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The estimation of sensory thresholds is a major issue
in psychophysics. Despite the fact that psychophysical
methods have been in use for more than 100 years (e.g.,
Fechner, 1860), the development of appropriate and effi-
cient statistical methods is still in progress (see Klein &
Macmillan, 2001). Indeed, a recent special issue of Per-
ception & Psychophysics, edited by Klein and Macmil-
lan, covered new developments in such methods.

A particularly useful method for measuring sensory
thresholds is the so-called two-alternative forced-choice
(2AFC) procedure, which was suggested by Blackwell
(1953) for vision research and by Jones (1956) for re-
search on taste and smell (see Engen, 1971; Gescheider,
1997). Psychophysicists often prefer this procedure over
the classical yes–no task for determining thresholds, be-
cause the 2AFC procedure discourages response biases
and also produces an especially high level of performance
(e.g., Gescheider, 1997; Linschoten, Harvey, Eller, &
Jafek, 2001; for a detailed review, see Macmillan &
Creelman, 1991, chap. 5).

The 2AFC procedure can be used to estimate both ab-
solute thresholds in detection tasks and difference thresh-
olds in discrimination tasks. In each trial of a 2AFC de-
tection task, for example, the participant observes two
well-defined time intervals. One interval—randomly either
the first or the second—contains a signal (e.g., a weak
tone), and the participant knows that exactly one signal
will be presented during each trial. At the end of the trial,
the participant indicates whether the first or the second
interval contained the signal, and the experimenter simply
notes whether the response is correct. Thus performance
is measured as the proportion of correct responses. This
proportion varies from the chance level of .5 for very
weak signals up to 1.0 for very strong ones. The detec-
tion threshold is usually defined as the stimulus intensity
at which the proportion of correct responses is .75 (e.g.,
McKee, Klein, & Teller, 1985).

In a 2AFC discrimination task, two stimuli—a standard
(S) and a comparison (C)—are presented one at a time in
the two successive intervals, with the order of presenta-
tion varying randomly from trial to trial. The S and the C
differ along a certain physical dimension, such as object
weight, light intensity, or molar concentration (e.g., Luce,
1993). The C is always the more extreme stimulus on this
dimension (i.e., heavier, higher intensity, etc.), and the
value of the C along this dimension varies from trial to
trial. The participant is asked to indicate which interval
contained the more extreme stimulus, and performance
is again summarized in terms of the proportion of correct
responses, varying from .5 to 1.0. Note that the 2AFC de-
sign should not be confused with the so-called reminder
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design (see Macmillan & Creelman, 1991), which is a
version of the method of constant stimuli in which the S
and the C are always presented in the same order. In the
reminder design, the C may be more extreme or less ex-
treme than the S. At the end of each trial, the participant
judges whether the C was more or less extreme than S.
Critically, in this case the psychometric function ranges
from 0 to 1.0 rather than from .5 to 1.0, as in a 2AFC task.

For example, in a 2AFC discrimination task, S might
be a standard weight of 100 g, and C might be a heavier
comparison weight selected randomly in each trial from
the following set of weights: 100, 102, 104, 106, 108, or
110 g. At the end of the trial, the participant indicates
whether the first or the second stimulus was heavier. As
in the detection task, the proportion of correct responses
will vary from the chance level of .5 (when the two stim-
uli do not differ) to 1.0 (when the two stimuli are readily
distinguishable). Analogous to detection tasks, the dis-
crimination threshold is commonly defined as the stim-
ulus magnitude of the comparison at which the propor-
tion of correct responses is equal to .75.

There are also several variants of the 2AFC tasks (for
an overview, see Macmillan & Creelman, 1991, chap. 5).
For example, in a discrimination task, S and C might be
presented simultaneously instead of successively. In a vi-
sual discrimination task, for example, they might be pre-
sented side by side, with the observer being asked to in-
dicate which side contains the more extreme stimulus.

Figure 1 provides a hypothetical outcome for the 2AFC
weight discrimination task described above. The abscissa
of this figure represents the difference between the C and
the S stimuli. For the above example, this difference
would range from 0 to 10 g. The ordinate shows the pro-
portion of correct responses, which, as mentioned before,
increases from .5 to 1.0 as the weight of the C stimulus
increases. The resulting psychometric function might be
S-shaped (as is shown in the figure) or might have any
other shape.1 Apart from random fluctuation, however,
these psychometric functions increase monotonically
with increasing stimulus magnitude. Indeed, the new
method proposed in this article for the analysis of 2AFC
results requires only that the true underlying 2AFC psy-
chometric function is monotonically increasing.

Several approaches have been suggested to summarize
the participant’s performance, given 2AFC data like those
shown in Figure 1 (e.g., Klein, 2001; Leek, 2001). These
approaches usually proceed explicitly from the assump-
tion that a true but unobservable psychometric function
G(x) underlies performance in the 2AFC task. A general
way of writing this true psychometric function is

G(x) � 0.5 � 0.5 � F(x), (1)

where F(x) represents a cumulative distribution function
(CDF; e.g., Green, Richards, & Forrest, 1989; Harvey,
1986; Klein, 2001; Miller & Ulrich, 2001; Mortensen,
2002).2 Usually, the researcher assumes a specific dis-
tributional form for F(x). Most commonly, F(x) is as-

sumed to be the CDF of the normal, Weibull, logistic, or
hyperbolic tangent distribution (e.g., Strasburger, 2001a).
The function G(x) merely rescales this CDF by intro-
ducing a correction for guessing, as is appropriate for the
2AFC task.

On the basis of this conceptualization of the 2AFC
task, the researcher estimates the parameters of the dis-
tribution assumed for F(x) and summarizes performance
in terms of the estimated distribution. Traditionally, the
threshold has been taken as the median of this distribu-
tion [i.e., the value of x for which F(x) � .5; see, e.g.,
Linschoten et al., 2001; Wichmann & Hill, 2001; for a
review, see Gescheider, 1997]. As will be discussed fur-
ther below, however, it is possible that the mean should
be used instead of the median. The mean generally has
better statistical properties than the median (e.g., Sen,
1985; Stuart & Ord, 1987), and the mean is known to be
a more stable estimator than the median for psychometric
functions in yes–no tasks (e.g., Church & Cobb, 1973;
Miller & Ulrich, 2001). In addition, the mean may be
more appropriate than the median for testing theoretical
models that make predictions about the moments, rather
than the percentiles, of psychometric functions (e.g.,
Mortensen, 2002; Sternberg & Knoll, 1973; Sternberg,
Knoll, & Zukofsky, 1982; Ulrich, 1987). Of course, it
does not matter whether the median or the mean is used
if the assumed distribution F(x) is symmetric, because
in that case, these two values are identical.

Figure 1. A typical psychometric function in a two-alternative
forced-choice weight discrimination paradigm. It shows the
probability of a correct response as a function of the difference x
between the weights of the standard (S) and comparison (C)
stimuli—in this case, for a standard stimulus of 100 g. The data
were generated by a Monte Carlo simulation with a skewed tri-
angular function having a range from 1 to 11 and a mode at 9 as
the true underlying function F(x). The mean and the standard
deviation of this function were 7.00 and 2.16, respectively. Each
of the six comparison stimuli was presented 200 times. The
smooth lines show the best-fitting logistic, normal, and Weibull
functions, which were estimated by a maximum-likelihood pro-
cedure as described in the text.
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For example, if one assumes a symmetric logistic CDF
for F(x), Equation 1 can be written as

(2)

where α is the location parameter and β � 0 is the scale
parameter. Note that the location parameter α is both the
mean and the median of the logistic distribution, so this
parameter is usually referred to as the threshold in stud-
ies assuming the logistic function (see Linschoten et al.,
2001). The parameters α and β in Equation 2 can be es-
timated by the maximum likelihood method (e.g., Harvey,
1986; Treutwein & Strasburger, 1999). For the data shown
in Figure 1, for example, the maximum-likelihood esti-
mates are α̂ � 7.17 and β̂ � 1.09.3 The dashed line in this
figure, then, represents the fitted function.

As a different example, if one assumes the asymmet-
ric Weibull CDF for F(x), Equation 1 can be written as

(3)

where α � 0 and β � 0 are the scale and shape parameters,
respectively, and x � 0 (e.g., Ross, 2000). For the data
shown in Figure 1, for example, the maximum-likelihood
estimates are  α̂ � 7.86 and β̂ � 4.12. On the basis of
these parameter estimates, the median-based estimate of
the threshold is 7.19, and the mean-based estimate is
7.13.

The preceding examples illustrate two important lim-
itations of existing methods for analyzing psychometric
function data obtained in 2AFC tasks. First, the researcher
must specify a particular probability distribution to which
the observed response probabilities will be fitted. In
practice, it is often unclear which distribution to select,
and the choice of distribution can have an important im-
pact on the results. Second, if an asymmetric distribu-
tion is selected, the researcher must make an additional
choice of whether to estimate the threshold with the me-
dian or the mean of that distribution. The median is cho-
sen implicitly by most researchers, who simply adopt the
standard definition of the threshold as the stimulus value
yielding 75% correct performance in the 2AFC task.
Some researchers, however, have questioned whether the
standard definition of 75% provides the most reliable
measure and, therefore, have suggested that other per-
formance levels be used (e.g., Gescheider, 1997, pp. 164–
165). Specifically, Green (1990) argued that the defini-
tion associated with the highest reliability is somewhere
in the 84%–94% range. Furthermore, the standard 75%
definition cannot easily be used with some adaptive pro-
cedures that target other performance levels, such as 70.7%
(e.g., Leek, 2001) or 84% (e.g., García-Pérez, 2002).

The present article addresses both of these limitations.
Our main goal was to show how the nonparametric
Spearman–Kärber method (e.g., Epstein & Churchman,
1944; Kärber, 1931; Miller & Ulrich, 2001; Spearman,

1908) can be used for the analysis of 2AFC data, thereby
eliminating the need for any assumption about the under-
lying distribution. The Spearman–Kärber method was
developed for the analysis of data from the yes–no task,
and Miller and Ulrich (2001) found that this method
works quite well for the analysis of yes–no data. They
showed that the method could, in principle, also be ap-
plied to data from forced-choice tasks, but they did not
conduct any simulations to examine the accuracy of the
method with forced-choice data. Moreover, Klein (2001,
pp. 1439–1442) argued on several grounds that the
Spearman–Kärber method was unlikely to perform nearly
as well with forced-choice data as it did with yes–no
data. For example, he reasoned that the Spearman–Kärber
method gives equal weight to the observed probabilities at
all stimulus levels, whereas parametric procedures, such as
probit analysis, give lower weights to probabilities closer to
.5, which have larger binomial variability. Hence, he ar-
gued that the Spearman–Kärber method would provide
less reliable threshold estimates than would probit analysis.
Therefore, one goal of the present article was to provide a
more detailed assessment of the Spearman–Kärber method
for the analysis of 2AFC data. Specifically, we examined
the statistical properties of the Spearman–Kärber method
and contrasted these with traditional estimation methods,
such as probit analysis. Furthermore, as will be developed
below, the Spearman–Kärber method provides different
estimates of the median and the mean when the 2AFC
data seem to reflect an asymmetric distribution. Thus, as
a secondary goal, we sought to determine whether the
median or the mean should be used, by comparing the
statistical properties of these two estimators.

EXTENDING THE SPEARMAN–KÄRBER
METHOD TO 2AFC TASKS

It is helpful to provide a brief review of the Spearman–
Kärber method for the analysis of yes–no data before
generalizing this method to 2AFC tasks. As was men-
tioned before, the ordinate F(x) of the classical yes–no
function ranges from 0 to 1 as stimulus magnitude x in-
creases. This function is commonly assumed to be a non-
decreasing function and, thus, can be regarded as a CDF
from some probability distribution (Falmagne, 1985;
Luce, 1963; Trevan, 1927). Probit analysis, for example,
assumes that this CDF can be approximated by a normal
ogive and estimates the mean and the standard deviation
of the assumed underlying normal CDF from the ob-
served psychometric function.

Like probit analysis and other estimation procedures,
the Spearman–Kärber method treats the psychometric
function observed in a yes–no task as a CDF4 from which
any desired percentiles or moments can be estimated.
Specifically, suppose a researcher uses k monotonically
increasing stimulus values, x1 � x2

. . . � xk, to deter-
mine the observed response probabilities, p̂i (i � 1, . . . ,
k), associated with each stimulus value.5 Then it can be
shown (Church & Cobb, 1973; Sternberg et al., 1982,
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pp. 234–236) that the mean of the underlying psycho-
metric function is given by6

(4)

The values x0 and xk�1 are chosen such that one can as-
sume p0 � 0 and pk�1 � 1.

In order to apply the Spearman–Kärber method to the
2AFC task, the psychometric function G(x) defined by
Equation 1 can be rearranged to recover the CDF F(x)
(cf. Miller & Ulrich, 2001)

F(x) � 2 � G(x) � 1. (5)

Thus, the observed set of correct response probabilities
ĝi, i � 1, . . . , k in a 2AFC task can be transformed to the
corresponding probability estimates

p̂i � 2 � ĝi � 1, (6)

and these transformed values are needed for the Spearman–
Kärber method. Klein (2001) suggested an alternative
approach that can be used when observers have a strong
response bias in 2AFC tasks, but for simplicity we will
consider in this article only situations in which response
biases are small.

As an illustration, consider once more the above weight
discrimination example. The observed response probabil-
ities were ĝ � (.52, .54, .61, .86, .96) at the stimulus val-
ues x � (2, 4, 6, 8, 10).7 Equation 6 yields p̂ � (.04, .08,
.22, .71, .92), and application of the standard Spearman–
Kärber method with these p̂ values gives a mean of 7.04
and, thus, provides a nonparametric estimate of the thresh-
old value. This estimate can be directly computed, if
Equation 6 is inserted into Equation 4—that is,

(7)

Note that x0 and xk�1 are only required for the calculation
of µ̂2AFC but are not actually included in the experimen-
tal design. It is advisable to let x0 be equal to the small-
est admissible value of x, so that p0 corresponds to the
guessing probability .5. The value xk�1 should be large
enough that gk�1 � 1 can be assumed, and in general, the
difference xk�1 � xk need not match the differences be-
tween other stimulus levels. If ĝk � 1, the selection of
xk�1 does not influence the estimate µ̂2AFC. For the above
example, reasonable values of x0 and xk�1 would be 0
and 12, respectively.

In addition, it can be shown that the standard error as-
sociated with the threshold estimate µ̂2AFC is (see Ap-
pendix A)

(8)

where ni is the number of observations at stimulus level ni.
Expressions 7 and 8 become especially handy if the spac-
ing between two successive stimulus levels is constant—

that is, d � xi � xi�1 for i � 1, . . . , k � 1. In that case,
these expressions simplify to

(9)

and

(10)

respectively. For the above numerical example with 200
trials per stimulus level, this formula yields a standard
error of 0.27.

SIMULATION METHOD

The evaluation of the different approaches for sum-
marizing performance in the 2AFC task was similar to
the one used by Miller and Ulrich (2001). In brief, the
nonparametric Spearman–Kärber estimation procedure
was compared with traditional parametric estimation
procedures—that is, maximum-likelihood probit analy-
sis. To this end, we generated simulated data in experi-
ments in which the method of constant stimuli was used.
The different sets of data were factorially varied accord-
ing to the (1) number of stimulus levels (k � 5, 10, or
15), (2) total number of trials per psychometric function
(N � 30, 60, 120, 240, or 480), and (3) true underlying
psychometric function F(x) (normal, logistic, Weibull,
or hyperbolic tangent). The parameters for each distrib-
ution were adjusted with CUPID (Miller, 1998) so that
the resulting mean and standard deviation of each distri-
bution were 5 and 2, respectively. The medians of the
normal and logistic functions were necessarily identical
to the means, because these two functions are symmetric.
The medians of the asymmetrical Weibull and hyper-
bolic tangent functions, however, were 4.908 and 4.509,
respectively. The data set for each of the 60 factorial
combinations was based on 30,000 simulated experi-
ments. As in our previous simulations (Miller & Ulrich,
2001), the psychometric functions were monotonized
before computing the estimates.8

It is helpful to consider in more detail the procedure
and results for a single simulated experiment before we
present the results averaged across experiments. As an
example, consider a simulated experiment that used 10
stimulus levels, included 120 trials in total (i.e., 12 trials
per stimulus level), and used the true underlying normal
distribution F(x) with mean µ � 5 and standard devia-
tion σ � 2. The stimulus levels were equally spaced, and
the smallest and the largest stimulus levels x1 and x10
were set to the 1st and the 99th percentiles of the true
distribution—that is, F(x1) � .01 and F(x10) � .99. The
resulting stimulus values, the associated probabilities
pi � F(xi ), and the probability of a correct response gi �
.5 � .5 � pi are shown in the first, second, and third rows
of Table 1, respectively.9 The fourth and fifth rows in this
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table contain the data of a single simulated experiment,
giving the number of correct responses and the corre-
sponding estimated probabilities ĝi of a correct response
at each stimulus level.

An identical analysis was performed on the results of
each simulated experiment. The main steps of this analy-
sis will be demonstrated for the simulated data set pro-
vided in Table 1 (for further details, see Miller & Ulrich,
2001). First, the Spearman–Kärber method was used to
estimate the mean µ2AFC and median med2AFC of F(x).
Furthermore, we also estimated the standard deviation
σ2AFC and the difference limen dl2AFC of F(x), because
these parameters are sometimes of interest in psycho-
physical research (e.g., Lam, Dubno, & Mills, 1999).

Second, the maximum-likelihood estimators of the
mean, median, standard deviation, and difference limen
were computed four times via probit analysis, separately
under the assumptions that the underlying distribution
could be approximated by the normal, the Weibull, the
logistic, or the hyperbolic tangent function.

The fit of the simulated data set to each assumed func-
tion was evaluated by a χ2 test (see Wichmann & Hill,
2001). If the computed χ2 was significant at p � .05, the
data set was regarded as inappropriate for this assumed
function and was excluded from the overall tabulation of
results for that assumed distribution. We discarded such
data sets to mimic the procedure that would be followed

in practice. Because a researcher does not know the true
underlying psychometric function, he or she would tend
to ignore estimates based on what appeared from the χ2

test to be an inappropriate underlying function. The
complete outcome of this analysis for the simulated data
in Table 1 is summarized in Table 2.

SIMULATION RESULTS

For each of the 60 factorial combinations of simulation
parameters and for each method of analysis, we com-
puted the average across simulated experiments of the
mean, median, standard deviation, and difference limen
estimated from the data of each experiment (i.e., µ̂2AFC,
mêd2AFC, σ̂2AFC, and d̂l2AFC). In addition, we computed
the standard deviation of each estimate across experi-
ments to assess its standard error. For the parametric es-
timation methods assuming an underlying normal, lo-
gistic, Weibull, or hyperbolic tangent distribution, we
included only simulated data sets that passed the χ2

goodness-of-fit test in the computations of these aver-
ages and standard deviations. For the nonparametric
Spearman–Kärber method, we included in these compu-
tations all simulated experiments within each factorial
combination without regard to any χ2 test.10

Table 3 shows the mean percentage of simulated exper-
iments that passed the χ2 goodness-of-fit test as a func-

Table 1
Stimulus Values xi , Probabilities pi and gi , and Example Simulated Results for Simulations With

Normal Psychometric Function, 10 Stimulus Levels, and 120 Experimental Trials

Stimulus Level

1 2 3 4 5 6 7 8 9 10

All Simulations

xi 0.35 1.38 2.42 3.45 4.48 5.52 6.55 7.59 8.62 9.65
pi � F(xi) .01 .04 .10 .22 .40 .60 .78 .90 .97 .99
gi � G(xi) .51 .52 .55 .61 .70 .80 .89 .95 .98 1.0

One Simulation

N of correct responses 8 3 9 8 9 11 10 12 12 12
N of incorrect responses 4 9 3 4 3 1 2 0 0 0
Estimated probability ĝi .67 .25 .75 .67 .75 .92 .83 1.0 1.0 1.0

Table 2
Estimated Parameters (µ̂2AFC, mêd2AFC, σ̂2AFC, and d̂l2AFC) 

From the Simulated Data of Table 1

Estimated Parameters

Method of Analysis µ̂2AFC mêd2AFC σ̂2AFC d̂l2AFC χ2

Spearman–Kärber 4.31 4.48 2.12 1.76 –
Normal 4.34 4.34 2.00 1.35 8.69
Logistic 4.32 4.32 2.13 1.29 8.91
Weibull 4.41 4.30 1.86 1.30 8.61
Hyperbolic tangent 4.18 3.60 2.36 1.45 8.26

Note—Each line provides the estimates for a different method of analysis (Spearman–
Kärber and probit analysis with the normal, logistic, Weibull, and hyperbolic tangent
functions). The last column gives the obtained χ2 value for the goodness-of-fit test con-
ducted for each distributional assumption used for probit analysis. In each case, the de-
grees of freedom of the χ2 test are df � 8. In no case was the test significant (i.e., p � .3).
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tion of each simulation factor, and the results indicate
that the test has limited usefulness for discriminating be-
tween different underlying distributions.11 Consider first
the results as a function of the true distribution. Ideally,
95% of the simulated experiments should pass the test
when the method of analysis matches the true distribu-
tion (e.g., normal true distribution and normal-based
method of analysis). In fact, 98%–99% of the simulated
experiments passed the goodness-of-fit test when the
analysis was based on the correct true distribution, indi-
cating that the actual Type I error rate of the test in practice
is slightly below the theoretically expected 5%, presum-
ably due to the fact that the χ2 test is only approximate.
Also ideally, a much smaller percentage of simulated ex-
periments should pass the goodness-of-fit test when the
method of analysis does not match the true distribution
(e.g., normal true distribution but logistic-based analy-
sis). In fact, however, simulated experiments are just
about as likely to pass the goodness-of-fit test whether
the assumed distribution does or does not match the true
one, indicating that the test has very little power to dis-
criminate the true distribution from an alternative one
under these conditions. The hyperbolic tangent distribu-
tion provides a partial exception to this generalization:
Data generated from it fairly often failed the goodness-
of-fit test associated with the fit of a normal, logistic, or
Weibull model, although data from the latter models
rarely failed the goodness-of-fit test associated with fit-
ting the hyperbolic tangent model.

Consider next the performance of the test when the
total number of trials is varied. In general, many more
data sets pass the test when the number of trials is smaller,
partly because the power of the test increases with the
number of trials. Finally, the test tends to accept slightly
more data sets when the number of stimulus levels is
larger. These results further strengthen the conclusion
reached by Wichmann and Hill (2001) that the tradi-
tional χ2 test should be replaced by alternative methods
that do not rely on large-sample theory.

Mean and Median
As was mentioned in the Method section, for each

simulated condition and method of analysis, we com-
puted the means and standard deviations of the estimates
of the mean and median across all simulated experi-
ments. Biases were then measured as the absolute values of
the differences between the average estimated values and
the true values. Absolute values of the bias were used be-
cause signed biases in opposite directions could cancel
each other out when averaged. Note that the standard de-
viation of each estimator computed across simulations
provides an estimate of its standard error.

The results for the mean and the median estimators
were similar, except that the median estimators tended
to be more biased and less reliable than the mean estima-
tors. For example, the average bias of the probit estimators
was 0.158 for the median and 0.108 for the mean. Like-
wise, the average standard error of the probit estimators
was 0.803 for the difference limen and 0.755 for the
standard deviation. An identical pattern of results was
obtained for the Spearman–Kärber method. The simula-
tion results suggest, then, that in practice the mean should
always be preferred over the median as an estimate of
central tendency. An overall advantage for the mean over
the median is not surprising, because the statistical prop-
erties of the mean are known to be better than those of the
median in most situations (e.g., Sen, 1985; Stuart & Ord,
1987). Because it was the superior estimator, we report
below detailed results only for the mean. These results
are consistent with our previous simulation results for the
yes–no task (Miller & Ulrich, 2001), which also showed
that the mean was less biased and more reliable than the
median.

Bias of mean. Table 4 shows the average absolute bias
of each estimation method at each level of each factor
varied in the simulations. Several results are striking.
First and most important, the average absolute bias of the
Spearman–Kärber method is consistently the least of any
of these methods of analysis. In fact, biases of the other

Table 3
Average Percentage of Simulated Experiments That Passed the χ2 Test as a

Function of Simulation Condition and Method of Analysis

Method of Analysis

Simulation Factor Level N L W H

True distribution N 98.4 98.5 98.4 97.3
L 98.1 98.3 98.1 97.6
W 98.2 98.2 98.5 97.9
H 92.7 94.7 95.1 99.0

Total number of trials 30 99.7 99.7 99.7 99.6
60 99.0 99.0 99.1 99.0

120 97.8 97.9 98.3 98.2
240 95.8 96.4 96.7 97.3
480 92.1 94.2 93.8 95.6

Number of stimulus levels 5 94.3 95.4 95.4 96.5
10 97.5 98.0 98.1 98.4
15 98.8 99.0 99.1 98.9

Note—N, normal; L, logistic; W, Weibull; H, hyperbolic tangent.
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methods tend to be approximately eight times larger than
biases of the Spearman–Kärber method. Even when the
assumed distribution underlying a parametric analysis
matches the true distribution used to generate the data
(e.g., normal data analyzed assuming a normal underly-
ing function), the means estimated with the Spearman–
Kärber method are much less biased than the means es-
timated with the parametric method. Clearly, then, a re-
searcher wanting a minimally biased estimate of the lo-
cation of a psychometric function from a 2AFC task
would be strongly advised to use the mean estimated by
the Spearman–Kärber method.

Second, all methods become less biased as the number
of trials increases. As a result, the advantage for the
Spearman–Kärber method over the other methods de-
creases at larger numbers of trials as the overall biases of
all methods converge toward zero. Third, the different
methods of analysis exhibit differential sensitivity to the
number of stimulus levels. At least over the ranges exam-

ined here, analyses assuming a normal or a logistic under-
lying function do not depend systematically on the num-
ber of levels. In contrast, bias increases with the number
of stimulus levels when the Weibull is assumed, and it
decreases with the number of stimulus levels when the
hyperbolic tangent is assumed and when the Spearman–
Kärber method is used. We have no explanation for these
effects of the number of stimulus levels on probit analy-
sis when the Weibull or the hyperbolic tangent function
is assumed. The decrease in bias with increasing num-
bers of stimulus levels for the Spearman–Kärber method
seems intuitively reasonable, however. This method ap-
proximates the underlying function with a polygon, and
a greater number of points on the polygon would natu-
rally give a better approximation.

Standard error of mean. Table 5 shows the average
standard errors of the mean estimators for the different
simulation conditions. The standard error of the Spearman–
Kärber estimator is, on the average, approximately 6%

Table 4
Average Absolute Biases of the Estimated Means as a Function of 

Simulation Condition and Method of Analysis

Method of Analysis

Simulation Factor Level N L W H SK

True distribution N 0.055 0.049 0.084 0.136 0.004
L 0.067 0.066 0.062 0.163 0.002
W 0.087 0.086 0.050 0.112 0.004
H 0.249 0.254 0.106 0.088 0.043

Total number of trials 30 0.164 0.169 0.117 0.282 0.019
60 0.140 0.138 0.088 0.090 0.013

120 0.103 0.102 0.067 0.042 0.013
240 0.087 0.086 0.057 0.089 0.011
480 0.078 0.074 0.050 0.121 0.011

Number of stimulus levels 5 0.111 0.113 0.039 0.144 0.030
10 0.124 0.127 0.078 0.120 0.006
15 0.109 0.102 0.110 0.111 0.005

Note—N, normal; L, logistic; W, Weibull; H, hyperbolic tangent; SK, Spearman–Kärber. The
smallest value in each row is printed in boldface.

Table 5
Average Standard Errors of the Estimated Means as a Function of 

Simulation Condition and Method of Analysis

Method of Analysis

Simulation Factor Level N L W H SK

True distribution N 0.793 0.793 0.723 0.755 0.849
L 0.811 0.796 0.711 0.775 0.916
W 0.778 0.778 0.705 0.731 0.784
H 0.797 0.777 0.676 0.677 0.663

Total number of trials 30 1.408 1.393 1.282 1.307 1.418
60 1.031 1.028 0.900 0.925 1.011

120 0.705 0.695 0.607 0.646 0.715
240 0.483 0.474 0.423 0.458 0.504
480 0.348 0.341 0.308 0.338 0.368

Number of stimulus levels 5 0.801 0.784 0.705 0.762 0.874
10 0.780 0.776 0.700 0.720 0.778
15 0.803 0.798 0.708 0.723 0.758

Note—N, normal; L, logistic; W, Weibull; H, hyperbolic tangent; SK, Spearman–Kärber. The
smallest value in each row is printed in boldface.
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larger than those of the parametric methods, indicating
that it is slightly less reliable than the other estimators.12

As was expected, the standard errors of all methods de-
crease as the number of trials increases. In fact, the stan-
dard errors decrease with approximately the square root of
the number of trials. For the parametric methods, standard
errors depend little on the number of stimulus levels. For
the Spearman–Kärber method, however, the standard
error decreases with a larger number of levels. With 15
levels, in fact, standard errors were smaller on average
with the Spearman–Kärber method than with the usual
normal-based probit analysis, although the Weibull-
based analysis had the smallest standard errors of all.

Standard Deviation and Difference Limen
As was done with the mean and median estimators, for

each simulated condition and method of analysis, we
computed the means and standard deviations of the esti-
mates of the standard deviation and difference limen
across all simulated experiments. These values were
used to compute the biases and standard errors of these
dispersion estimators just as they were for the central
tendency estimators considered in the previous section.
In general, the percentile-based estimators (i.e., d̂l2AFC)
had lower biases and standard errors than did the moment-
based estimators (i.e., σ̂2AFC). Specifically, the average
bias of the probit estimators was 0.156 for d̂l2AFC and
0.199 for σ̂2AFC, and the corresponding average standard
errors were 0.660 and 1.015, respectively. A smaller bias
for d̂l2AFC than for σ̂2AFC was also obtained for the
Spearman–Kärber method (0.175 vs. 0.185). In contrast
to the probit estimators, the Spearman–Kärber method’s
estimate of the difference limen was less reliable than its
estimate of the standard deviation; the corresponding av-
erage standard errors were 0.661 and 0.559, respectively.
These are somewhat inappropriate comparisons between
the difference limen and the standard deviation, however,
because the standard deviation is larger than the difference

limen in the first place (see Miller & Ulrich, 2001); in a
normal distribution, for example, σ � 1.47 � dl. Taking
into account these scale differences between the standard
deviation and the difference limen, the moment-based
estimators of the Spearman–Kärber method and of the
hyperbolic tangent probit analysis yielded clearly superior
results. For this reason and in order to save space, we will
report only the results of the moment-based estimators.

Bias. Table 6 shows the average biases of the standard
deviation estimates as a function of the simulation con-
ditions. Estimates obtained with the parametric methods
were, on average, 8% more biased than those obtained
with the Spearman–Kärber method, although the esti-
mates obtained with the hyperbolic tangent method were
the least biased of all. Surprisingly, the hyperbolic tan-
gent method produced the least bias regardless of the
true underlying distribution—for example, it even out-
performed the normal-based probit analysis when the
true underlying distribution was normal. Thus, the simula-
tion results suggest that researchers needing a minimally
biased estimator of the dispersion of a psychometric
function should consider using this method to estimate
it. Interestingly, bias decreased as the number of trials
increased for all methods except the hyperbolic tangent,
so this recommendation is especially strong when there
are relatively few trials. Bias also tended to decrease as
the number of stimulus levels increased, at least for the
hyperbolic tangent and the Spearman–Kärber methods,
suggesting that a relatively large number of stimulus lev-
els should be preferred when one of these methods is to
be used for the estimation of dispersion.

Standard error. Table 7 shows the average standard
errors of the standard deviation estimates as a function of
the simulation conditions. The Spearman–Kärber method
generally produces the smallest standard errors, although
the Weibull method outperforms it slightly when the
number of trials is large. The performance of the normal
and the logistic methods is especially disappointing

Table 6
Average Absolute Biases of the Estimated Standard Deviations as a 

Function of Simulation Condition and Method of Analysis

Method of Analysis

Simulation Factor Level N L W H SK

True distribution N 0.192 0.145 0.325 0.094 0.175
L 0.238 0.187 0.391 0.169 0.193
W 0.134 0.129 0.240 0.053 0.162
H 0.255 0.259 0.228 0.143 0.210

Total number of trials 30 0.403 0.328 0.697 0.123 0.321
60 0.217 0.174 0.344 0.108 0.187

120 0.153 0.139 0.191 0.097 0.148
240 0.132 0.129 0.137 0.113 0.138
480 0.119 0.130 0.112 0.133 0.132

Number of stimulus levels 5 0.203 0.190 0.308 0.182 0.244
10 0.204 0.175 0.281 0.087 0.127
15 0.207 0.176 0.300 0.076 0.184

Note—N, normal; L, logistic; W, Weibull; H, hyperbolic tangent; SK, Spearman–Kärber. The
smallest value in each row is printed in boldface.
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given that these are fairly standard methods. Their stan-
dard errors tend to be approximately double those of the
Spearman–Kärber method, even when the true distribu-
tion matches the assumed one, until the number of trials
gets rather large. As was expected, the standard errors of
all of the estimators decrease as the number of trials in-
creases. The number of stimulus levels has little effect on
the standard errors.

EFFECTS OF STIMULUS LOCATIONS

In the simulations presented above, we assumed that the
stimulus values covered almost the entire range of the
2AFC psychometric function from .5 to 1.0. More specif-
ically, the smallest and largest levels were always set to
the 1st and 99th percentiles of the true distribution—that
is, F(x1) � .01 and F(xk ) � .99, respectively. It is, how-
ever, possible that the Spearman–Kärber method would
be much less effective if the stimulus series x � (x1, . . . ,
xk ) was not broad enough to cover the whole transition
zone of the true psychometric function (i.e., p1 �� 0 or
pk �� 1; see Woodworth & Schlosberg, 1954, p. 209).
Although preliminary pilot testing of the stimuli may re-
duce the risk of truncation errors, it seems important to as-
sess how such errors would influence threshold estimates.

For this purpose, we conducted further simulations
with different combinations of truncation at the lower
and upper tails of the true CDF. In particular, the per-
centiles F(x1) � (.01, .05, .10) at the lower tail were fac-
torially combined with the percentiles F(xk) � (.99, .95,
.90) at the upper tail. The normal distribution from the
previous simulations served as the underlying CDF for
this additional set of simulations. All the simulations
were conducted with k � 5 stimulus levels and with 120
observations divided equally across levels. All the levels
were equally spaced in terms of the z values of the un-
derlying normal distribution, and the values of x0 and x6
were always placed one equal z-score step below x1 and

above x5, respectively. Because the previous simulation
results clearly suggest that the Spearman–Kärber estimate
of the mean has to be favored over the Spearman–Kärber
estimate of the median, we present the results for the
Spearman–Kärber estimate of the mean only. In addi-
tion, we contrast these results with the results from tra-
ditional probit analysis.

Figure 2 summarizes the results from these simula-
tions. The upper left panel indicates that, as was ex-
pected, the Spearman–Kärber estimator is most biased
when the lower and upper stimuli are placed most asym-
metrically [e.g., at (.01, .10) or at (.10, .01)]. Even in
these worst cases, however, the absolute biases are still
smaller than those of the probit estimator, as is shown in
the upper right panel. Thus, these results extend the con-
clusion that the Spearman–Kärber mean is less biased
than the probit mean to the case of moderately asym-
metric stimulus placement. Interestingly, biases of the
probit mean seem little affected by asymmetry of stimu-
lus placement.

The standard errors of the mean estimators, shown in
the lower two panels of the figure, reveal a strong ten-
dency for means to be estimated more reliably (i.e., with
smaller standard error) for more narrow stimulus place-
ments. For the Spearman–Kärber method, truncation has
a substantially larger effect for x1 than for x5, whereas the
effects are more equal in magnitude for probit analysis.
Perhaps most dramatic is the tendency for the standard
error of the Spearman–Kärber method to improve more
than that of probit analysis with increasing truncation.
As was noted earlier, for example, the standard error is
approximately 10% larger for the Spearman–Kärber esti-
mates than for the probit estimates with the extreme
placements of (.01, .99). In contrast, the Spearman–Kärber
method has slightly smaller standard error than does the
probit method with the extreme placements of (.05, .95),
and it has much smaller standard error than does the pro-
bit method with the extreme placements of (.10, .90).

Table 7
Average Standard Errors of the Estimated Standard Deviations as a 

Function of Simulation Condition and Method of Analysis

Method of Analysis

Simulation Factor Level N L W H SK

True distribution N 0.975 1.083 0.905 1.159 0.584
L 0.999 1.101 0.881 1.167 0.635
W 0.964 1.075 0.872 1.063 0.532
H 1.112 1.146 0.856 0.895 0.485

Total number of trials 30 1.962 2.142 1.729 2.020 0.861
60 1.328 1.449 1.228 1.393 0.687

120 0.848 0.923 0.718 0.915 0.527
240 0.548 0.589 0.429 0.605 0.405
480 0.378 0.402 0.288 0.422 0.314

Number of stimulus levels 5 0.995 1.098 0.870 1.097 0.591
10 1.004 1.085 0.867 1.042 0.546
15 1.039 1.121 0.899 1.074 0.541

Note—N, normal; L, logistic; W, Weibull; H, hyperbolic tangent; SK, Spearman–Kärber. The
smallest value in each row is printed in boldface.
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Taking the bias results into consideration too, then, the
Spearman–Kärber method is clearly quite a bit superior
to the probit method with the stimulus placements ex-
amined here.

SUMMARY AND RECOMMENDATIONS

These simulations have examined the problem of esti-
mating the location and dispersion of a psychometric
function from 2AFC data, extending the work of Miller
and Ulrich (2001) with the yes–no task. We compared
five estimation procedures. Four used the probit method
with different assumed underlying distributions (normal,
logistic, Weibull, and hyperbolic tangent), and the fifth
was the nonparametric Spearman–Kärber method. Across
simulations, we varied the true underlying distribution
from which the data were taken, the number of trials in-

cluded in the experiment, and the number of stimulus
levels at which the psychometric function was tested.

Table 8 summarizes the results. For each type of pa-
rameter, it shows the estimator that performed the best
with respect to the two standard criteria—that is, mini-
mizing bias and standard error. Two main results suggest
that researchers should consider the Spearman–Kärber

Figure 2. Effects of smallest (x1) and largest (x5) stimulus placements on the absolute bias of the
Spearman–Kärber and probit mean estimators and their standard errors. The placement of each
stimulus is specified in terms of the proportion truncated from the lower or upper tail of the true
function F(x). Upper left panel: bias of the Spearman–Kärber estimator. Upper right panel: bias
of the probit estimator. Lower left panel: standard error of the Spearman–Kärber estimator. Lower
right panel: standard error of the probit estimator.

Table 8
Most Successful Estimator as a Function of the Type of

Parameter Being Estimated and the Primary Experimental
Objective

Primary Experimental Objective

Type of Parameter Minimal Bias Minimal SE

Location SK mean Weibull mean
Dispersion hyperbolic tangent SD SK SD

Note—SK, Spearman–Kärber.
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method as an alternative or addition to the estimation
techniques that are regarded as standard in the current
literature.

First, the Spearman–Kärber method appears to be a valu-
able addition to the toolbox of psychophysical methods for
estimating parameters of a 2AFC psychophysical function.
Its estimation performance keeps up with traditional
methods, such as the probit analysis, although in contrast
to classical methods, the Spearman–Kärber method does
not require any assumption about the true underlying
psychometric function. Second, the moment-based esti-
mators consistently outperform the percentile-based
Spearman–Kärber estimators. Although percentile-based
estimators have a long tradition in psychophysical re-
search, it appears that they should be largely discarded
because they have clearly inferior statistical properties.

The rarely used Spearman–Kärber method clearly
merits serious consideration as a new standard general-
purpose estimation procedure. This method yields the
least biased estimates of the mean and the lowest vari-
ance estimates of the standard deviation. It also yields
reasonably unbiased estimates of the standard deviation
and would be a good second choice for that purpose,
after the hyperbolic tangent method. The most serious
problem with the Spearman–Kärber method is that its es-
timates of the mean have approximately 9% higher stan-
dard errors than do those of the other estimators, al-
though its reduced biases largely compensate for this
increased variance with respect to the mean square error
of estimation. In addition, the standard error can always
be reduced to any desired level by increasing the size of
the experiment. Finally, the Spearman–Kärber method
does not require a χ2 goodness-of-fit test before it can be
applied to a given data set. Given the poor performance
of the χ2 test (Wichmann & Hill, 2001), this is an im-
portant advantage of the nonparametric procedure.

DISCUSSION AND POSSIBLE EXTENSIONS

The 2AFC task considered in this article and suggested
by Blackwell (1953) and Jones (1956) is an extremely
important and popular tool in psychophysical research
(see Macmillan & Creelman, 1991). This is because its
measured thresholds are not contaminated by certain re-
sponse biases—that is, biases toward yes or no responses
as in classical yes–no tasks—simply because yes and no
are no longer possible response alternatives.13 Further-
more, the 2AFC task yields relatively high levels of per-
formance and, thus, appears to be an especially sensitive
psychophysical tool (Macmillan & Creelman, 1991, p.
134).

It is therefore important to employ optimal statistical
methods in the analysis of 2AFC data. The methods
studied here are appropriate when the 2AFC task is used
to generate a psychometric function to assess discrimi-
nation or detection performance. Although such psy-
chometric functions are usually generated by the method

of constant stimuli (e.g., Yeshurun, 1999), they can also
be generated by adaptive procedures (e.g., Rinkenauer,
Mattes, & Ulrich, 1999; Sternberg et al., 1982). It re-
mains to be seen, however, how well the method will do
when used with data obtained from adaptive psycho-
physical procedures (Klein, 2001).

The present simulation results suggest that the mean
µ2AFC should be preferred as an estimate of overall dis-
crimination or detection sensitivity. Although the mean
of a psychometric function is somewhat difficult to con-
ceptualize, it actually has a fairly simple geometric in-
terpretation in 2AFC tasks. As is shown in Appendix B,
the mean equals half of the area bounded below by the
psychometric function and above by a line correspond-
ing to perfect performance at every stimulus level. Thus,
this area must decrease as discrimination or detection
sensitivity increases.

The present results suggest that the Spearman–Kärber
method should be strongly considered as an estimator for
the mean µ2AFC. When the experimental requirements
emphasize minimal bias, the Spearman–Kärber method
is better than any of the probit-based estimators. More-
over, if the experimenter has succeeded in finding extreme
stimulus values corresponding to proportions correct of
approximately .525 and .975, the Spearman–Kärber
method’s estimator has the lowest standard error. When
even more extreme stimulus values have been used (e.g.,
corresponding to proportions correct of approximately
.505 and .995), however, the Spearman–Kärber method
is probably not the best estimator when the experimental
requirements emphasize minimal standard error.

The fact that the Spearman–Kärber method is often
superior to probit analysis is perhaps somewhat surpris-
ing because, as was noted by Klein (2001), the Spearman–
Kärber method weights all observed probabilities equally.
In contrast, probit analysis gives less weighting to prob-
ability estimates with greater inherent binomial variabil-
ity (Klein, 2001), as seems intuitively appropriate. Given
the present simulation results, however, it appears that
the advantages associated with the Spearman–Kärber
method make it an effective estimation procedure for the
2AFC task with constant stimuli.

Interestingly, the Spearman–Kärber method also has
implications for the design of experiments. Using Equa-
tion 8, for example, one could consider the question of
how many trials should be tested at each stimulus level.
In this article, we proceeded from the common practice
that the researcher employs an equal number of trials at
each stimulus level (i.e., n1 � n2 � . . . � nk). It is shown
in Appendix C, however, that more reliable estimates of
µ2AFC can be obtained by using a somewhat greater num-
ber of trials at small than at large stimulus values (i.e.,
n1 � n2 � . . . � nk ). In addition, this appendix provides
a formula that could guide a researcher’s choice in select-
ing an optimal adjustment of the number of trials ni for
each stimulus level xi (see Bush, 1963). Interestingly, these
recommendations based on a constant stimulus proce-
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dure analyzed with the Spearman–Kärber method appear
to conflict with recommendations based on adaptive pro-
cedures (Green, 1990; Klein, 2001), but as will be dis-
cussed in the Appendix, this conflict is actually illusory.

A related and important question concerns the issue
of how many stimulus levels should be employed. The
simulation results for the Spearman–Kärber method
showed that the standard error of the mean decreased as
the number of stimulus levels increased, even though the
total number of trials remained constant. Therefore, the
question arises whether this feature holds in general for
the Spearman–Kärber method. The formal analysis pro-
vided in Appendix D shows that the estimate µ̂2AFC
should indeed become more reliable in general as the
number of stimulus levels is increased. Thus, when a re-
searcher uses the Spearman–Kärber method, it seems
advisable to employ many stimulus levels with a few tri-
als per level, rather than a few stimulus levels with many
trials per level. The gain from an increased number of
stimulus levels is, however, subject to diminishing re-
turns. For example, the gain in reliability will be greater
when the number of levels is doubled from, say, 5 to 10
than from 10 to 20. In addition to the increased reliabil-
ity of µ̂2AFC, the simulations have clearly shown that bias
of µ̂2AFC diminishes when a relatively large number of
stimulus levels are employed. Thus, both reliability and
bias considerations suggest that it is advisable to use
many stimulus levels, if this is technically possible (e.g.,
10 or more).

Another common design issue concerns the question
of how stimulus levels should be spaced (e.g., Bush,
1963; Klein, 2001; Lam et al., 1999). Although it is com-
mon practice to space the stimulus levels equally, one
might wonder whether an unequal spacing might pro-
duce more reliable estimates. For example, it might be
more effective to lengthen the distance di � xi � xi�1 be-
tween two adjacent stimulus levels in a geometrically in-
creasing fashion (e.g., d2 � a � d1, d3 � a � d2, . . . , dk �
a � dk�1 with a � 0), rather than keeping di constant
(e.g., d1 � d2 � . . . � dk). Intuitively, the geometrical
spacing seems advantageous when the psychometric
function G(x) increases in a negatively accelerated fash-
ion from the chance level to its asymptote. In such a case,
the informative parts of the psychometric function would
be traced more effectively with a geometrically increas-
ing stimulus spacing than with a linear one. Again, the
explicit expressions for µ̂2AFC and Var(µ̂2AFC) provided
in this article might be helpful in deciding whether a lin-
ear or a geometrical spacing is appropriate.

In this article, we investigated the statistical proper-
ties of the nonparametric Spearman–Kärber method for
the analysis of data from the 2AFC task. A previous
study had shown that this method has superior proper-
ties for the analysis of data from yes–no tasks (Miller &
Ulrich, 2001), but it was not clear whether the method
would also work well with 2AFC tasks (e.g., Klein, 2001,
pp. 1439–1442). Our results show that the Spearman–
Kärber method does perform well when used with 2AFC
data; that is, it provides estimates with less bias than do

parametric estimators and with almost equal reliability. In
sum, then, the present analysis shows that the Spearman–
Kärber method might be preferred to parametric tech-
niques for the analysis of psychometric functions ob-
tained in 2AFC tasks, especially in situations in which an
unbiased estimate of the threshold is desirable.
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NOTES

1. Signal detection theory has been employed to analyze performance
in 2AFC tasks (see Macmillan & Creelman, 1991, chap. 5). The signal
detection model for 2AFC posits that both the S and the C generate a
value along an internal continuum. These values are subject to random
noise and thus a separate probability distribution is associated with each
of the two stimuli. In each trial, the observer bases his response on the
magnitude of these two values. Specifically, he will classify the first
stimulus as the C, if the value generated by the first stimulus is larger

than the value generated by the second stimulus, and vice versa. Under
this assumption, the proportion of correct responses can be directly re-
lated to d′—that is, to the separation of the distributions associated with
the two stimuli.

2. Some authors have included a lapsing rate, which describes im-
perfect performance (e.g., Harvey, 1986; Strasburger, 2001a). Because
this rate is normally negligible, it is usually excluded from considera-
tion for simplicity (e.g., Linschoten et al., 2001; Mortensen, 2002;
Strasburger, 2001a, 2001b).

3. All of the maximum-likelihood estimates reported in this article
were obtained with the PMETRIC computer program (Miller & Ulrich,
2003), which uses the simplex function minimization algorithm (Rosen-
brock, 1960).

4. Observed psychometric functions are sometimes nonmonotonic.
Nonmonotonicity arises because of binomial variability of the esti-
mated response probabilities, especially in experiments with many
stimulus values and only a few trials per stimulus value. When an ob-
served psychometric function is nonmonotonic, it can be monotonized
before the Spearman–Kärber method is applied. An algorithm to mo-
notonize an observed function is described in Miller and Ulrich (2001),
and a computer program for that purpose is provided by Klein (2001).

5. There is a slight ambiguity involving the scale of the x values. In
detection tasks, these values are typically given in the appropriate ab-
solute units of stimulus intensity (e.g., cd/m2). In 2AFC discrimination
tasks, however, the x values are sometimes specified in absolute units
but sometimes specified as a difference in absolute units between the
standard and the comparison. Fortunately, it is usually easy to tell from
the context whether the x values are absolute or differences.

6. Measures of central tendency, such as the median or the mean, are
the most important statistics for estimating the threshold value in a
forced-choice situation. Therefore, we do not present explicit expres-
sions for estimating higher moments, although we do present some sim-
ulation results concerning such estimates. Readers interested in the for-
mulas for estimating higher moments should follow the computational
steps given by Miller and Ulrich (2001, p. 1416).

7. Note that the observed response probabilities were rounded to
two decimal places. This rounding affects slightly the following results
of the example computations. For instance, without rounding error, the
estimated mean µ̂2AFC is computed as 7.10 instead of 7.04.

8. It should be stressed, however, that monotonic psychometric
functions are required only for the estimation of higher moments. The
estimated mean is identical whether it is computed from the originally
observed psychometric function or from the corresponding monoto-
nized function as long as the stimulus levels are equidistant (see Stern-
berg et al., 1982, p. 235).

9. Because equidistant stimulus levels are common in psychophysical
research, we did not evaluate the more complicated case with nonequidis-
tant levels. In all the simulations, the values x0 and xk�1 were set equal to
x0 � x1 � d and to xk � d, respectively. Note that the constant d denotes
the difference between two adjacent stimulus values in the experiment.

10. Due to binomial variability, a few simulated experiments yielded
pathological psychometric functions. Such functions did not increase
overall, and therefore, the maximum-likelihood procedure for estimat-
ing an increasing psychometric function did not converge to a finite es-
timate of the standard deviation. As one would expect, such pathologi-
cal functions were observed more often when the number of total trials
was small than when it was large. The proportions of pathological func-
tions were .00425, .00008, .00000, .00000, and .00000 for 30, 60, 120,
240, and 480 total trials per psychometric function, respectively. These
simulated experiments were excluded from all further analysis.

11. In this and subsequent analyses, we report the main effects of the
simulation factors averaged across levels of the other factors, but we do
not report interaction effects. This greatly simplifies the presentation
of results but discards little important information, because the inter-
action effects tended to (1) be small relative to the main effects and
(2) usually involved the effects of one factor’s changing in size but not
direction across levels of the other factors. Readers wishing to see the
full analyses, including interactions as well as main effects, can obtain
them from either author.

12. In the statistical literature, the relative efficiency of a biased es-
timator and an unbiased estimator is usually computed as the ratio of the
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mean square errors of the two estimators. The mean square error of the
unbiased estimator is simply its variance, whereas the mean square error
of the biased estimator is its variance plus the square of its bias (Won-
nacott & Wonnacott, 1977). In terms of statistical efficiency, then, the
lower bias of the Spearman–Kärber method (see Table 4) compensates
to some extent for its larger standard error, so that the efficiencies of the
different estimators are approximately equal.

13. Although participants in a 2AFC task tend to exhibit less extreme
biases, it should be stressed that this task cannot eliminate all biases. For
example, in a temporal 2AFC task, in which the two stimuli are sepa-
rated by time rather than by space, the classical time order error may
still bias the results (temporal bias). Similarly, a participant may be bi-
ased toward one side when two stimuli are presented simultaneously
side by side (positional bias).

APPENDIX A
The Standard Error of µ̂2AFC

In order to derive the standard error of µ̂2AFC, it will be helpful to rewrite the expression as

(A1)

which is Equation 7 from the main text. If we define ai � xi � xi�1, the preceding expression can be rewritten as

(A2)

and further rearranged to

(A3)

Since ĝ0 � .5 and ĝk�1 � 1 must hold by definition, this expression reduces to

(A4)

Replacing (ai � ai�1) by (xi�1 � xi�1) gives

(A5)

Note that the variance of a linear combination S � c1 � X1 � � � � � cn � Xn � cn�1 of independent random
variables X1, . . . , Xn with constants c1, . . . , cn�1 is given by (e.g., Mood, Graybill, & Boes, 1974, p. 179)

(A6)

Therefore, the variance of µ̂2AFC is obtained by Equation A5 as

(A7)

(A8)

where Var(ĝi) is the variance of ĝi. Thus an unbiased estimator for this variance is provided by

(A9)

where ni denotes the total number of observations at stimulus level xi. Combining the last two results gives
the standard error of µ̂2AFC
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APPENDIX B
The Area Above the Psychometric Function

If x � 0, then the area A bounded below by the psychometric function G(x) and bounded above by the line
G(x) � 1 is given by

(B1)

(B2)

(B3)

(B4)

since 

must hold, where µ is the mean of F(x) (see Feller, 1971, p. 150, Lemma 1). Therefore, the area A is equiva-
lent to half the threshold value µ2AFC.

APPENDIX C
Redistributing Trials to Minimize the Standard Error of µ̂2AFC

In this article, we have assumed that each stimulus level is tested in the same number of trials (i.e., n1 �
n2 � � � � � nk). Although this procedure is simple and, thus, common practice in psychophysical research, it
does not result in the most reliable estimate of µ2AFC. As is shown in this appendix, a more reliable estimate
is obtained when the number of trials ni is adjusted for each stimulus level xi. In general, fewer trials should
be employed for large stimulus levels at which performance is almost perfect, and more trials should be em-
ployed at small stimulus levels at which performance is close to chance.

For example, assume that the stimulus levels are x � (2, 4, 6, 8, 10) and that the true associated probabili-
ties of correct responses are g � (.55, .62, .76, .88, .97). Assume also that the total number of trials is restricted
to n1 � n2 � � � � � n5 � N � 100. Numerical computations based on the corresponding population version

(C1)

of Equation 10 reveal that the optimal numbers of trials per stimulus level are n � (26, 26, 22, 17, 9), using
the technique of Lagrange multipliers described next. The standard error for this optimally adjusted set of
numbers of trials is 0.76. As is to be expected, this value is smaller than the SE � 0.80 obtained when equal
numbers of trials are used at all stimulus levels, but the gain is only about 5% in this example. (One should
note that the average estimated threshold does not depend on whether the numbers of trials are optimally ad-
justed or not. In either case, the average estimate would be 5.88 for the above example.)

In general, the optimal number of trials per stimulus level can be computed from Equation C1 subject to
the constraint 

by the technique of Lagrange multipliers (e.g., Goldstein, Lay, & Schneider, 1987, pp. 367–377). According
to this technique, one has to minimize the following Lagrange function:

(C2)

with respect to the variables n1, n2, . . . , nk, and λ. Computing the partial derivatives
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APPENDIX C (Continued)

setting these to zero, and solving the resulting system of equations for n1, . . . , nk yields the minimum of Equa-
tion C1. It can be shown that this minimum is given by

(C3)

for i � 1, . . . , k. Therefore, the minimal standard error for µ̂2AFC is obtained when ni is proportional to 

Table C1 shows the results of simulations conducted to check how large an effect on standard error would
be produced by optimizing the values of ni. These simulations were conducted using the same procedures and
simulation parameters as the simulations reported in the body of the article. We examined only the case in
which there were five stimulus levels, a total of 120 trials divided across these five levels, and a true under-
lying normal distribution. Based on this true underlying distribution, the optimal values of ni were found,
using Equation C3, to be ni � (34, 34, 30, 17, 5). Simulations with these optimal ni s were compared against
simulations with equal ni s (i.e., 24 per stimulus) and against simulations with the pattern of ni s reversed rel-
ative to the optimal pattern—that is, ni � (5, 17, 30, 34, 34). For each set of ni s, we generated 30,000 simu-
lated data sets and computed µ̂2AFC from each data set, using both the Spearman–Kärber method and a pro-
bit analysis assuming an underlying normal distribution. The standard error of µ̂2AFC was estimated by the
standard deviation of the obtained µ̂2AFC values across the 30,000 simulated data sets.

The results clearly show that the optimal choice of ni s produces the smallest standard error of estimation
and that the effect is not trivially small. Relative to equal ni s, the optimal choice reduces standard error by ap-
proximately 10% in this example. In addition, the reversed pattern of ni s yields a standard error that is ap-
proximately 53% worse than equal ni s and 69% worse than the optimal choice. It is noteworthy that the choice
of ni s that is optimal for the Spearman–Kärber method tends to yield the smallest standard error for the pro-
bit estimates, although the effect on probit estimates is much smaller. This is quite interesting given that the
optimization method was derived on the basis of the Spearman–Kärber method.

The conclusion that optimal threshold estimation involves relatively more trials at the stimulus levels pro-
ducing lower accuracies is slightly surprising because it appears in conflict with the idea that one should place
trials at high probability correct (cf. Klein, 2001). This idea is supported, for example, by the work of Green
(1990), who considered adaptive procedures for estimating threshold values in 2AFC tasks. Green showed that
the smallest standard errors of estimate were obtained when the threshold was defined as a stimulus value
yielding approximately 84%–94% correct, and on that basis he suggested that adaptive procedures should be
designed to test the rather strong stimulus values associated with these high accuracy levels.

The discrepancy between the present conclusions and those of Green (1990) is apparent, not real, and in
fact both conclusions stem from the same statistical properties of the estimators. The apparent discrepancy
arises because of the differences in what is being estimated. Green considered the case of estimating a single
target percentile, arbitrarily defined as the threshold. He showed that higher percentiles can be estimated more
easily than lower ones and, on that basis, recommended estimating a rather high threshold. In contrast, we are
here considering the problem of estimating the mean of the whole distribution with the Spearman–Kärber
method. Estimating the mean of a distribution with the Spearman–Kärber method requires information about
all of its percentiles (see Equation 7), not just about one of them. In that case, it is useful in terms of the over-
all estimate to have the most trials at the percentiles associated with the largest standard errors—that is, the
ones close to .5 on the 2AFC psychometric function.
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Table C1
Standard Error of the Estimate of µ̂2AFC as a Function of the

Method of Analysis and the Choice of nis

Method of Analysis

Choice of nis N SK

Optimal nis 0.641 0.737
Equal nis 0.711 0.814
Reversed nis 0.708 1.243

Note—N, normal; SK, Spearman–Kärber. See the text for simulation
details.
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APPENDIX D
Effect of the Number of Stimulus Levels on the Standard Error of µ̂2AFC

Assume that a researcher employs the set Sa of stimulus levels Sa � (x1,a � x1,a � x2,a � � � � � xk,a) and
that the spacing da � xi,a � xi�1,a is constant for i � 2, . . . , k. Furthermore, assume that the number of trials
na per stimulus level is constant. Thus, the total number of trials is N � k � na. Under this case, the expected
variance for the sampling distribution of µ̂2AFC is

(D1)

Now assume that the researcher doubles the number of stimulus levels and, thus, employs the set Sb �
(x1,b � x2,b � � � � � x2�k,b) so that the extreme levels are equal for both sets—that is, x1,a � x2,b � xmin and
xk,a � x2�k,b � xmax. In other words, the two sets Sa and Sb cover the identical range on the x-axis. The spacing
db between two consecutive stimulus levels is again constant for set Sb. Thus, the sampling variance of µ̂2AFC
for this set is

(D2)

It is possible to express Var(µ̂2AFC | Sb) in terms of Var(µ̂2AFC | Sa). First, note that the spacings da and db are
given by

(D3)

(D4)

and, therefore, the relation

(D5)

must hold. Second, the relation

(D6)

must hold if the number of total trials is the same for both sets. Finally, the relation

(D7)

should hold, at least approximately, since the sum on the left side contains twice as many terms as the sum on
the right side.

Inserting Equations D5–D7 into Equation D2 yields

(D8)

As an illustration, assume that a researcher doubles the number of stimulus levels from k � 5 to 10. In this
case, the standard error would be reduced by a factor of 8/9 � 0.89. An identical gain factor was obtained for
the present simulations (i.e., 0.89) when the stimulus levels were increased from 5 to 10. As one might ex-
pect, a smaller gain factor is obtained if the number of levels is doubled from 10 to 20. In this case the stan-
dard error is reduced only by a factor of 0.95. One should bear in mind, however, that this conclusion rests on
the validity of Equation D7 and, thus, can only be a rule of thumb.

(Manuscript received December 30, 2002;
revision accepted for publication September 12, 2003.)
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