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The Short-Term Storage as a Buffer Memory between
Long-Term Storage and the Motor System:
A Simultaneous-Processing Model

RoLF ULrIicH AND KrLAUS DIETZ

Universitdat Tiibingen, Federal Republic of Germany

It is assumed that in a free-recall task the short-term store serves as a memory buffer
between the long-term store and a final motor stage of word production. Because of this the
retrieval process in long-term store is not hindered by the final motor stage of word produc-
tion since continued output from the long-term store queues in the buffer for motoric
processing. Otherwise a time consuming communication between the two processes would be
necessary. A stochastic model of this conceptualization is provided to predict the temporal
course of free recall as well as a paradigm in which the contribution of the short-term store in
free recall can be studied. The experimental results from this paradigm were used to test the
model and to estimate short-term storage capacity on the basis of the time course of free
recall. The model predictions were in good agreement with the data and the capacity estimate

coincides well with estimates found by totally different methods reported in the literature.
© 1985 Academic Press, Inc.

1. INTRODUCTION

Two components of the human memory system have been studied extensively
over the past 20 years: the short-term and the long-term stores. Information tem-
porarily in the activated state is said to be in short-term store (STS). It is assumed
that STS controls processes such as coding and rehearsal (Atkinson & Shiffrin,
1968,1971; Raaijmakers & Shiffrin, 1980, 1981; Shiffrin, 1975; Waugh & Norman,
1965). It is also assumed that STS is limited in capacity (Shiffrin, 1976), so that
only a limited number of items may be retained, rehearsed, and coded at one time.
The control processes in STS are believed to be prerequisites for permanent storage
of information in long-term store (LTS). Accordingly, much attention has been
paid to the role of the STS in transferring information to LTS for permanent
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storage. However, there seem to be no precise attempts to account for the role of
STS when information has to be retrieved from LTS.

In closing this gap the present article provides a possible contribution of the STS
when subjects continually retrieve information from LTS, as is the case in free
recall. In such a task subjects are instructed to recall all words of a previously
learned list or from a specified taxonomic category, such as animals, vegetables,
pieces of furniture, or occupations (Bousfield & Sedgewick, 1944; or for a review,
Murphy & Puff, 1982). Subjects may produce the words in any order they choose.

It seems plausible that in such a task the STS may function as a memory buffer
or waiting room between LTS and a final motor channel. Since subjects must ver-
balize their recalls, motor programs of the retrieved information must be prepared,
started, and executed in a final motor channel. Retrieved information could then
wait in STS for further processing if the motor channel should be busy.

By studying the temporal course of the recalled words, one may get insights as to
whether STS contributes anything as a buffer memory, as demonstrated later. To
this end we measure the period between the completions of any two consecutive
recalls, denoted in the following as intercompletion time. We derive the distribution
of the intercompletion time under the assumption that STS contributes as a
memory buffer in free recall. The knowlegde of this distribution, for example,
enables one to estimate the capacity of the STS.

We organize the article as follows: (1) In the next section the basic idea of the
Simultaneous-Processing Model is considered. (2) Then two conceptually different
retrieval processes in LTM are introduced. Both retrieval processes may be con-
sidered as examples. Each of them is easily incorporated into the framework of the
Simultaneous-Processing Model. How these incorporations are accomplished,
along with the introduction of important terms, are our main messages in this sec-
tion. (3) Next, we state the specific assumptions of the model. (4) Then, the dis-
tribution of the intercompletion times is derived for the Simultaneous-Processing
Model. In addition, we provide easy-to-compute expressions for the means and
variances of intercompletion times. (5) In a final section, we describe an experiment
giving evidence that information is stored in STS for further motor processing.
Hereby, the subject may preload STS with information from LTS before the actual
signal to start overt recall appears. The obtained data from this delayed recall
paradigm are used to check the Simultaneous-Processing Model and to estimate the
capacity of the STS.

2. THE BAsIiC IDEA: SIMULTANEOUS PROCESSING

Consider the typical temporal course of the recalled words in a free-recall task:
After asking a subject to recall all words from a previously learned list, word after
word is retrieved from LTS and pronounced. At the beginning the words follow in
rapid succession. After several words have been recalled the time between two con-
secutive recalled words increases.
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The speed at the beginning of the recall is somewhat surprising if one takes into
account the time to prepare speech, to activate the muscles, and to pronounce a
recalled word. This recall speed would surely be impossible if the retrieval of a unit
in LTS and its word production were two strictly serial processes, that is, while the
word production process runs, the retrieval process in LTS rests and vice versa.
Instead it is more probable that neither process is interrupted while the other one
runs: Retrieval of new units in LTS and word production can go simultaneously
and almost independently. Under these simultaneous-processing assumptions the
rapid retrieval process is not hindered by slow motor processing of a previously
retrieved word.

However, what happens when a word in LTS is retrieved while the motor process
is busy with a previously retrieved word? There is no problem in answering this
question if one postulates that the STS serves as a buffer memory between the LTM
and the motor stage. The STS receives units from the LTM and makes them
available for the final motor stage. The retrieval process can put the next unit into
the buffer immediately after it finishes putting the current one there irrespective of
whether the motor process runs it immediately or not.

In contrast, if there was no buffer memory between the motor stage and the
LTM, the two processes would have to be closely synchronized, the LTM passing
the next unit to the motor stage whenever the latter was finished with the current
one. This might require time consuming communication of the two processes which
is not needed if a memory buffer were available.

3. SIMULTANEOUS-PROCESSING MODEL AND POSSIBLE RETRIEVAL PROCESSES IN LTS

As noted, we are primarily concerned with the contribution of the STS as a
memory buffer in free recall. Therefore, the specification of any retrieval process in
LTS is only of minor interest within the context of the present work. Any retrieval
process may be considered within the framework of the Simultaneous-Processing
Model as long as the time between two consecutive outputs from LTS is exponen-
tially distributed (the requirement of this assumption will become clearer when
dealing with the mathematics of the model).

In the following, we describe two conceptually different retrieval processes which
might be considered as suitable candidates for the Simultaneous-Processing Model.
It should be stressed that these two retrieval processes are simplifications,
neglecting many well-established findings indicating the importance of
organizational factors in LTS which are well dealt with by a large-scale theory such
as that of Raaijmakers and Shiffrin (1980, 1981). However, we think that these two
retrieval processes are useful for introducing the terminology with more dis-
tinctness, making the matter more concrete, and also, that they are helpful in show-
ing how to incorporate a particular retrieval process into the framework of the
Simultaneous-Processing Model.
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3.1. Random-Search Model

The Random-Search Model (McGill, 1963) assumes that the subject restricts the
search in LTS to a limited area (e.g., all animals) if the subject is instructed to name
as many members from a specified taxonomic category (e.g., four legged animals) as
can be remembered. The limited area consists of » relevant items (e.g., dog, horse,
mouse, etc.) and of an unspecified number of irrelevant items (e.g., snake, fish, bird,
etc.). The retrieval of the relevant items from the limited area is analogous to a sam-
pling-with-replacement process: Item after item is randomly sampled from the
limited search area. After every sampling the corresponding item is inspected to see
whether it is relevant (that is, whether it is a member from the specified category)
and whether it has not been recalled before. If a sampled item is relevant and has
not been recalled before it will be copied. The original item is marked as recalled
and replaced in the limited area of the LTS. (Note that an already sampled item
could in principle be sampled more than once, because items are replaced in the
limited area after inspection. This aspect of the Random-Search Model is very
appealing, since introspection reveals that an item might be remembered more than
once during the course of a single free-recall trial.)

Now, the copy of the just retrieved item is transferred to STS. There it joins the
waiting line consisting of copies arrived previously, and waits for its entrance into
the motor channel. After the copy has entered the motor channel, the
corresponding motor program for its verbalization is prepared and executed. The
motor channel is freed from the copy as soon as the present recall is finished. The
elapsed time beginning with the copy’s entrance into the motor channel until its
overt recall is denoted as the motor service time. It should be stressed that we are
not constrained to assume that the queue in STS is handled in the order first come-
first served; pushing forward may be allowed in STS!

Let us now draw attention to the interarrival time density. The time between the
arrivals of the (i — 1)st and ith copy at the STS is denoted as the interarrival time D;
(i=1,..,n) and the corresponding density as f, (7).

McGill (1963, pp. 343-344) showed for the Random-Search Model that if the
individual sampling times are exponentially distributed with parameter s then the
ith interarrival time density of D, also has an exponential distribution

fD,—(Z):aiexp('—ait) (1)

with rate a,=sg(n —i+ 1). Here, g is the probability of sampling a relevant item in
the search area, as defined before. The same interarrival time density is obtained if
one assumes that the individual sampling times are constant and very small (Albert,
1968, 1972).

Before proceeding with the second retrieval process some comments are in order
about the one just described: (1) It is assumed that every relevant item in the
limited area has the same probability g of being sampled. This assumption is not
very cogent, since some items are more salient (e.g., dog) and therefore produced
earlier than others (e.g., weasel). A generalization of the Random-Search Model in
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this direction has recently been undertaken by Vorberg and Ulrich (1985). (2) It is
assumed that the search continues until all # relevant items in the limited area have
been retrieved. Various stopping rules based on the number of irrelevant samplings
are proposed by Schulz and Albert (1976) and may be used as modifications.

3.2. Parallel-Activation Model

The Random-Search Model assumes that the retrieval process in LTS is strictly
serial: Only one item could be sampled and inspected at any time. In contrast to
this serial retrieval process one may assume that all n relevant items are
simultaneously activated. However, an item is not immediately retrievable because
it takes a random delay before it is sufficiently activated and its copy finished for
taking it into STS. This Parallel-Activation Model is more compatible with recent
parallel conceptualiziations about retrieval processes in LTS (cf. Hinton & Ander-
son, 1981; Ratcliff, 1978).

If we assume that the random delays of these relevant items are independently
and exponentially distributed, having the same rate sg, then the Paraliel-Activation
Model is indistinguishable from the Random-Search Model, as McGill (1963,
p. 347) pointed out: The interarrival time density for D, is the same as the one for
the Random-Search Model, that is, identical to Eq. (1).

One may argue with good reasons that some items are more salient and therefore
the rates of the delays do differ. Indeed, a study of Kaplan and Carvellas (1969)
strengthens this assumption. They have measured the time of recall for individual
words and found that more salient items do have shorter recall times. Vorberg and
Ulrich (1985) have recently generalized the Parallel-Activation Model to account
for such findings. Their generalization may be used to improve the current version
of this retrieval process.

4. SPECIFIC ASSUMPTIONS OF THE SIMULTANEOUS-PROCESSING MODEL

Before dealing with the mathematics of the Simultaneous-Processing Model we
briefly outline all specific assumptions. They are sometimes simplifying assumptions
so as to render the mathematics of the model tractable.

Assumption 1. The time between the arrivals of the (i—1)st and ith copy at the
STS is denoted by D, Any retrieval process may be considered as long as the
interarrival times D, are independent exponentially distributed random variables
having the individual rates a,(i=1,.., n).

One may well ask whether the durations of psychological processes are well
approximated by exponential random variables. Some recent evidence suggests that
this is indeed the case (Ashby, 1982; Ashby & Townsend, 1980; Kohfeld, Santee &
Wallace, 1981), at least for certain mental processes.

Assumption 2. The time a single copy occupies the motor channel is denoted as
the motor service time M. Any distribution may be selected for M. It is assumed
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that the distribution of M neither depends on the number of waiting copies nor on
the number of retrieved items, and that D; and M are independent.

Assumption 3. Maximally ¢ copies can wait in STS; that is, STS is assumed to
be limited in capacity. The queue in STS need not to be served in a strict order by
the motor channel — any waiting copy may be picked for motor processing.

Assumption 4. No more than one copy can be served by the motor channel at
any one point of time.

Assumption 5. 1t may be that STS is totally occupied with copies and no further
copy can be picked up. There are many possibilities in such a case: The retrieval
process may be interrupted and restarted as soon as one occupied slot is freed in
STS. Another possibility would be that the retrieval process is not interrupted but
that the sampled items are replaced in the LTS search area without being marked
as recalled. The second possibility would be attractive if restarting the retrieval
process is a time-consuming process. These two possibilities are thoroughly dis-
cussed in the note at the end of the article.

Irrespective of what may happen with the retrieval process if the STS is totally
occupied, the following remark applies: Let us assume for a moment that the
(i— 1)st copy enters STS and occupies the last free slot. The ith arrival cannot
occur before at least one slot is freed in STS. Now consider the time elapsing
between the event when one slot is freed until the arrival of the ith copy.
Assumption 5 states that this time should correspond to D, How one may justify
this assumption is explained in the note at the end of this article.

After having introduced the assumptions of the Simultaneous-Processing Model
we proceed to derive the distributions of the observable intercompletion times in
the next sections.

5. INTERCOMPLETION TIMES PREDICTED BY THE SIMULTANEOUS-PROCESSING MODEL

In the subsequent sections we are concerned with the intercompletion time
C{i=1,.., n), that is, the observable time between the completions of the (i —1)st
and ith overt recall. We derive the probability density function (pdf), mean, and
variance for C,; within the framework of the Simultaneous-Processing Model.

At this point an anticipation of the main result may facilitate the understanding
of the arrangement for the following sections. The main result is that the pdf f(z)
of intercompletion time C, can be described as a probability mixture of the motor-
service time M and the sum M + R; composed of motor-service time M and a ran-
dom variable R;:

S () =Fu(t) (1 =pi) +Far s r (1) Di-

Hereby, p; denotes the probability that STS is empty after completing the (i — 1)st
recall, or in other words, that no copy is waiting in STS after the (i— 1)st overt
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recall is finished. If STS is empty after completing the (i — 1)st overt recall, then R;
is the time elapsing between the completion of the (i — 1)st recall and the arrival of
the ith copy at STS from LTS. Note that R; must be shorter than the interarrival
time D; — therefore, R, is called the residual-interarrival time.

Although so far we may not be very familiar with the above notation, this
probability mixture has an intuitive appeal: If there is at least one waiting copy in
STS while completing the (i — 1)st recall, then the following intercompletion time C;
just reflects the motor-service time M for the ith copy. This event occurs with
probability (1 —p;). On the other hand, it may occur with probability p; that no
further copy did arrive in the meanwhile, and thus, the STS is empty when the
(i — 1)st recall is completed. In such a case one has to wait an additional time R; for
the arrival of the ith copy from LTS before motor processing of the ith copy can
begin. Hence, under this condition, the intercompletion time C; reflects the sum
M + R,. These considerations provide the starting point for the following analysis:
How can one compute the probability p;? The next four sections address this
question.

5.1. The Transition Diagram and Permissible Pathways

For the purpose of the desired analysis it may be helpful to look at the free-recall
process in more detail within the Simultaneous-Processing Model. This is facilitated
if one sketches the course of the free-recall process by using a transition diagram.
Such a diagram is displayed in Fig. 1 for the special case of n = 6 relevant items and

NUMBER OF UNRETRIEVED {TEMS IN LTS

0 1 2 3 4

NUMBER OF COPIES OCCUPYING
STS AND MOTOR CHANNEL

Fic. 1. Transition diagram. Filled circles represent different coordinates (o, r) of the process. Arrows
describe a sample pathway.
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an STS capacity of ¢=3. In the transition diagram, the horizontal axis represents
the total number o of copies occupying STS and motor channel. For example, 0 = 4
means that there are three waiting copies in STS and one is in the motor channel.
Since at one moment only one copy could be in the motor channel, which is filled
automatically as soon as a copy enters the empty STS, the number u=o0—1 (02 1)
represents the actual number of waiting copies in STS. The vertical axis represents
the number r of not as yet retrieved relevant items. Thus, the coordinates (o, r)
(r=0,1,...,n; 0=0,1,.,c+1; o+u<n) in the transition diagram describe the
various nodes the process may visit during the course of free recall. For example,
the coordinate (2, 3) means that there are still three unretrieved items in LTS and
at the very moment one copy is waiting in STS and a further one is served by the
motor channel. Note that the process always starts at (0, n) and finishes at (0, 0).
Every permissible route between start and finish describes a particular realization of
the process and is called a pathway.

To characterize the features of permissible pathways we consider the particular
one sketched in Fig. 1: After starting the process one item is retrieved in LTS and
its copy is transferred to STS and passed on to the motor channel where its motor
processing begins immediately. This event corresponds to the transition from coor-
dinate (0, 6) to (1, 5). Before the motor process for the first copy has been com-
pleted, two further copies arrive at STS. Therefore, the pathway runs through the
coordinates (2, 4) and (3, 3). Note that the first recall could not yet have been com-
pleted, since the motor channel is still occupied by the first copy. From (3, 3) the
pathway leads to (2, 3). This section corresponds to the action of freeing the motor
channel from the first copy before any further copy arrives at STS. Therefore, as
soon as the process reaches the coordinate (2, 3) we can observe the completion of
the first recall.

Now the motor channel is immediately occupied with a waiting copy from STS.
Since no further copy from LTS arrives at the STS while the motor channel is busy
with the second recall, the pathway makes a second step to the left and we observe
the completion of the second recall as soon as the process arrives at (1, 3). The one
copy waiting in STS is now immediately transferred to the motor channel. After the
second recall, two further copies enter STS before completion of the third recall is
observable. The third recall is completed as soon as the process visits (2, 1). While
the retrieval process is going on for the last item in LTS, the two waiting copies are
being served one by one, and thus, the coordinate (0, 1) is visited. The last copy
enters the empty STS and is immediately served; its recall is completed as soon as
the process reaches (0, 0).

One might have noticed that the pathway is constrained to use one of two direc-
tions at each coordinate: First, whenever a copy enters STS, the pathway moves
one step southeast. Second, whenever the motor processing of a copy is completed
the pathway moves one step to the west. That is, at the end of a single step to the
west we can observe the completion of overt recall for a copy that was just before in
the motor channel. We should keep this property of the transition diagram in mind
when deriving the desired probability p, in the next three sections.
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5.2. Pathway Sections and Intercompletion Times

It is the purpose of this section to describe those pathway sections in the tran-
sition diagram which are associated with intercompletion time C,. There are several
pathway sections which may lead to an observed intercompletion time. All those
pathway sections associated with C; have to be defined for further analysis. This
task is performed with the aid of the transition diagram in Fig. 1 before presenting
a general definition: Visualize in the above example the possible states the process
might be visiting while one observes the intercompletion time C;. For the particular
pathway sketched in Fig. 1 we would start the clock for timing C5 when the process
reaches the coordinate (1, 3), because this would correspond to the completion of
the second recall. When the process arrives at (2, 1) we should immediately stop the
clock, because this coordinate corresponds to the completion of the third recall.
Thus, the particular pathway section underlying C; in this example can be
described by a starting and an end state. However, as mentioned before, there are
many pathway sections and each of them may in principle generate an observed
intercompletion time.

To describe all sections generating C; we introduce the sets U and V' containing
starting and end states of all possible pathway sections, respectively. The states in U
and V are found on the straight lines having a slope of minus one and passing
through coordinates (0,4) and (0, 3), respectively. Thus, we have the set
U=1{0,1,2,3} and the set ¥={0,1,2,3}. An element u of U (v of V) represents
the total number of copies occupying STS and motor channel immediately after the
completion of the (i— 1)st recall (ith recall). The particular pathway section in
Fig. 1 generating C, has starting state v =1 and end state v = 2.

Now let U x V be the Cartesian product of the sets U and ¥ and let (u, v) be an
element out of U x V.! Determine all those elements in U x ¥ which are pathway
sections, that is, all those elements which may in principle generate intercompletion
time C,. Denote this set of all possible pathway sections by A;. In order to be a
member of the set 45, an element (u, v) out of Ux V must satisfy the condition
v > MAX(u — 1, 0). This condition follows from the fact that a pathway at any state
can either continue to the west or to the southeast. In Fig. 2 the sets of possible
pathway sections A,,..., A¢ for the corresponding intercompletion times Cj,..., C¢ of
the above example are displayed. Note that 4, depends on the recall number i.

We now generalize the above considerations to characterize the sets U, V, and 4
for arbitrary numbers n of relevant items, STS capacity ¢, and recall number .

DEFINITION. Any pathway section associated with intercompletion time C;
(i=1,.., n) is defined by its starting state » and its end state v, with ue U; and
v e V,. The elements of U, are found on the straight line passing through coordinate
(0, n—i+ 1) and having a slope of minus one. The elements of V, are also found on

! One should not confuse the ordered pairs (o, r) and (u, v). The first ordered pair denotes the coor-
dinates o and r in the transition diagram and the second one a particular pathway section with starting
state # and end state v.
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F1G. 2. The six patches show the sets A,,.., 4¢ for the above example (n=6,c=3). A filled circle
represents a pathway section (u, v) out of 4; which may generate intercompletion time Ci(i=1,..,6). A
pathway section is defined by its starting state u and its end state v. The digit beside the filled circle
denotes the subset membership of each pathway section within a particular A, The subset membership is
used for computing the transition probability (v, u) introduced in Section 4.3.

a straight line which is parallel to the one of U; and passes through (0, n—i).
Hence, U; = {wmu = 0, 1,.., MIN(¢c, n — i+ 1)} and V, = {v:v=0, 1,.,
MIN(c, n—i)} describe the possible number of copies occupying STS at the very
moment the (i— 1)st and ith overt recalls are completed, respectively. In addition,
since the process always begins at coordinate (0, n), we have U, = {0}. And finally,
the set A; of all pathway sections which may generate intercompletion time C; is a
subset of the Cartesian product U;x V; and can be expressed as

A;={(u,v):u=0;v=0, 1,., MIN(¢, n— 1)} for i=1
={(u,v):u=0,1,., MIN(c, n—i+1);
v=MAX(u—1,0),.., MIN(c, n—i)} for i>1. (2)

5.3. Transition Probabilities

In this section we compute the transition probability P(Y;,; =v|Y;=u) that a
pathway section out of A, starting at » will have the end state v. Y; and Y, are
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random variables representing the starting and end states, respectively. For reasons
of notational simplicity, we sometimes abbreviate P(Y,,; =v|Y,=u) by Pfv, u),
and all transition probabilities are defined to be zero if (u, v) is not contained in 4,
It is also helpful to notice that Pv, 0)= P(v, 1) since the transition from (0, {) to
(1, i— 1) occurs with probability one. Therefore, we can leave out of consideration
all those pathway sections starting with u=0 when deriving the transition
probabilities.

It is appropriate for deriving the desired transition probabilities to partition the
whole set 4, into four disjoint subsets. All pathway sections in each subset share the
same common features for deriving their transition probabilities. In Fig. 2 we have
marked these four subsets within each 4; (i=1,..,, 6) for the above example. Note
hereby that for a given end state v, the corresponding pathway sections (0, v) and
(1, v) are members of the same subset since as mentioned before P(v, 0)= P(v, 1).
We now describe the computation of the transition probabilities for the four sub-
sets.

Subset 1: {(u,v):v=u—1 and u=n—i+1}. The pathway sections in this
subset occur if all » items in LTS have been retrieved, but some of their copies still
wait in STS for motor processing. Thus, the pathway sections for Subset 1 are
found on the horizontal axis in the transition diagram. Since all items have been
retrieved in LTS, the process is constrained to walk to the west, with P,(v, u)=1.

Subset 2: {(v,u)w=u—1 and u<n+1—i}. The common feature of all
pathway sections in Subset 2 is as before: Again we deal with one-step transitions to
the west. However, in contrast to Subset 1, there is at least one unretrieved item in
LTS while this step occurs. In the above example, the step from state (2, 3) to (1, 3)
would be a pathway section belonging to Subset 2.

We describe this situation more formally: At first we note that there are u copies
in STS after the (i — 1)st recall is completed. Therefore, the STS is waiting for the
arrival of the next copy from LTS which must be the (i +u)th arrival. Second, let
R, , be the residual-interarrival time of the (i +u)th copy, that is the time elapsing
since the completion of the (i— 1)st recall until the arrival of the (i + u)th copy at
STS (Fig.3). Since motor processing of the ith recall is completed before the
(i + u)th copy arrives, the one-step pathway section from u to v=u—1 is equivalent
to the occurrence of the event {M < R,, ,}.

PROPOSITION 1. The transition probability for any pathway section (u, v) belong-
ing to Subset 2 is

P(u, v) = E(e™ M) = p(a;.),

where p denotes the Laplace transform of the motor-service time M, and a;_, is the
exponential parameter of the interarrival time D, .
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Proof.
Pv,u)=P(R; ., > M)

= .[Om FofM,RHu(m, r) dr dm
= [ o) ([ e tr) ar ) i

= [ fulm)(1 = Fr,,(m)) dim.

In the Appendix it is shown that the residual-interarrival time R;,, has a dis-
tribution identical to that of the interarrival time D, , if the interarrival times are
exponentially distributed. Hence, the expression in bracket is exp(—a; ., m).

Pi(v, u) = fO”fM(m) exp(—a,, , m) dm

— E(e—aqu).

The last expression is the Laplace transform p(a;,,) of the motor-service time M.
This completes the proof.

Subset 3: {(u,v): v= MIN(c,n—i) and u<n—i}. First, we consider those
pathway sections in Subset 3 for which the end state is v =c. In the above example
a pathway section with v=3 and u=1 generating C; belongs to this category
(Fig. 1). What must happen for a pathway section with any starting state u to end
at v=c?

After completing the (i — 1)st recall the next copy immediately enters the motor
channel. Before the motor channel is freed from this copy, one after the other
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arrives at STS until STS is totally occupied. Or in other words, motor processing of
the ith copy required so much time that STS had been totally filled up with copies
from LTS.

In order to describe this event formally, we define the random variable S,,,
which represents the elapsed time from completion of the (i— 1)st recall until the
arrival of the (i+v)th copy at STS. Note that S;,, can be expressed as a sum
having the components R, ,,D; ,i150 Diry. Two  examples  are
Si,4=Rs+Dg+ D; and S;,,=Rs.

Now S;,. represents the interval between the completion of the (i— 1)st copy
until the arrival of the (i + ¢)th copy at STS. Therefore, if the motor-service time M
for the ith copy is greater than S, ., the above described event occurs. Hence, the
transition probability of a pathway section in Subset 3 with end state ¢ must be
equal to the probability of the event {M>S,, . }.

The alternative case, v =# — i, has formally the same consequence as the just dis-
cussed one of v = c. The only difference is that STS can not be filled up because the
number of relevant items in LTS is now insufficient. The pathway section (1, 2)
generating C, in the above example belongs to this category (Fig. 1). An end state
of v=n—1i occurs if the nth (the last one) copy has entered STS before the ith
recall is completed, that is, if the event {M > S, ,_,} has occurred.

In summary, the transition probability for any pathway section out of Subset 3
must be equal to the probability of the event {M>S,,,}.

PROPOSITION 2. The transition probability for any pathway section (u, v) belong-
ing to Subset 3 is

v+
P,u)y=1— 3 Cuppla)
k=u+i
with
v+T
Chrivu= H 1/(1'"ak/aj)-
J=u+i
f#k

Proof. P(u,v)=P(M>S,,,). Let Fg (t) be the distribution function of the
sum S, ,;, and note the similarity of the proof here to the one of Proposition 1

Pi(o, u)= [ " fut) - Fo,. () .

Since the individual interresponse times are assumed to be exponentially dis-
tributed, Fg,, (¢) corresponds to the general Erlangian distribution (cf. McGill &
Gibbon, 1965; Townsend & Ashby, 1983, p. 209)

v+

FSu,v,i(t) =1- Z Ckivu ) exp( —ag I)a > O: (3)

k=u+1i

and C,,, is the constant defined in Proposition 2.
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To continue the proof, we insert (3) for Fg, (1)

P =1=[" 1) (T Conw-erp(—aun)) d

k=u-+1i
v+ o
=1= 3 Cuw| fult) exp(—act)dr
k=u+1i

The integral is equal to the Laplace transform of M. The proof is finished.

Subset 4: {(u,v): u<v< MIN(c—1,n—i—1)}. The remaining pathway sec-
tions belonging to A4; are the most complicated ones to describe formally:
Immediately after completing the (i— 1)st recall, the motor channel is occupied
with a copy from STS. Until the completion of the ith recall at least one copy
arrives. In contrast to Subset 3, the ith recall is completed before STS is filled up or
before all relevant items in LTS have been found.

In the above example, the pathway section starting at coordinate (1, 3) and
ending at (2, 1) belongs to Subset 4. Two further copies entered STS between the
completions of the second and third recall. Therefore, this pathway section passed
the coordinates (2, 2) and (3, 1). In order to reach the coordinate (3, 1), the event
{M > R, + D} must have occurred. Since the pathway section moves to the west
at (3, 1), motor processing of the third recall finishes before the arrival of the sixth
copy from LTS, that is, M must be smaller than the sum R, + Ds + Dg. Therefore,
this particular pathway section corresponds to the occurrence of the event
{Ry+Ds+Dg>M>R, +Ds}.

It follows from the considerations here that the transition probability for any
pathway section (u, v) contained in Subset 4 is equal to the probability of the event
{Sivw,*Dyiiv1>M>S,,,}, where S, , represents the sum defined before.

PROPOSITION 3. The transition probability Pu,v) of pathway sections (u, v)
belonging to Subset 4 is

v+1i

Pi(u’ U) = Z C/cfuu. 1/(1 —Qyiiv l/ak) ’ (p(av+i+1)_p(ak))a

k=u+1i

where Cy;,, is given in Proposition 2.

Proof. To simplify matters, we abbreviate S=S,,, and D=D,,,;,,. Con-
sequently,

P(v,u)=P(S<M<S+D)

~ j:’ L’" j:_ Fomp(s, m, t)dt ds dm.
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Ssmp(s,m, t) denotes the joint density of S, M, and D. Since independence is
assumed,

Pio,u)= [ [" [ Fols) fuulm) Jole) d ds dim

=" farlm) [ (1 = Fo(m—5)) f(s) ds dm.
0 0

We insert the pdf of Fg(s) for fg¢(s). This pdf is given by differentiating (3). By
assumption, the expression in the bracket equals exp(—a,, ;..  (m—s)). Thus,

Pvw)=[" fulm) [ exp(=aysiv1 (m—5))

v+ 1
x( Y Crivu" Qr- exp(—aks)) ds dm

k=u+1i

v+ i

ZJO Sulm)exp(—a,, ;. m) Z Creivn ™ A

k=u+1i

x | exp(— (ax— 0y, 101)s) ds dim
0

_ waM(m)< i Ckl_vu.ak,em(~—au+,-+1m)*e><p(—akm)> dm
0 k—nti A —dpyivi
v+

= Z Crive /(1 —a, i1 1/ay)
k=u+i

(7 Fatom) exp(—ay . m) dm— [ fulom) exo( - am) ) dm.

The integrals are Laplace transforms of M. The proof is complete.

It should be pointed out that for computing the transition probabilities, one only
needs the Laplace transform of the motor-service time M. Many well-known den-
sities which may be used for the pdf of M possess Laplace transforms which are
easy to compute.

Before concluding this section we summarize the results for later reference: For
any pathway section (u, v) out of 4, the transition probability P(Y,,,=v|Y,=u)is

P(v,u)=1, for v=u—landu=n—i+1;0rc=0

=p(a,:) for v=u—landu<n—i+1

v
=1— Y Criu plag), for v= MIN(c,n—iandu<n—i
k=u+1i
v+
= Z Crivi” /(1 —ay i i1/ar) (p(ay 114 1) — plar))s elsewhere

k=u+1i

480/29/3-2
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with

v+
Crmn= [1 11 —ar/a)). (4)
J=u+i
J#k
Note in using (4) that P(v, 0)= P(v, 1). Hence, P,(v, 0) does not need to be com-
puted in addition.

5.4. State Probabilities

So far, all probabilities we have dealt with are conditional probabilities of the
stochastic process {Y;i=1,..,n}. We now specify the unconditional probabilities
P(Y;=u), ueU, called state probabilities. For instance, P(Y;=u) is the
probability that u copies occupy STS at the very moment when the (i — 1)st recall is
completed. Of special interest is the probability P(Y;=0) for deriving the pdf of the
intercompletion time C; in the next section.

To start with, the state probabilities are expressed as a row vector, denoted here
by s, subcripted with the recall number i

S;= [Pz(o)a Pz‘(l)s"'a P,-(C)],

where P,(u) is an abbreviation for P(Y,;=u). Since, the process always starts at
(0, n), the initial vector is given by s;=(1,0,0,0,...).

The transition probabilities P(Y,, , =v|Y,=u) given by (4) form the
(¢+1)x (c+1) transition matrix T;

[ P0,0) P(1,0) P,2,0) -+ P(c,0) ]
P(0,1) P,(1,1) P(2,1) -+ Pfc, 1)
T.— 0 Pi(1,2) Py(2,2) -+ Pic,2)
a 0 0 P{(2,3) -+ Pfc, 3)
0 0 0 - Pfec)

Elements of T, for which (w, v) ¢ A, are defined to be zero.
The multiplication of s; by T, gives s, ;, by definition,

T,— [z PO, w)Py(w), Y. PAL, w)Pi(u), -, 3. Pc, u)P,-(u)]

=[P;1(0), Piy (1), -+, Piiy(c)]

=St
Therefore, the equation
Si+ 17 S,'Ti (5)

together with the initial vector s; provides the desired state probabilities. For
further derivations the state probability P,(0) is most important.
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5.5. Intercompletion-Time Distribution

As we stated earlier the pdf f-(¢) of the intercompletion time C, can be described
by a probability mixture. To recapitulate, given that the STS is not empty after the
(i —1)st recall then the intercompletion time C, reflects just the motor-service time
M. This event {Y,;> 0} has probability P(Y;>0)=1— P(¥,=0) which is obtained
via the state vector s,. On the other hand, if there is no copy in STS after com-
pleting the (i — 1)st recall, one has to wait until the arrival of the ith copy at STS
and the time it spends in the motor channel. The elapsed time from completing the
(i— 1)st recall until the arrival of the ith copy at STS corresponds to the residual
time R; which is exponentially distributed with rate a; (see the Appendix). Thus, for
the event {Y;=0} we have C;=M + R,

PROPOSITION 4. The pdf of intercompletion time C; is
(1) fe(t)=fc(t]1Y;>0)  P(Y;>0)+fc(t|¥Y;=0) P(Y,=0)
(1) fe(t]Y;>0)=falr)

(i) fe(t|Y;=0)=1fa(t) * fr(t)

Proofs. (i) Obvious, since C;= R;+ M (C;= M) if no (at least one) copy waits
in STS at the very moment when completing the (i — 1)st recall;
(ii) since C; must be identical to M if ¥;>0, and because of Assumption 2
(see Sect. 4);
(ili) since R; and M are assumed to be dependent.

We now turn to the mean and variance of C;:

PROPOSITION 5. Let E(M) be the mean motor-service time and p;= P(Y;=0).
Then

E(C))=E(M)+p;/a;
Proof.
E(C,)=E[E(Ci| Y))]
=E(C;|Y;=0) p;+ E(C;|Y;>0) (1 —p;)
=[E(M)+ E(R)] p;+EM)-(1—p))
=E(M)+ E(R;) p.

Since E(R;) = 1/a;, the proof is completed.
PROPOSITION 6. Let Var(M) be the variance of the motor-service time. Then

Var(C,)= Var(M) + p(2 —p,)/a’



260 ULRICH AND DIETZ

Proof. Var(C,)=E(C?*) — [E(C;)]% E(C,) is given by Proposition 5. So, we
need a closer look at E(C/?)

E(C})=E[E(C?|Y))]
= E(C}|Y;=0)-p;+ E(C}|Y;>0) - (1-p))
= {Var(C;| ¥,=0)+ [E(C,| Y;=0)]*} - p;
+ {Var(C;| ¥;>0)+ [E(C,] Y;>0)]*}- (1 —p))
= {Var(R,) + Var(M) + [E(R,) + E(M)]1*} - p,
+ {Var(M) + [E(M)]*} - (1 —p,).
Substituting Var(R;) = 1/a?, and simplifying yields the result.

5.6. Numerical Example

At this point it may be helpful to illustrate the various steps for obtaining state
probabilities, means, and variances. As a specific example we use a gamma dis-
tribution for M with mean E(M) = 800 and standard deviation SD(M) = 100. Thus,
the Laplace transform of M is

p(a) = [0.08/(0.08 + )5, (6)

Equation (6) is used for computing the transition probabilities via (4). We further
choose ¢=3,n=6, and mean interarrival times of 700, 500, 800, 1000, 1500, and
3000 msec for D,,..., D¢, respectively.

The desired transition matrices T,,..., T are then obtained by Definition (2) and

Eq. (4):

0 1 2 3
0[0.21 044 0.26 0.1
T, = 11021 044 026 0.1
2 0 037 04 023
3L 0 0 045 0.55
0 1 2 3
0r-037 04 018 0.04
T, = 11037 04 0.18 0.04
2] 0 045 041 0.14
3L O 0 059 041
0 1 2 3
0ro4s 041 013 0.01
T, = 11045 041 0.13 0.01
21 0 059 036 0.06
3L 0 0 077 023
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0
0r0.59
T,— t| 0.59
2]l o
3L 0
0
0r0.77
T, - 1] 0.77
2l o
3L 0
0
or 1
1] 1
T, =
" 21 0
3L o

1
0.36
0.36
0.77

0

1
0.23
0.23

O O O O = O

2
0.06
0.06
0.23

|

O O O O N OO O O M

O OO O W OO W OO O o W

The reader may check the matrices with the aid of the transition diagram in Fig. 1

and with the sets 4, -+, A¢ in Fig. 2.

The state probabilities are found by successively applying (5)

s, = (1.00, 0.00, 0.00, 0.00)
s, = (0.21, 0.4, 0.26, 0.10)
s, = (0.24, 0.38, 0.28, 0.10)

s, = (0.28, 0.42, 0.26, 0.05)
ss = (0.41, 0.44, 0.15, 0.00)
s, = (0.65, 0.35, 0.00, 0.00).

For example, the probability that no copy waits in STS after completing the fourth

recall is P(Ys=0)=0.41.

The state probabilities P(Y;=0) (i=1,.., 6) are then used in conjuction with
Propositions (5) and (6) for computing the means and standard deviations of the
intercompletion times C; (i= 1,..., 6). They are shown in Table 1.

6. THE SPEED OF REcALL AND STS-CAPACITY

In this section we point out some properties of the Simultaneous-Processing
Model. Especially, we attempt to answer the following questions: First, how is STS
capacity related to the speed of free recall? Second, do intercompletion times

qualitatively reflect interarrival times?
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TABLE 1

Mean Intercompletion Times (in msec) and Standard Deviations (in msec)
as a Function of Recall Number i

Recall number i

i 2 3 4 5 6
E(C) 1500 903 991 1079 1414 2764
SD(C;) 707 320 529 700 1215 2817

Let us turn toward the first question. It is obvious by inspecting Proposition (5)
that the lower bound for mean intercompletion time is given by mean motor-service
time E(M). Whether or not this lower bound may be approached depends on the
mean interarrival time E(D;) = 1/a; and on the probability P(Y;=0). Among other
things P(Y,=0) depends reciprocally on STS capacity c¢. As ¢ increases, P(Y;=0)
decreases and, therefore, the intercompletion time speeds up. A numerical example
may be useful to point out this property more clearly. In Table 2 we computed
mean intercompletion times for different values of ¢ (¢ =0, 1, 2, 3, 4) while keeping
the other parameters constant (n=10, M~Gamma with E(M)=800 and
SD(M)=100). Mean interarrival times are computed according to the Random-
Search Model(g = 0.05 with mean sampling time 1/s=30), and shown in the bot-
tom row of Table 2. One can observe that mean intercompletion time decreases as
STS capacity increases. Already for ¢ =1 much time is saved if one compares the
intercompletion times with those of ¢=0 (no possibility to store copies in STS).
However, there is no remarkable improvement with respect to time saved with
larger values of c¢. These two features were revealed for many numerical examples.

TABLE 2

Mean Intercompletion Times for Different Values of ¢

Recall number

STS-capacity ¢ 1 2 3 4 5 6 7 8 9 10

0 1400 1467 1550 1657 1800 2000 2300 2800 3800 6800
1 1400 1003 1060 1139 1252 1418 1682 2142 3099 6052
2 1400 1003 979 1014 1099 1249 1505 1969 2943 5930
3 1400 1003 979 1001 1064 1188 1423 1877 2859 5872
4 1400 1003 979 1001 1062 1180 1403 1844 2818 5837
5 1400 1003 979 1001 1062 1180 1402 1839 2808 5924
6 1400 1003 979 1001 1062 1180 1402 1838 2806 5921

Interarrival times 600 667 750 857 1000 1200 1500 2000 3000 6000

Note. All values are rounded to the nearest millisecond.
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A second feature in Table 2 may be noted. For two different capacities ¢, and c,
(¢,>c,), we notice that as long as i<c, corresponding mean intercompletion
times do not differ for ¢, and ¢,. Only if i>c¢,+1 are mean intercompletion times
smaller for ¢, than for c,.

Third, if we compare corresponding interarrival and intercompletion times a
strange phenomenon occurs which may contradict one’s intuition: Although, mean
interarrival times increase with recall number ;i this is not necessarily true for mean
intercompletion times. For example, consider the mean intercompletion times for
¢ > 1. The first three intercompletion times actually decrease. This shows that mean
intercompletion times need not even reflect in quality the temporal behavior of the
LTS as long as one has to proceed from a STS buffer between motor channel and
LTS. Therefore, it may be misleading to infer directly from intercompletion times
the temporal behavior of the LTS—for example, one may be tempted to “conclude”
that such a buffer only prolongs the intercompletion times by a constant motor
time.

7. DELAYED FREE RECALL: EVIDENCE FOR THE SIMULTANEOUS-PROCESSING MODEL

In this section, we are concerned with an experiment addressed to the question of
whether STS serves as a memory buffer in free recall. In this experiment the subject
has the opportunity to preload STS with copies from LTS before the actual signal
to start recall appears. This possibility to preload STS is achieved by instructing the
subject to recall as many nouns as possible beginning with a specified initial letter
and to withhold overt recall until the appearance of the actual recall signal. We
hoped that the subject would take advantage of the delay to immediately begin the
retrieval process and so preload STS.

The longer the delay the greater the probability that at least one copy has arrived
at STS before presenting the actual recall signal. In addition, the greater this
probability the lesser the mean intercompletion time (cf. Proposition 5). Hence, we
expected the intercompletion times to decrease with increasing delay, especially for
the first intercompletion times.

7.1. Method

The experiment was addressed to assess whether subjects utilize the delay
between presenting the initial letter and the actual recall signal to preload STS with
retrieved copies from LTS. There were two delay conditions. In condition long the
period was 10 sec whereas in condition short it was 1 sec. In the framework of the
Simultaneous-Processing Model we expect the first intercompletion times to be
faster in condition long.

Subjects. Thirty students at Tiibingen University participated in the experiment.
Each subject participated at only one session for which they received course credit.
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Design and Procedure. All sessions were conducted while the subject was seated
in a sound-attenuated chamber. In front of the subject there was a PET computer
which controlled the presentation of the initial letter, the delay, and the presen-
tation of the actual recall signal.

For each subject there were 20 free-recall trials. One such trial had the following
sequence: After the subject started the trial by pressing any key on the keyboard the
initial letter appeared on the screen of the computer. The subject had to withhold
an overt recall until the initial letter was replaced by the recall signal (START TO
RECALL) on the screen. The subject was instructed to recall as many nouns as
possible with the constraint that the recalled nouns must begin with the specified
initial letter which was shown on the screen. After the subject had recalled 10 nouns
the experimenter terminated the trial. After a pause of 30 sec the next trial began. A
tape recorder was used to record the pronounced recalls. The intercompletion times
were measured by using the tape-recorded recalls.

The initial letters were randomly drawn without replacement from the following
20 capital letters: A,B,C,D,E,F,G,H,LJ, K, M, N,O,P,R,S, T, U, V. Ten of
the twenty trials were randomly assigned to delay condition short and the rest to
condition long. The two delay conditions were presented in random order.

There were three trials at the beginning of the experiment using the initial letters
C, W, Z to introduce the experiment. The session length was about 35 min.

7.2. Results

Mean intercompletion times for both delay conditions are shown in Fig. 4. As
expected, mean intercompletion times are shorter at the beginning of the recall
process for condition long than for condition short. This expected difference is also
strengthened by a significant (delay condition) x (recall number)— interaction,
F(9,261)=2.5, p<.001. A comparison of mean intercompletion times for conditions
long and short revealed a significant difference (¢ =.05) up to recall number i= 4.

An unexpected and interesting result is the first intercompletion time in both
delay conditions. The astonishing aspect, hereby, is that these times are much shor-
ter than the second ones. Note that the first intercompletion time represents the
time from omnset of the actual recall signal up to completion of the first recall.
Proceeding from the assumption that only STS (and not motor channel) is
preloaded with copies from LTS, one would not expect such a difference between
the means of C, and C,. If at least two copies are waiting in STS before the actual
recall signal appears then C, and C, just reflect the motor service times for the first
and second copy. Thus, the means of C,; and C, should be about equal (C; should
even be larger than C, since one must take into account the time to perceive the
actual recall signal). Therefore, the results suggest that the first retrieved copy
immediately enters the motor channel and is prepared for the forthcoming recall
before the actual recall signal appears. This conclusion would be consistent with the
literature on response preparation. For example, Rosenbaum (1980) showed that
choice reaction time was shorter if parts of the motor program can be prepared
before presenting the actual response signal.
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7.3. Predicting the Results with the Simultaneous-Processing Model

Let ¢ denote the time delay, that is, the period beginning with the appearance of
the initial letter and ending with the presentation of the actual recall signal. We
assume that the subject preloads STS during the delay ¢ with copies from LTS. We
introduce the random variable Y(z) to describe the number of copies occupying
STS and motor channel at the very moment the actual recall signal is appearing.

To compute mean intercompletion times for predicting the results we only need
to derive the probabilities P[Y(¢)=u], (u=0, 1,.., ¢+ 1), that is, the probability
that u copies queue in STS and motor channel when presenting the actual recall
signal. Hence, the process need not start at coordinate (0, n) when presenting the
actual response signal. Any one of the following coordinate (n—u, u),
u=0,1,.., c+1, is possible. Note that we assume a maximal preload of ¢ + 1 copies.
This assumption is suggested by the hypothesis that one copy can also wait in
motor channel where it is prepared for its forthcoming overt production.

The probabilities P[ Y(¢) =u] have to be inserted into the initial vector s, of (5).
All other computation steps remain unchanged. The probability P[Y(¢)=u] is
obtained by noting the relation between Y(¢) and the random variable
S,=D,+ - +D, the time up to the uth arrival at STS. For it is clear from the
definitions of Y(z) and S, that Y(¢) <u if and only if S§,> .

5 Data Model
Short delay o —_———
Long delay e —

MEAN INTERCOMPLETION TIME (SEC)

1 2 3 4 5 6 7 8 9§ 10
RECALL NUMBER

F16. 4. Results of the delayed recall paradigm along the predictions of the Simultaneous-Processing
Model—mean intercompletion times as a function of recall number for both delay conditions.
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Thus,
P[Y(t)<u]l=PLS,>1]
=1- FSu(t)’

where Fg (1) is the distribution of S,. Since the interarrival times are assumed to be
exponentially distributed S, follows the general Erlangian distribution given by (3).
Hence, the probability that exactly u copies are prestored in STS and motor chan-
nel at time ¢ is

PLY(t)=ul]=F;(t)—Fs,, (1)
with 7
Fg(t)=1 and Fg_(1)=0.

We use (7) along with our previous derivations of the Simultaneous-Processing
Model to predict the results of our experiment and to estimate the capacity of the
STS. We therefore proceed as follows. Take any mean intercompletion time in
Fig. 4—for example, the observed mean intercompletion time in delay condition
short Cs;=332sec (the corresponding value in delay condition long is
Cs ,=2.83 sec). The number of observations for each mean is ¥ =300. Let us write
E(C;;10) and SD(C, ;|0) for the theoretical mean and standard deviation of inter-
completion time C, ;, respectively. The symbol 6 denotes a vector and represents
the model parameters, 8 = (a;,..., ¢). If the model is true, and the parameter values
in @ are accurate, the statistic

Cs,,— E(C;s 10)
SD(Cs ,10)//299

is approximately normally distributed, with mean 0, and variance 1.
Consider now the expression

2 _ S (Ci,j—E(Ci,jle)]z
0= 2 X S5, 07 /N-1)

(8)

I ==

where the summation extends over all mean intercompletion times (with the
omission of the first one in both delay conditions). Under the above assumption,
¥*(9) is approximately x>-distributed, with S degrees of freedom (18 observed
means minus 13 parameters described below).

To estimate the parameters, we minimized (8) with the aid of the hill-climbing
procedure (NAG Library, Subroutine E04JAF, 1978). We had to estimate 13
parameters: The 10 rates of the interarrival times, two parameters for the general-
gamma distribution assumed for M, and one parameter for the STS capacity c.
Minimization was done for each capacity separately up to ¢ = 10. At each value of ¢
we carried out 10 computer runs, always using different initial estimates for the 12
remaining parameters. A minimum was found at ¢=2 with a value of 12(9) = 6.8.
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The result is insignificant .20 < p < 30, supporting the Simultaneous-Processing
Model. The fit is shown in Fig. 4.

It should be stressed that the parameter space is quite shallow, so that many
other combinations of parameters give a fit of about the same goodness. This is
especially true for the rates of the interarrival times and the parameters of the
motor-service time distribution. However, a change of the capacity parameter c
away from the optimal value always had a profound negative effect on the model
fit. Because of this, ¢ seems to be easier to identify than the remaining model
parameters.

A capacity estimate of STS of ¢ =2 is often reported in the literature. Glanzer &
Razel (1974, p. 119) surveyed 32 independent studies and reported a mean estimate
of 2.2 words, with standard deviation of 0.64 words. Although our approach here is
totally different from previous methods of measuring STS capacity we obtained
about the same estimate and it is interesting to note that such a small capacity does
predict a clear difference between the means of the two delay conditions up to the
fifth recall.

8. CONCLUSION

The basic stochastic latency mechanism studied in cognitive psychology is one
that assumes a series of stages or processes, such that the completion of a process
immediately initiates the next process (Donders, 1868; Sternberg, 1969). Such a
latency mechanism is appropriate for many tasks. However, if there is a continual
arrival of new inputs from one stage to a further one—as in free recall or in copy
typing—some principles must be added to the serial latency model The
Simultaneous-Processing Model may be viewed as a generalization of the serial
latency model in this direction. Although, we have outlined the Simultaneous-
Processing Model within the free-recall task, its framework may be applied and
generalized further to a variety of tasks in which a continual arrival of new input
from one stage to another must be assumed, e.g., typing or reading (Shaffer, 1973).

It should also be stressed that the model addresses important cognitive
mechanisms in an analytic fashion, rather than by computer simulation. While no
doubt models of great compexity must be subjected to simulation, we suspect that
much more could be done with regard to analytic modeling of cognitive processes
than is currently seen in the literature.

APPENDIX: THE pdf OF THE RESIDUAL-INTERARRIVAL TIME R

PROPOSITION. Suppose a random variable X with pdf f,(t) and an exponentially
distributed variable D with f,(t) = a-exp(— at). Assume that X and D are started at
t=0 as it is shown in Fig. 3. Now let R denote the time elapsing between the com-
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pletions of X and D, that is, R= D — X. We are concerned with trials for which R > 0,
and state that fr(t|R>0)=a exp(—at).?

Proof. First note that the cdf of R is

PO<R<1)

Fa(t| R>0)= —pm s

The denominator is just the probability that X completes before D

P(R>0)=P(D>X)

=1— [ fult) Fpt)ar

=waﬂﬂemﬁ~aﬂdt
0

The numerator is the probability that X completes first and that the intercom-
pletion time between X and D is less than ¢

PO<R<t)=P(0<D—X<1)
=[7 17 e So) dy ax
= |7 Fxl) (Folt+x) = Filx)) dx

=[1—exp(—at)]" foofx(x) exp(—ax) dx.

Inserting the derived expressions for the numerator and denominator yields the
desired result.

NOTE

Consider the case that STS is totally occupied with copies. One then might well
ask what are the implications for the retrieval process: Is the retrieval process
interrupted or not? A brief discussion of the two possibilities is in order.

2 The proposition given here is of general interest. The memoryless property of the exponential dis-
tribution says that if one selects a fixed time point X before completion of the exponential process, then
the time from X until completion has the same distribution as the total completion time (cf. Townsend &
Ashby, 1983, p. 38). The above proposition shows that it does not matter whether X is random or fixed,
the memoryless property holds in either case. There has been some confusion about this point in the
recent literature (Fisher & Goldstein, 1983, p. 143).
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Let us begin with the first possibility: The LTS process is interrupted as soon as
the STS is filled up and restarted after the motor channel is freed. If restarting costs
additional time then the arrival of the next copy is more delayed compared to the
situation when STS was not filled up. The consequence is that the forthcoming
residual-interarrival time may depend on whether the STS is filled up (then it is
longer) or if there is at least one slot free in STS. The present version of the
Simultaneous-Processing Model does not account for this possibility since it is
implicitly assumed that the pdf of the residual-interarrival time does not depend on
whether STS was filled up or not. If the probability that the STS will be filled up or
if the additional time to restart the retrieval process is small, then the present ver-
sion of the Simultaneous-Processing Model provides a good approximation.

However, this first possibility may not be so plausible as it seems at first, since
absolute concurrent processing of LTS and motor channel is hindered by the
occurrence of interruptions. Consequently, interruptions might delay the recall
process unnecessarily.

The second possibility implies an absolute concurrent processing without
interruptions and is consistent with the present version of the Simultaneous-
Processing Model: The retrieval process is assumed to be going on irrespective of
whether STS is filled. So one may ask what happens if a relevant item is retrieved
and STS is filled up? Consider first the Random-Search Model: If a relevant item is
retrieved while STS is filled the retrieved item will be replaced in the search area
without being marked. At some time or other it will be resampled and transferred
to STS. It follows that the forthcoming residual-interarrival time does not depend
on whether STS was filled.

For the Parallel-Activation Model one may argue in an analogous manner: If an
item is sufficiently activated while the STS is totally occupied then its copy cannot
be transferred to STS. In this situation its activation will be immediately cancelled
and a new activation cycle is started for it. At some time or other it will be
activated while there is a free slot in STS and it can be transferred to STS. If all
activation cycles have a common exponential distribution then the forthcoming
residual-interarrival time does not depend on whether STS was filled.
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