:RT* - r;:l — T2

mZ

=var [RT*]— TR (12)

Equation (12) can also be used to explain the finding above that the power of the
test to detect mean differences (i.e. rejection probability) is more attenuated by time
resolution m for smaller than for larger RT variances. From equation (12) it follows
that
mZ

var [RT*]=var [RT] + 7

(13)

From this one can see that the contribution of the term m?/12 to var[RT*] is
negligible if var [RT] is large. Therefore o, [see equation (6)] will depend less on
time resolution m if var[RT] is large and hence the rejection probability [see
equation (4)] is almost unaffected by m.

One might also wonder why a counter clock with a time resolution of 30ms or
more is sufficient for comparing reaction times that differ by 20ms as in our
computations above? If RT is a continuous random variable with a density function
that covers several clock intervals then RT* has a discrete distribution with mean
E[RT*]=E[RT]+m/2 according to equation (11). Therefore the difference between
the means of RTY and RT% is equal to the difference of the corresponding true
means, that is, the measured difference does not depend on m.

2.2.2. The relative bias of SD[RT*]. We used equations (11) and (12) for several
theoretical distributions and found that the bias on means and variances can be
corrected very satisfactorily (see Table 1). However, it should be noted that the
quality of correction was found to decrease with increasing m. In all our compu-
tations it turned out that the correction formulae worked very satisfactorily if
SD[RT] is less or equal to time resolution m.

In general the bias of SD[RT] will be less if the variance of RT is large compared
to time resolution m. To show this, assume that SD[RT]=k m. Then one derives
from equation (12)

SD[RT*]—SD[RT] I 1
SD[RT] N 12k?

1 (14)

expressing the difference SD[RT*]—SD[RT] relative to SD[RT] as a function of k.
For k equal to 1, 2, 3, 4, 5 and 6 one obtains the values 0.041, 0.01, 0.005, 0.003,
0.002 and 0.001 of (SD[RT*]—SD[RT])/SD[RT] respectively. It can be seen from
this computation that SD[RT*] and SD[RT] agree satisfactorily as long as
SD[RT]}=Zm.
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For example, if it is assumed that SD[RT]=60ms and the time resolution of an
available clock is m=30ms then k is computed by k=SD[RT]/m=60/30=2.
Inserting k=2 into equation (14) yields

SD[RT*]—SD[RT] _

SD[RT] 0.1,

showing that the relative difference between true and measured SD is negligible.

2.2.3. The higher-order contact requirement. It should be stressed that Sheppard’s
method is only applicable if the pdf of RT satisfies the so-called higher-order contact
requirement (see Kendall & Stuart, 1977, pp. 78-80). According to this requirement
the pdf of RT must contact the abscissa at the terminals of the range within which
reaction time is observed. For example an exponential distributed random variable
(cf. Luce, 1986, p. 10) does not satisfy this requirement because it has a higher-order
contact at one end but not at the start of the curve, being in fact J-shaped and very
abrupt at this point. Since reaction time distributions are usually neither J- nor U-
shaped this requirement should be met in almost every case.

2.3. Additional notes on dependent measures

In the computations of rejection probabilities it was assumed that the means M, and
M, were based on independent observations. Therefore one might ask whether the
obtained results can be generalized to dependent observations. This section provides
an answer.

Suppose that the pair (RT%,RT%,) represents the measured RTs of the ith subject
(i=1,...,n) under two conditions [, and I,, respectively, and let be U;=RTf;—RT3;.
Further assume that the sequence (RT¥,;,RT%,),...,(RT%,,RT%,) represents a random
sample from some joint distribution Pr{RT¥=<t; "RT}=<t,} of RTT and RT% (cf.
Kendall & Stuart, 1977, pp. 20-22). Since the n differences U,,...,U, pertain to
different subjects, these differences will be independent random variables. Again, we
wish to test 5. E[U]=0.

In this case the rejection probability is also computed via equation (4), however,
with a slight modification since M, and M, are correlated. Therefore for the
calculation of ¢y according to equation (5) the term cov[M;, M,] must be taken into
account. It is obvious that the above results related to the rejection probability
Pr{U>z, oy|#,} can only be generalized to dependent measures if cov[M;, M,]
does not vary with time resolution m.

Theorem 1 (Invariance Property). If M, and M, are measured with a clock of
time resolution m and given the higher-order contact requirement for the pdfs of
RT, and RT, holds, then cov[M,M,] does not depend on m but only on
sample size n and on the covariance of RT; and RT,, that 18,
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cov[RT,RT,]

cov[M,,M,]= (15)

Proof

" RT* Y. RT*.
cov[Ml,sz—_:covI:Z"ln 1',21_1 2’].
n

This expression can be rewritten as (cf. Mood, Graybill & Boes, 1974, p. 179,
Theorem 2)

M=

1 n
cov[M, M,]== Y, cov[RT%,RT%,].

n"i=1 j=1

il

If i+ j then RT,; and RT,; are independent random variables. Hence
1
cov[M,M,] =Ecov [RT¥,RT%].
Using equation (10)

1
cov[M,, M,] =;cov [RT‘; +%,RT3+§]

1
== cov[RT{,RTS].

Wold (1934) generalized Sheppard’s method to bivariate moments (see Kendall &
Stuart, 1977, pp. 86-87). His generalization is also directly applicable to uncover the
bivariate moments of RT; and RT, from the bivariate moments of RT¢ and RT.
Wold (1934) showed that

cov[RT,,RT,]=cov[RT{,RTS]

which completes the proof of Theorem 1.

Theorem 1 shows that cov[M,, M,] is not changed by the clock’s time resolution
m. The rejection probability given by equation (4) depends on cov[M,, M,] which is
unaffected by m according to the Invariance Property. As in the case of independent
measures the rejection probability is only attenuated because the variances of RT¥*
and RT% increase with m.

2.3.1. Remarks on the correlation coefficient of RTY¥ and RT%. Although the
covariance of RT¥ and RT% does not depend on time resolution m, the Pearson
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product moment correlation coefficient p* of RTf and RT%, however, does. In
general, p* is attenuated as m increases, which can be easily shown

_ cov[RT%,RTE]
~ SD[RT*]-SD[RT%*]

p*

_ cov[RT,, RT,]
"~ SD[RT*]-SD[RT%Y’

and with equation (13) it follows

cov[RT,,RT,]

p*= :
m?\ m2
\/ <var [RT,] +ﬁ> (var [RT,] +-1~—2—>

From equation (16) one sees that p* approaches to zero as m increases. As an
example, assume cov [RT,RT,]= —900, SD[RT,;]=50, and SD[RT,]=70. For this
example one obtains for m=0, 2, 4, 8, 16, 32 and 64 ms the values —0.257, —0.257,
—0.257, —0.257, —0.255, —0.251 and —0.233 for p*, respectively.

The relative bias of p*. In general p* is less affected by m if the variances of RT, and
RT, are relatively large. To show this let p be the product moment correlation
coefficient of RT; and RT, and assume that var [RT;]=var[RT,]=k-m. Under this
assumption one obtains from equation (16)

lpl=lp*|_ 1
1P| 12-k%+1

(17)

expressing the difference |p| —|p*| relative to |p| as a function of k. For k equal to 1, 2,
3, 4, 5 and 6 one obtains the values 0.077, 0.020, 0.009, 0.005, 0.003 and 0.002 for this
ratio.

Correction for attenuation. Fortunately it is possible to recover p from p*. Using
again equation (16) one derives

m2 m2 -0.5
p=r [(1— 12-var [Rﬁ])'(l T 12-var [RT;])] | (18)

This formula should be used to compute p when the quantities p*, var[RT¥],
var [RT%*] and the clock’s time resolution m are known.

3. Conclusion

The present paper investigated the relationship of measured and true RT if the
accuracy of an RT clock is finite. It was found that the time resolution of an RT clock
has almost no effect on detecting mean RT differences even if the time resolution is
about 30ms or worse. We provided formulae to correct means, SDs, and product
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moment correlation coefficients of measured RTs. Many computations with
theoretical RT distributions revealed that the correction formulae worked very
satisfactorily if SD[RT]=<m. Equations (14) and (17) can be used to judge whether
the time resolution of a given clock may be sufficient for RT measurement.

The purpose of this paper should not be to motivate researchers to carry out
sloppy work. However, most personal computers provide built-in timing mechanisms
(e.g. a time function in BASIC) that have time resolutions between 10 and 30 ms. We
believe that many experimental psychologists hesitate to use such a built-in function
and therefore develop a more accurate timing mechanism at machine language level.
This paper shows that such an additional effort is often unnecessary.

Implicit throughout the paper is the assumption that the RT clock always rounds
up, so that any fraction of a unit is sufficient to index or activate the next unit level
(e.g. 31 ms would round up to 60ms, given m=30ms time resolution). However, it
may be that several computer clocks do not work in this way, that is they may round
down (e.g. 59ms would round down to 30ms, given m=30ms time resolution). In
this case our conclusions are still appropriate with the only exception that equation
(11) has to be changed to E[RT]=E[RT*]+5%.
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