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Improvements in measuring thresholds, or points on a psychometric function, have advanced the field 
of psychophysics in the last 30 years. The arrival of laboratory computers allowed the introduction 
of adaptive procedures, where the presentation of the next stimulus depends on previous responses 
of the subject. Unfortunately, these procedures present themselves in a bewildering variety, though 
some of them differ only slightly. Even someone familiar with several methods cannot easily name 
the differences, or decide which method would be best suited for a particular application. This review 
tries to illuminate the historical background of adaptive procedures, explain their differences and 
similarities, and provide criteria for choosing among the various techniques. 

Psychometric functions Psychophysical threshold Binary responses Sequential estimate 
Efficiency Yes-no methods Forced-choice methods 

INTRODUCTION 

The term psychophysics was invented by Gustav Theodor 
Fechner, a 19th-century German physicist, philosopher 
and mystic. For him psychophysics was a mathematical 
approach to relating the internal psychic and the external 
physical world on the basis of experimental data. Fechner 
(1860) thereby developed a theory of the measurement 
of internal scales and worked out practical methods, the 
now classical psychophysical methods, for estimating the 
difference threshold, or just noticeable difference (jnd) , the 
minimal difference between two stimuli that leads to a 
change in experience. Today, the threshold is considered 
to be the stimulus difference that can be discriminated 
in some fixed percentage of the presentations, e.g. 75%. 
Fechner's original methods were as follows: 
The method of constant stimuli: a number of suitably lo- 

cated points in the physical stimulus domain are cho- 
sen. These stimuli are repeatedly presented to the sub- 
ject together with a comparison or standard stimulus. 
The cumulative responses (different or same) are used 
to estimate points on the psychometric function, i.e. the 
function describing the probability that subjects judge 
the stimulus as exceeding the standard stimulus. 

The method of limits: the experimenter varies the value 
of the stimulus in small ascending or descending steps 
starting and reversing the sequence at the upper and 
lower limit of a predefined interval. At each step the 
subject reports whether the stimulus appears smaller 
than, equal to or larger than the standard. 

*Insti tut  ffir Medizinische Psychologie, Ludwig-Maximilians- 
Universitiit Mfinchen, Goethestr.  3l ,  D-80336 Mfinchen, Ger- 
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The method of adjustment is quite similar to the method 
of limits and is only applicable when the stimulus can 
be varied quasi-continuously. The subject adjusts the 
value of the stimulus and sets it to apparent equality 
with the standard. Repeated application of this pro- 
cedure yields an empirical distribution of the stimulus 
values with apparent equality which is used to calcu- 
late the point of subjective equivalence (PSE). 

In general, each of these three methods suffers from one 
or more of the following deficits: 
• absence of control over the subject's decision crite- 

rion; 
• the estimates may be substantially biased; 
• no theoretical justification for important aspects of 

the procedure; 
• a large amount of data is wasted since the stimulus 

is often presented far from threshold where little 
information is gained. 

In the last 35 yr, different remedies for each of these 
deficits have been suggested. The first two drawbacks 
and the lack of theory were addressed by the application 
of detection and choice theory to psychophysics (Luce, 
1959; 1963; Green & Swets, 1966; Macmillan & Creel- 
man, 1991). Efficiency of data acquisition was improved 
by using computers in psychophysical laboratories: psy- 
chophysical stimuli are generated online, and the tests 
are administered, scored, and interpreted by computer in 
a single session. Thereby the stimulus presentations are 
concentrated around the presumed location of the thresh- 
old. 

This review gives a survey of the different methods for 
accelerated testing which have been proposed during re- 
cent decades. The arrangements used are sophisticated 
modifications of the method of constant stimuli and the 
method of limits. Apart from speeding up threshold mea- 
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surement, some of the methods try to address the lack of 
theoretical foundation, while others remain purely heuris- 
tic arrangements. 

BASIC CONCEPTS 

Experimental designs 

Experiments based on Fechner's classical methods 
measure discrimination, the ability to tell two stimuli 
apart. A special case of discrimination experiments is 
often called detection: if one of the two stimuli is the null 
stimulus (like average luminance in a contrast sensitivity 
experiment) the discrimination experiment can be called 
a detection paradigm. In both cases we deal with classical 
yes-no designs, where the subject has to decide whether 
the stimuli of  the two classes are the same (no response) 
or different (yes response). These classical designs are in 
contrast to forced choice designs, where the subject has 
to identify the spatial or temporal location of a target 
stimulus. There is no restriction for adaptive procedures 
to be used in yes-no or forced choice designs, but the 
problems considered in this article will be restricted in 
two other aspects: 
i The response domain is limited to experiments 

which have binary outcomes. 
ii The stimulus domain has to be represented by a 

one-dimensional continuum. This does not restrict 
the problem to continuous variables but leaves 
out the following two classes of problems. First, 
problems where the stimulus domain is a nominal 
scale; e.g. classification of polyhedra or similarity 
of words. Second, it excludes more-dimensional 
problems where two or more parameters are varied 
conjointly, e.g. in the context of colour discrimina- 
tion (MacAdam, 1942; Silberstein & MacAdam, 
1945) or in joint frequency/orientation discrimi- 
nation (Treutwein, Rentschler & Caelli 1989). In 
two-dimensional problems the single value of a 
threshold corresponds to a closed curve around a 
reference stimulus delineating a non-discrimination 
area. An adaptive procedure would have to track 
this curve and determine the geometrical parame- 
ters of the curve from the subject's responses. 

Psychometric function 

Plotting the cumulative responses of an experiment 
with binary outcomes against the stimulus level results in 
the psychometric function. Throughout this article per- 
centage yes responses (yes-no design) and percentage cor- 
rect responses (forced choice design) will be used synony- 
mously in the context of psychometric functions. 

An example of a psychometric function with results 
from a forced-choice experiment with nine spatial alter- 
natives is given in Fig. 1. Here, the percentage correct 
assignments of the stimulus location has been plotted 
against the stimulus level, which in this case was the du- 
ration of a temporal break in one of nine simultaneously 
displayed stimuli. The plotted results are cumulative data 

of 35 sessions, i.e. repetitions of the experiment with the 
same stimulus setup. Thresholds for break duration, i.e. 
double-pulse resolution, was measured by use of YAAP, 
an adaptive procedure of the Bayesian type (see below; for 
experimental details see Treutwein & Rentschler, 1992). 

A problem with almost every real observer can be seen 
in Fig. 1: even at stimulus levels far higher than the thresh- 
old, which was in this design 55.5°/,, correct (at stimulus 
level 24), real subjects exhibit a tendency not to notice the 
stimulus, i.e. to have lapses-- some people use the term 
rate of  false negative errors. Similar behaviour also occurs 
below the threshold when subjects sometimes give a yes 
response. The probability of such responses is termed the 
guessing rate or the rate of  false positive errors. In a yes- 
no design this behaviour probably reflects noise in the 
sensory system whereas in forced choice designs correct 
responses below threshold are normal: the subjects are 
forced to give a localization answer, even when they did 
not perceive anything; in this case the best they can do is 
to guess. In forced choice experiments with an unbiased~ 
observer these responses occur with a probability of ~ if 
the subject has to choose from n alternatives. The lapsing 
rate Pl and the guessing rate pg can sometimes be esti- 
mated from the collected data in a subsequent analysis of 
the responses, but usually both have to be prespecified by 
the experimenter. In Fig. 1 the guessing rate of 9.4% was 
estimated by the percentage of correct responses at stim- 
ulus level 1 and the lapsing rate of 2.4%, was estimated 
by the percentage of correct responses after collapsing 
the results from all presentations at levels between 37 and 
99. This collapsed percentage correct value and the cor- 
responding number of trials are marked in Fig. 1 as , .  

Usually the guessing rate pg is accounted for by ap- 
plying Abbott's formula which yields an adjusted rate of 
correct answers qJ* (x) from the actually measured rate 
tp(x): 

Ip*(x) = t p ( x ) - p g  (1) 
1 - pg 

Sometimes this formula is extended to include the lapsing 
rate p~: 

Ip(x) - pg (2) 
~* (x) 1 - pg - Pl " 

Solving for tp(x) yields the following: 

q/(X) = pg + (1 - p g )  q/* (x) 

or 

tp(x) = pg + (1 - p g -  Pl) qJ* (X). 

It is important to keep in mind that the responses at any 
fixed stimulus level are binomially distributed. This im- 
plies that the variability of the percentage correct mea- 
sures, and therefore the precision whith which percentage 
correct can be measured, depends on both, the number of 

tAn unbiased observer is a hypothetical subject who distributes his 
or her guesses equally between the different alternatives. This is 
not necessarily the case for a real observer. 
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F I G U R E  1. Binomial Responses and the Psychometric Function. Illustration of the psychometric function and the underlying 
binomial distribution at fixed stimulus values. The left part of  the figure shows: top, a histogram of the number of  
presentations; bottom, the percentage of  correct responses with a nonlinear regression line of  a logistic psychometric function. 
The three subplots on the right-hand side depict the actual number of correct/incorrect answers at three specific stimulus 

values thereby illustrating the binomial distribution of these responses. 

trials and the unknown "true" percentage correct at that 
stimulus level. The variance of a success probability Ps, 
when the underlying responses are binomially distributed, 
is Var(ps) = ps( 1 - p~)/n, where ps = % correct/100, and 
n is the number of  trials at that stimulus level. Therefore, 
when fits of  theoretical models to the data are sought, a 
measure of the variability of the unadjusted rate of cor- 
rect answers should be used as weighting factor for the 
adjusted rate even when an adjusted psychometric func- 
tion [equation (1) or (2)] is used. 

Due to the presence of  guessing and lapsing behaviour, 
the psychometric function qJ(x) is not a cumulative prob- 
ability distribution though it looks very similar, i.e. in al- 
most every real experiment a psychometric function does 
not fulfil the asymptotic requirements for a cumulative 
probability distribution F ( x ) ,  

lim F ( x )  = Oand lim F ( x )  = 1 
x ~ - o o  x - - + o o  

but instead fulfils (3) 

lim qO(x) = pg and lira qO(x) = pl, 
x ~ - o o  x - - + o o  

i.e. the psychometric function has the guessing and laps- 
ing rates pg and Pl as asymptotic values. 

Threshold 

The goal of threshold experiments is to find a stimulus 
difference that leads to a preselected percentage of correct 
responses, i.e. to a preselected level of  the subject's per- 
formance, i.e. the threshold. A probability value qb is set 
and the corresponding stimulus level x 4, is sought. This 
corresponding stimulus value x~ = 0 is called the thresh- 
old. * For yes-no designs the threshold is usually chosen 

*This kind of  threshold is called an empirical threshold and it is 
unrelated to those of  the threshold theories; an empirical threshold 
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to be the 50% point, the point where same and different 
responses are equally likely. This type of  yes-no thresh- 
old is called thepoin t  o f  subjective equivalence. For forced 
choice designs the threshold is often chosen to halve the 
interval between the guessing and lapsing rate, i.e. qb = 
(pl - pg)/2. 

Adaptive procedures 

As pointed out by Falmagne (1986) the difference be- 
tween the classical and the adaptive methods is that in 
the former, the stimulus values which will be presented 
to the subject are completely fixed before the experiment; 
whereas in the latter, they depend critically on the re- 
sponses of  the subject: the stimulus presented on trial n 
depends on one, several or all of  the preceding trials. Put 
in a more formal way, the value of  the stimulus level pre- 
sented in an adaptive psychophysical experiment at trial 
n is considered as a stationary stochastic process, i.e. the 
stimulus value x, which is presented on trial n depends 
on the outcome of the preceding trials. Since the sub- 
jects' responses form a stochastic process, the stimulus 
values also constitute one. Therefore the stimulus level at 
trial n will be denoted by the random variable Xn and the 
subject's response by the random variable Z, .  The actual 
values of the response Z ,  are coded as zi = 0 for a miss 
(same response in a yes-no design or incorrect assignment 
in a forced choice design), and zi = 1 for a hit (different 
or correct response). By definition of the psychometric 
function, we have 

can be measured either in terms of  detection theory, e.g. d ' ,  or in 
terms of  threshold theory, e.g. percentage correct (see Macmillan 
& Creelman, 1991, Chap. 4 and 8). 
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and 

Prob{Z, = l[Xn} = ~(Xn) 

Prob{Z, = 0lXn} = 1 - q~(X,). 

This means that at any fixed stimulus level the responses 
of the subject are binomially distributed (see also the right 
hand insets in Fig. 1). 

With these formal definitions, an adaptive procedure 
is given by a function A which combines the presented 
stimulus values Xn and the corresponding responses Z,  
at trial n and preceding trials with the target probability 
qb to yield an optimal stimulus value X,+t, which is then 
presented on the next trial 

Xn+ 1 = ...~(¢~,n, Xn, Zn . . . . .  X I , Z 1 ) .  

and the interpretation bias. Measurement bias is the dif- 
(4) ference between the true value and the average estimated 

value. Interpretation bias is the result of an inverse ques- 
tion: given a single estimated value of a threshold, one 
may ask what values of real thresholds could have given 
rise to this threshold estimate. More specifically, what are 
the relative probabilities of different real thresholds which 
could have given rise to this threshold estimate, and what 
is the weighted average of these real thresholds? I will 
come back to the question of interpretation bias in the 
section on Bayesian methods and the interpretation of 
the a-posteriori distribution. 

If the value of the true threshold 0true is known, the 
measurement bias b 0 of r estimated thresholds 0r can be 

(5) defined in the following way: 

The implication of the stationarity of the stochastic pro- 
cess for a psychophysical experiment is that consecutive 
presentations should be statistically independent (e.g. by 
interleaving different runs for independent parameters in 
one experimental session; also see the Discussion). 

Performance of  a method 

Psychophysical procedures should be evaluated in 
terms of cost and benefits. The currency in which psy- 
chometric procedures are bought is the patients' or 
subjects', and the experimenter's time, i.e. the number of 
trials required to achieve a certain accuracy. An empir- 
ical threshold is a statistic, an estimate of a theoretical 
parameter. In other words, the threshold is a function of 
the data, which is a summary measure that depends on 
the results of a set of trials. The relevance of this statistic 
is assessed by: 
i Bias, or systematic error, i.e. is the estimated thresh- 

old on average equal to the true threshold ? 
ii Precision, i.e. some measure inversely related to the 

variability, or the random error. If the threshold is 
measured repeatedly, how much variation is to be 
expected ? 

iii Efficiency, i.e. how many trials are required to 
achieve a certain precision ? 

Before considering precision, bias and efficiency in more 
detail, I would like to make two remarks about the min- 
imum number of trials necessary to obtain accurate esti- 
mates: 
i The more parameters are to be estimated, the more 

trials are necessary. 
ii The more the target probability qb deviates from 

3, where the binomial distribution of the subject's 
responses has the highest variance, the more trials 
are necessary. 

Bias. The difficulty of evaluating the bias of a partic- 
ular psychophysical method is that in any real experi- 
ment one does not know the value of the true threshold, 
i.e. in real experiments, the experimenter can never de- 
termine how large the bias is. Evaluating the bias of a 
method therefore can be done only in simulations. King- 
Smith, Grisby, Vingrys, Benes and Supowit (1994) have 
pointed to the difference between the measurement bias 

bb = 1 Z ( 0 t r u  e _ 0r) = 0true -- / / 0 ,  (6) 
r 

r 

where r is the number of estimates considered in this case, 
i.e. the number of repeated sessions or runs, and//b is the 
mean of these best estimates. 

Precision. The precision r O of r estimated thresholds 
/gr can be defined (see Taylor, 1971) as the inverse of the 
variance of the best threshold estimates t) of a particular 
method, i.e. 

1 r - 1  
t o -  2 -  (7) 

cr 0 Z ( b r - / / 0 )  2 ,  
r 

where//O, o-~ are the mean and the variance of the best 
estimates and r is the same as in equation (6). 

Efficiency. Taylor and Creelman (1967) and Taylor 
(1971) have defined the sweat factor K as a measure of the 
efficiency of a psychophysical procedure. It is the prod- 
uct of o-~, the variance of the best threshold estimate, 
and n, the fixed number of trials, which were necessary 
to obtain that estimate 

~r (//0 -- 0r) 2 
K=no-~ =n 

r - I  
(8)  

The sweat factor allows for comparison between different 
psychophysical methods. If  an absolute measure of effi- 
ciency is desired then an ideal procedure as a standard 
of reference has to be assumed. Taylor (1971) proposed 
as a measure of an ideal procedure the asymptotic vari- 
ance O'~M of the Robbins-Monro process (see section on 
stochastic approximation) for a given target probability 
qb and a given number of trials n 

O.~M = ~ ( 1  -- 4 ' )  (9) 

I is the slope of the psychometric function where dx J0 
at the threshold. An ideal sweat factor of an optimal pro- 
cedure, according to this definition of the ideal process, 
is therefore given by 
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gideal HO'2M q~(1 - qb) (10)  

( 10) 
and the efficiency of a procedure under consideration (in- 
dex p) could be stated as 

gideal ( 1 1 ) 0n- Kp 

The sweat factor and this definition of efficiency is ap- 
plicable in cases where adaptive procedures are evaluated 
with a fixed number of trials in each session. For sequen- 
tial procedures, which terminate after a prespecified con- 
fidence in the estimate is reached, the obvious measure of 
efficiency is the number of trials which were necessary to 
reach that point (see Daintith & Nelson, 1989). 

An important question of efficiency is the behaviour 
of the procedure for different starting points, i.e. how the 
initial uncertainty about the location of the threshold and 
the variability of the final estimate are related to each 
other. 

Constituents of an adaptive procedure 

Adaptive procedures differ from the classical ones 
mainly in that they are designed to concentrate stimu- 
lus presentations at or near the presumed value of the 
threshold. 

The procedure of any adaptive method can be divided 
into several subtasks: 
(1) When to change the testing level and where to place 

the trials on the physical stimulus scale ? 
(2) When to finish the session ? 
(3) What is the final estimate of the threshold ? 
Not all procedures reviewed here explicitly specify all 
parts, although for any adaptive procedure this should be 
done in detail. Table 1 summarizes all procedures which 
will be dealt with in this article and gives an overview as 
to which author specified which subtask in the suggested 
procedure. These subtasks are in principle independent 
and can be exchanged without any loss. It is, for example, 
a permissible combination to use the stimulus placement 
from stochastic approximation, the termination criterium 
of YAAP and the final threshold from a probit analysis, 
or any other reasonable mixture. Moreover there is no re- 
striction on changing any of these rules in the midst of a 
procedure. 

Differences between categories of adaptivepsychophysi- 
cal methods concern what the experimenter already knows 
about the - -  in principle unknown - -  form of the un- 
derlying psychometric function and what she/he wants to 
learn about it: 
(1)The psychometric function is known to be strictly 

monotonic but its shape is unknown. The exper- 
imenter is mainly interested in the stimulus value 
which corresponds to the prespecified performance. 

(2)The experimenter knows that the psychometric 
function can be described by a function with several 
degrees of freedom which correspond to threshold, 
slope, and possibly further parameters controlling 
the asymptotes. The experimenter wants to esti- 

mate both the psychometric function's threshold 
and slope. 

(3)The shape of the psychometric function is com- 
pletely known, i,e. the experimenter chooses a fam- 
ily of curves, which are shift invariant on the stimu- 
lus axis. In short the only parameter to be estimated 
is the threshold. 

In the first case the methodology of non-parametric statis- 
tics is used whereas in the latter two parametric models 
are assumed. 

NONPARAMETRIC METHODS 

In this section I will summarize different methods in 
which no parametric model for the psychometric function 
is used. These methods try to track a specific target value, 
i.e. the threshold. The only requirement for the psycho- 
metric function is monotonicity. Most of these methods 
could probably be considered as being special cases of 
stochastic approximation methods (Robbins & Monro, 
1951; Blum, 1954; Kesten, 1958; see below). 

Truncated staircase method 

The simplest extension of the method of limits is to 
truncate the presentation sequence after any shift in the 
response category, thus avoiding the presentation of stim- 
uli far below and above the threshold. This is the trun- 
cated method of limits or simple up-down method." After 
each trial the physical stimulus value is changed by a 
fixed the step size 6. If a shift in the response category 
occurs (from success to failure or vice versa), the direc- 
tion of steps is changed. Every sequence of presentations, 
where the stimulus value is stepped in one direction, is 
called a run, and the final estimate is obtained by averag- 
ing the reversal points. This is sometimes called a midrun 
estimate. A more elaborate way to calculate the final es- 
timate was given by Dixon and Mood (1948) who pro- 
posed a maximum likelihood estimate for the threshold. * 
Because numerical solutions for the maximum-likelihood 
estimate, which will be described below in the section on 
maximum-likelihood and Bayesian estimation, were un- 
feasible at that time, Dixon and Mood gave analytical 
approximations for the threshold and its variability. 

The stepping rule for the simple up-down method can 
be formalized as follows, where the general equation (5) 
takes the form 

Xn+l  = Xn -- 6(2Zn - 1). 02) 

Here 6 is the fixed step size. The stimulus value Xn is 
increased by 6 for a failure (Zn = 0) and is decreased by 
the same amount for a success (Zn = 1). 

The experiment starts with an "educated" guess for the 
first presentation X1 and the sequence of stimuli is deter- 

* Dixon and Mood estimated the sensitivity of explosives to shock 
when a weight is dropped from different heights on a speci- 
men of an explosive mixture. They already noted that the same 
method can be applied to threshold measurement  in psychophys- 
ical research. 
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TABLE 1. Summary of all reviewed procedures. Entries marked with ,  have an underlying statistical proof, those marked with t have heuristic 
arguments and those marked with ~ are based on questionable arguments. A - -  column entry means that this part was not specified in the 

original article. ML stands for maximum likelihood. 

procedure rules for 

year changing levels placing stimuli stopping final estimate 
name/author 
truncated 
staircase every trial equal steps 6 - -  see text 

Dixon & Mood 1947 every trial equal steps - -  ML (all trials) 
stochastic 
approximation 1951 every trial ~ (see text)* - -  - -  

non-parametric 
Up-Down 1957 r.v. (see text) r.v. (see text)* - -  - -  

accelerated 
1958 every trial ~-- (see text)* - -  - -  m., stoch, appr. 

PEST 
1967 Wald test heuristic rules t step size last level (Mouse mode) 

UDTR 1970 rules rules* - -  last tested 
PEST 

1975 Wald test rules t step size mean level (RAT mode) 
virulent PEST 1978 sliding Wald test PEST rules t step size last tested 

MOBS 1988 every trial bisectionS: - -  - -  

weighted 
Up-Down 1991 every trial two step sizes: 6T, 6~ - -  - -  

APE 1981 every 10/16 trials 1.35 SD (see text) - -  probit/2D-ML 

Hall's hybrid 1981 Wald test PEST rules t - -  2D-ML 

Hall 1968 every trial current best no. of trials ML 

QUEST 1979 every trial curr. best (Bayes) no. of trials ML 

BEST PEST 1980 every trial current best no. of trials ML 

ML-TEsT 1986 every trial curr. best (Bayes) X 2 test ML 

Emerson 1986 every trial current best no. of trials Bayes-mean 

IDEAL t987 every trial current best no. of trials Bayes 

YAAP 1989 every trial current best Bayes prob. interval Bayes-mean 

STEP 1990 every trial least squares ~ no. of trials least sqares 

ZEST 1991 every trial current best no. of trials Bayes-mean 

mined  by equa t ion  12. Dixon and  M o o d  (1948) showed 

with the a s sumpt ion  of  an  under ly ing  cumulative no rma l  

dis t r ibut ion,  i.e. the probabi l i ty  for a correct answer as a 
func t ion  of  s t imulus intensi ty  being pc(x) = ~C(x;/j ,  0.) 
(see also Textbox 2) that  the opt imal  step size is between 
0.5o- a n d  2.40- of  the under ly ing  distr ibut ion.  Since 0- is in 

general  u n k n o w n  this helps the experimenter  only when 

knowledge from previous or similar experiments can be 

used. 
A n  i m p o r t a n t  restriction of the t runca ted  staircase 

me thod  is tha t  it converges only to the target probabil-  

ity 4> = 0.5. In  a forced choice experiment  or any other 
setup, where this target probabi l i ty  is unsuitable,  one of 
the following methods  should be used: transformed up- 
down methods (Levitt, 1970), non-parametric up-and-down 
experimentation (Derman ,  1957), the weighted up-down 
method (Kaernbach ,  1991), or stochastic approximation 
(Robbins  & Monro ,  1951). 

Transformed up-down method 
In  the up-down transformed-response (UDTR) method,  

Levitt  (1970) suggested that  changes of the stimulus 
value be made  to depend on the ou tcome of two or 

more preceding trials. For  example, the level is increased 
with each incorrect response a nd  decreased only af- 

ter two successive correct responses (1-up/2-down, or 
2-s tep rule). The upward  a nd  downward  steps are of  
the same size. Levitt has given a table of  eight rules 
which converge to six different target probabil i t ies (4> 
{0.159,0.293,0.5,0.707,0.794,0.841}).  For  the 2-step 

rule, the convergence po in t  is qb = 0.707. These rules are 

derived from the probabilit ies which are expected on the 

basis of  the under lying b inomia l  d is t r ibut ion  a nd  have a 
sound  theoretical foundat ion .  

Non-parametric up-down method 
In  the case ~b >f 0.5, D e r m a n  (1957) suggested the fol- 

lowing procedure: 

X,+l = Xn - 6(2ZnS~ - 1), (13) 

1 where S~ is a b inomia l  r a n d o m  variable with p = ~-~. This 
means  that  for a correct answer the st imulus value is de- 

l creased by 6 with a probabi l i ty  of  ~ ,  bu t  eventually it 
can also be increased with the complementa ry  probabil-  
ity. For  an  incorrect answer the st imulus value is always 
increased. 
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The non-parametric up-down method is based on sta- 
tistical theory and has an underlying proof. 

Weighted up-down method 
Smith (1961) gave a hint and Kaernbach (1991) 

clearly formulated an extension to the truncated staircase 
method, where different step sizes for upward and down- 
ward steps are used. The relation between these being 

tST = 6~ 1 - q6 (14) 
4 ,  ' 

where 6t denotes the upward and 6~ the downward step 
size.  

Modified Binary Search 
TyreU and Owens (1988) suggested a method which is 

based on the bisection method commonly used for find- 
ing a value in an ordered table (see Press, Teukolsky, Vet- 
terling and Flannery (1992) Chap. 3.4) or for finding a 
root * of a function (ibid., Chap. 9). Bisection here means 
that a stimulus interval, which brackets the root, is halved 
consecutively and on each step one of the two endpoints 
is replaced by the bracketing midpoint. The normal us- 
age requires that the function evaluation is determinis- 
tic. Tyrell and Owens have adopted this algorithm for a 
probabilistic response function and have added heuristic 
precautions, arguing that they are necessary because the 
subject's threshold is non-stationary. Most of the reason- 
ing of modified binary search (MOBS) as applied to psy- 
chometric functions, i.e. taking into account the proba- 
bilistic nature of the subjects' responses, is heuristic and 
lacks a theoretical foundation, t 

Stochastic approximation 

Robbins and Monro (1951) have shown that for any 
value of qb between 0 and 1 the sequence given by 

x o + ~  = x n  - c ( z n  - 4 ) )  ( 1 5 )  
n 

converges to 0 = x~, with probability 1. Here, c is a 
suitably chosen constant. The only necessary assumption 
about ~(x)  is that it is a strictly increasing function. 
Equation (15) leads to increments in the stimulus value 
for misses and to decrements for hits. The step size 
depends on the initial step size c, the target probability 
qb, and the number of trials n: for qb = 0.5, upward or 
downward steps on trial n are equal (t5 = c~ (2n)); qb 
0.5 leads to asymetric step sizes, i.e. an increment of size 
cdp/n if an incorrect answer was given and a decrement 
of size c(1 - ch)/n for a correct answer. Both increments 
and decrements become smaller the longer the experiment 
runs, since the step size 6 is proportional to c/n. This se- 
quence * of stimuli is known as a Robbins-Monroprocess. 

*The point x0 where a function f ( x )  takes the value 0. The function 
f ( x )  = qJ(x, O) - ck has its root at the threshold. 

tThe correct adaptation of  the root finding algorithm to probabilistic 
functions is the stochastic approximation (see Sampson 1988). 

*The proofs for stochastic approximation and its accelerated version 
are valid for more general sequences of decrementing the step size. 

The method guarantees that the sequence of stimulus val- 
ues converges to the threshold when only the monotonic- 
ity of the psychometric function is granted. Although the 
original article neither specified a stopping criterion, nor 
how the final estimate is obtained, these are discussed by 
Dupa~ (1984) and Sampson (1988). A reasonable stop- 
ping criterion would be a lower limit for the step size and 
an obvious final estimate is the last tested level. 

Accelerated stochastic approximation 

Kesten (1958) suggested a method called accelerated 
stochastic approximation. During the first two trials the 
standard stochastic approximation equation (15) is used, 
but afterwards the step size is changed only when a shift 
in response category occurs (from correct to incorrect or 
vice versa): 

c 
= - - ( Z n - q b ) ,  n > 2 .  (16) 

Xn+l Xn 2 + mshift 

Here, mshift is the number of shifts in response category. 
Kesten proved that sequences, which change the step size 
only when shifts in the response category occur, also con- 
verge to x~ with probability 1 but do so with fewer trials 
than the Robbins-Monro process. The same remarks on 
the stopping criterion and the final estimate apply as for 
the stochastic approximation. 

In automated static perimetry (Bebie, Fankhauser & 
Spahr, 1976; Spahr, 1975) a standard method for vary- 
ing the intensity of the stimuli is the 4-2 dB strategy, 
which can be interpreted as the first part of an accelerated 
stochastic approximation sequence. 

PEST and More Virulent PEST 

PEST, an acronym for Parameter Estimation by 
Sequential Testing, was suggested by Taylor and Creel- 
man (1967). On the one hand, PEST was the first proce- 
dure where methods of sequential statistics were applied 
to psychophysics. On the other hand, in PEST a com- 
pletely heuristic set of rules for stimulus placement was 
employed. The methodology of sequential statistics is 
used to determine the minimum number of responses 
which - -  at a given stimulus value - -  are required to re- 
ject the null-hypothesis that the responses are binomially 
distributed with a mean of the target probability. 

Assume that the experimenter has picked a certain 
stimulus level x and has presented n trials at this level. 
The responses at this stimulus level are binomially dis- 
tributed. The null hypothesis is p = ~(x) ,  where ~(x) is 
the value of the unknown psychometric function at stim- 
ulus level x. When this level is far from the target value 
0 = x+, a simplified version of a sequential probability 
ratio test (SPRT) (Wald, 1947; see Textbox 1 for the orig- 
inal SPRX) will fail after a few trials. In this case, the ac- 
tual number of correct responses is inconsistent with the 
assumption that the last stimulus presentation was at x~ 

Every sequence {an} which fulfils the following three condition 

works: l ima ,  = 0, ~an  = oo, and a, 2, = A ~< oo. The 
n - - ~  I 1 

simplest example for such a sequence is an = c /n .  
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Let Z,  denote the binomially distributed random variable of the responses at a certain stimulus value. For n 
presentations at that fixed level, m,. denotes the number of successes and n - me  is the number of failures. 
A sequential test of  strength (a, B) is given by the probabilities for type I errors ct (rejecting a correct hypothesis) 
and type II errors/~ (accepting a wrong hypothesis). In our case we are testing the null hypothesis H0(qb = qb0) 
against the alternate hypothesis HI (qb = qbl), where qb0, qbl are two different target probabilities with 0 < qb0 < 
4~, < 1. 
The probability p of obtaining the sample of n responses, with E [ m c ]  = qb n correct ones, where qb denotes the 
unknown probability for a correct answer at the current stimulus value, is given by 

p = ¢~mc(1 - ~lg)n-mc 

For the specific probabilities qb0 and qbl at trial n we get: 

P0 = qb~nc(l - qb0) "-me and Pl = qb'lnc(1 - qbl) "-'no 

After each response the discrimination value d is calculated: 

O1 ~1 1 - ~ 1  
d = log ~0 = m,. log ~oo + (n - mc) log 1 ~o 

If d ~ ( log H log l-__~_) the presentation at the current stimulus level is continued. If log ~ ~< d then Ho is Ot 

rejected, and HI is accepted, which means that the stimulus value should be increased. If  d ~< log H then Ho is 
accepted, i.e. the experimenter can be confident with error probabilities (~, ~) that the last tested stimulus value 
was at the target probability ~.  

Textbox 1. Wald's sequential probability ratio test. 

and the stimulus level is changed according to a set of 
heuristic rules (see below). 

Taylor and Creelman's simplified version of the SPRT 
differs from the original Wald test in that a heuristic de- 
viation limit is used in the following way. The expected 
number of correct answers me,  after nx presentations at 
stimulus level x for a target probability qb, is given by the 
mean of the binomial distribution B ( n x ,  oh) with nx rep- 
etitions and probability ~: 

E [ m , . ]  = dp nx . 

The experimenter has chosen a deviation limit w such 
that: 

N~ ±' = E [ m c ]  + w = dpnx +_ w .  

Nb is called the bounding number for the correct re- 
sponses after nx trials at the fixed stimulus value x. If 
the observed number of correct answers mc is within this 
bracket, i.e. 

mc~  [ Nb~-),Nb ~+) ] = [ d p n x - W ,  d p n x + W ] ,  

then testing at the current stimulus level is continued. If  
the actual number of correct responses m,. is outside this 
interval, the current stimulus level is changed accordingly. 
Taylor and Creelman suggested a value of w = 1 for a 
target probability of qb -- 0.75. 

Taylor and Creelman proposed the following heuristic 
rules for changing the stimulus level, which have been 
empirically tested to track the value of the threshold: 
(1)on every reversal, halve the step size; 
(2) the second step in a given direction is the same size 

as the first; 
(3)the fourth and subsequent steps in a given direction 

are each double their predecessor; 

(4)whether a third successive step in the given direc- 
tion is the same or double the second depends on 
the sequence of steps leading to the most recent re- 
versal. If  the step immediately preceding that rever- 
sal resulted from doubling, then the third step is not 
doubled, while if the step leading to the most recent 
reversal was not the result of a doubling, then this 
third step is double the second. 

In Taylor and Creelman's original version, the session is 
terminated when the step size falls below a certain pre- 
defined value. The final estimate for the threshold is the 
last tested value x, This simple way to derive a final esti- 
mate is called PEST'S MOUSE mode (Minimum Overshoot 
and Undershoot Sequential Estimation) as opposed to 
the RAT mode (Rapid Adaptive Tracking), which was in- 
troduced by Kaplan (1975). In PEST'S RAT mode, the fi- 
nal estimate is derived by averaging the obtained stimulus 
values every 16 trials. The different modes and a slightly 
revised set of stepping rules can be found in more detail 
in Macmillan & Creelman (1991) Chap. 8 

A modification of PEST by Findlay (1978) which the 
author claims to be faster, is called MORE VIRULENT 
PEST. It changes the power of the SPRT during the exper- 
imental run by letting the deviation limit w be a function 
of the number of presentations and the number of rever- 
sals. Findlay (1978) also suggested fitting the psychomet- 
ric function to the cumulative results of all presentations. 

P A R A M E T R I C  M E T H O D S  

The methods discussed in the following sections require 
a prior decision about the general form of the psychome- 
tric function. This means that a special parametric tem- 
plate for the psychometric function, e.g. the cumulative 
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Normal distribution: 

I i ,_2 3g(x;ju, o.) - o. 2x/~ e - ~  dt 
- - o o  

definition range: x E (-0% +oo) 
parameter set: @ -- (p,o.) 

with: p E (-co, +co) mean (position) 
o. > 0 standard deviation 
o .2 variance. 

Logistic distribution: 

1 
L(x;a, fl) - 1 +exp  "a-x't- U )  

definition range: x ~ ( -  0% + co) 
parameter set: 0 = (a,  fl) 

with: a ~ (-oo, +0o) position parameter 
fl > 0 spread parameter 

with fi = o-/1.7 and a = ~t the logistic function is a 
fairly good approximation to the cumulative normal. 
Some authors use /~'(a - x) as the argument for the 
exponential; in this case fi' is usually called the slope 
parameter. 

Step function: 

I 1  if x>_ a 
S(x;a)= 0 i f x < a  

with: a location of the step. 

Note that any of the other model functions approximate 
a step function when a very large slope is used. 

Weibull distribution: 

definition range: x ~ (0, +co) 
parameter set: O = (a,  B) 
with: 0 </3 form parameter 

0 < a scale parameter 

On a logarithmic x-axis a is the position and fi the slope 
parameter (see also the Gumbel distribution below). 

Alternate forms The cumulative Weibull distribution 
has no standard notation and is often written in other 
forms: 

W(2)(x; h, 1~) = 1 - e x p  t -Axe}  

Gumbel distribution: 

definition range: x ~ (-oo, +co) 
parameter set: @ = (a, fl) 
with: a ~ (-0% +oo) position parameter 

fl > 0 spread parameter 

The Gumbel distribution can be useful in place of the 
Weibull when the latter is used on an intensity scale and 
translation invariance on a log-intensity scale is wanted. 
The Gumbel distribution has this property directly on 
the log-intensity, e.g. the dB scale. 

Textbox 2. Formulas  of  typical psychometr ic  functions. 

normal, the Weibull, or the logistic distribution, is chosen 
and one or two of the free parameters of  this template are 
estimated, namely the threshold and the slope. Examples 
of different psychometric function templates are shown 
in Textbox 2 and Fig. 2. 

Estimation of threshold and slope 
Hall (1981) and Watt and Andrews (1981) proposed 

two different methods, both of which estimate two pa- 
rameters: the threshold and the slope of  the psychomet- 
ric function. Except for the idea of splitting the complete 
session into several blocks, and of  estimating the psy- 
chometric function's parameters between these blocks of 
presentations, both use different methods for parameter 
estimation and stimulus placement. 

Adaptive probit estimation. The approach of Watt 
and Andrews (1981) is based primarily on the classical 
method of  constant stimuli but differs in that it adjusts 

the placement of  the stimuli during the run accord- 
ing to the outcome of a probit analysis (Finney, 1971; 
Textbox 3). The session is split up into blocks of  short 
constant-stimuli subsessions with four different stimu- 
lus values Xl, x2, x3, x4. The authors originally suggested 
blocks of 10 presentations. The experimenter supplies 
educated guesses of the threshold/J0 and spread (inverse 
slope) o'0. Before the rth block the spacing of  the four 
"constant" stimulus values is derived from the current 
estimates by 

~(r) C C 
{1...4} = { ]-Jr -- Or,  /dr -- "~o.r, ]Jr + "~O-r, l-Jr + o.r } . (17) 

According to Watt and Andrews probit analysis is of  op- 
timum efficiency when the constant c = 1.35 and probit 
is applied to data gathered with the method of  constant 
stimuli. At the end of the second and of  every subsequent 
block, a "rapid and slightly approximate Probit analysis" 
of the last two blocks is carried out to obtain new best 
estimates/~, &. With these best estimates a new stimulus 
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F I G U R E  2. A s p e c t  o f  P s y c h o m e t r i c  F u n c t i o n  T e m p l a t e s .  ( a l ) ,  ( a 2 )  C u m u l a t i v e  W e i b u l l  d i s t r i b u t i o n s  o v e r  a l i n e a r  x - a x i s ,  

( b l ) ,  ( b 2 )  c u m u l a t i v e  W e i b u l l  d i s t r i b u t i o n s  o v e r  a l o g a r i t h m i c  x - a x i s ,  ( c 0 ,  (c2)  c u m u l a t i v e  n o r m a l  d i s t r i b u t i o n s  ( G a u s s i a n  

d i s t r i b u t i o n s ) ,  a n d  ( d 0 ,  ( d 2 )  l o g i s t i c  f u n c t i o n s .  E a c h  c a s e  is  p l o t t e d  f o r  d i f f e r e n t  v a l u e s  o f  t h e  p o s i t i o n  p a r a m e t e r  ( i n d e x  1) 

a n d  t h e  s l o p e  p a r a m e t e r  ( i n d e x  2) .  

set is derived: first, new/Jr+l, o%+1 are calculated accord- 
ing to the following formulas 

u,+~ = ~, + ( h .  h , _ l l P , - , -  t~,-2 (18) 
+ 

O ' r +  1 = O'r + (O-r -- ~-r_l) ~ r-1 -- O'r-2 (19) 
O r _  , + Oradj 

f 0  if 0-r-: < d-r-, 
with O'adj = £rr-2 if d-~-2 > 0-r-, 

and second, applying equation (17) to these values of  
. ( r + l )  f o r  the placement Pr+,, ffr+l yields four new values xH...4} 

of  the four constant stimuli. This means that the new 
stimulus set on the next block r + 1 is not derived directly 
from the best estimates/3r, O-r after run r but by a kind of 
sliding estimates defined in equations 18 and 19. The frac- 

tional parts in equations 18 and 19 are therefore called 
by Watt and Andrews the inertia of  the APE procedure. 
The inverse of the inertia is called correct ion fac tor .  The 
inertia indicates that a sudden change in the subject's re- 
sponse behaviour, such as a shift of  the threshold or a se- 
quence of lapses, is not immediately reflected in the stim- 
ulus set. There is an asymmetry in the correction factor 
for or given by o',dj with the following reasoning. Usually, 
an experimental session starts with an overestimate of  o- 
and therefore with a stimulus set which is too wide. There- 
fore, a decrease in the width of  the stimulus set is more 
likely than an increase. The correction factors approach 
zero when the subject maintains a stable threshold. This 
fact could be used as a criterion for stopping the proce- 
dure but this was not noted by the authors. In personal 
communication Watt (1994) clarified that adapative pro- 
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A classical way to analyse probability data like that gathered in a psychophysical experiment, is the transformation 
of the data from the range (0, 1) to the range (-0% +oo). A linear model is then adopted for the transformed 
value of the success probability. This procedure ensures that the fitted probabilities will lie between 0 and 1. 
Commonly used transformations are the logistic, the probit, and the complementary log-log transformation. 
They correspond to the logistic, the Gaussian (or normal) and the Gumbel distribution, respectively. An overview 
of these methods can be found in Collett (1991). In psychophysics the best known is probit analysis (Finney, 
1971). 

The probit transform assumes a cumulative normal dis- 
tribution for the psychometric function. The probabil- 
ity data p is transformed into z-values by the inverse 
cumulative normal distribution (see Textbox 2 for the 
definition of :A c) 

p = .TV(z) 

i.e. 

z ( p )  =.q~f-~(p) 

With the obtained z-values at the different stimulus lev- 
els x, parameters co and Cl are obtained by linear re- 
gression 

Z ( X )  = C 0 + C lX  

and from 

x - p  
CO + Cl X -- 

O- 

we derive 

co 1 
p = - - -  and o - = - - .  

Cl Cl 

Here p is the value of the threshold and o- is the in- 
verse of the slope of the psychometric function at the 
threshold. 

The logistic transform, logit (p), of a success probability 
p is given by the inverse of the logistic distribution (see 
Textbox 2) 

P logit(p) = log 1 - p  

With the obtained logits we obtain co, cl, a,/~ in the 
same way as before by linear regression, i.e. 

logit(x) = co + ClX - 
X--O~ 

B 

co 1 
results in ~ x - - - - -  and / ~ = - - .  

Cl C 1 

The complementary log-log transform of a success prob- 
ability p is given by the inverse of the Gumbel distribu- 
tion (see also Textbox 2) 

colog(p) = log[- log( l  - p)] 

co, cl, a,/~ are obtained in the same way as before, i.e. 

colog(x) = co + c l x  = 
X--O(  

co 1 
results in a - - - - - -  and / / = - - .  

Cl Cl 

Care should be taken that an iterative w e i g h t e d  linear regression is used. The weights depend on the number of 
trials at a given stimulus level and on the (unknown) probability of a correct answer; this is especially important 
if not all stimuli are presented equally often. When applied in psychophysics, the use of any of these transforms 
are problematic in the following two cases: 

(1) When a small number of trials at each stimulus level is used: In this case it is quite likely that the responses 
at some levels are either all correct or all incorrect. All transformations are undefined for certainties (i.e. 
probability 1.0 or 0.0) and it is therefore not strictly possible to incorporate these data points in the linear 
regression, although they carry relevant information. 

(2) For a non-zero guessing or lapsing rate pg, P l ,  which is accounted for by Abott's formula (equation 1 & 2), the 
weights have to be derived from the untransformed probabilities. It is possible to include pg and pt  into the 
estimation but this would be again a nonlinear model (Collett, 1991, Chap. 4.4). For a forced choice design 
with two alternatives and a probit analysis of the results this problem has been pointed out by McKee, Klein 
and Teller (1985). 

Textbox 3. Linearizing the psychometric function: Outline of probit, logit, and the complementary log-log transformation 
for converting cumulative probability data to a linear function. 
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bit estimation (APE) is run on a fixed number of trials 
basis, typically 64 blocks per session with 16 presentation 
each, totalling to 1024 trials for one experiment. The fi- 
nal estimates were derived from a probit analysis of all 
trials. He also noted that the current version of APE uses 
a sliding window (32 trials wide) to calculate the current 
stimulus set equation (17) after each trial. The final esti- 
mate is now calculated from the responses of the entire 
experiment via a maximum-likelihood technique. 

Hall's hybrid procedure. Hall (1981) suggested to use a 
hybrid procedure, with the stimulus placement as given 
by PEST (Taylor & Creelman, 1967) in blocks of a prede- 
termined number of presentations (Hall proposed 50). As 
a parametric model the logistic distribution is used. The 
first block starts with educated guesses of the threshold 
o~0 (position) and the spread fl0 (inverse slope) of the psy- 
chometric function. From the spread an initial step size 6 
for the PEsT stepping rules is calculated by assigning 6 = 
4/~0. After each block r, a maximum-likelihood estima- 
tion of both parameters of a logistic function (midpoint o~ r 
and spread/3r) is performed by using a constrained gradi- 
ent search method. * The constraints limit the search to 
the intervals ar ~ [O~o - /30, o~ + /30] and/3r ~ [~/3o, c/30] 
with c = 10. The new estimates O~r,/3r are used as initial 
values for the next (r + 1) block of presentations. Every 
single PEST run starts with a stimulus value of OCr + 4/3r 
to give the subject a clear idea of what is to be detected. 

Estimation of  the threshold only 

Particularly efficient methods of threshold estimation 
are obtained when the slope of the psychometric function 
is known in advance, i.e. only the location of the thresh- 
old is to be determined: The experimenter supplies not 
only the general form of the psychometric function but 
also its slope and other parameters (guessing and laps- 
ing rate). This means that the different possibilities for 
the psychometric functions are translations of one tem- 
plate parallel to the x-axis (as shown by the examples in 
Fig. 2 (bl,Cl, dl)). The shape, i.e. most notably the fixed 
slope, of the psychometric function is predetermined by 
the experimenter. With one exception (the STEP method), 
the procedures in this section use either a Bayesian or a 
maximum likelihood estimator of the position parameter 
0 of the psychometric function tp(x; O). Here O denotes 
the complete parameter set of the psychometric function 
whereas 0 denotes the position parameter, i.e. the thresh- 
old. Examples of different psychometric function tem- 
plates are shown in Textbox 2 (formulas) and Fig. 2 (as- 
pect). 

Statistical estimation theory. Estimation theory is a 
branch of probability theory and statistics that deals with 
the problem of deriving information about properties of 
random variables and stochastic processes for a given 
set of observed samples. A specific task is estimating a 
parameter of a population, given a set of data. There 

*A similar way of fitting a cumulative Weibull distribution to psycho- 
metric data can be found in the appendix to Watson (1979). 

are four major construction principles of point estima- 
tors: minimum-x 2, moments, maximum-likelihood, and 
Bayesian. In psychophysics maximum-likelihood and 
Bayesian estimators were proposed for the estimation of 
the threshold, given a set of binary responses. I there- 
fore look at similarities and differences between them 
(see Textbox 4). Although both methods are very similar 
from the computational viewpoint, they differ consider- 
ably in their underlying assumptions and philosophical 
aspects (see e.g. Martz & Waller (1982, Chap. 5.1)). 

Statistical decision theory. Statistical decision theory 
originated in the work of Wald (1947, 1950). It is con- 
cerned with the development of techniques for making 
decisions in situations where stochastic components play 
a crucial role. Important applications exist in business de- 
cision making, in operations research, and of course in 
psychophysics, where the problem is to decide at which 
stimulus level the next presentation should take place. 
The basic elements of statistical decision theory are: 
(1)a space ~ = {0} which may be vector-valued, of 

the possible states of nature, 
(2)an action space A = {a} of the possible actions, 
(3)a loss function L(0, a) representing the loss in- 

curred when action a is taken and the state of 
nature is 0. 

When estimating thresholds in psychophysics, the space 
f20 is the set of possible threshold values and the ac- 
tion space A is the set of presentable stimulus values. I 
don't know of any attempt at an explicit definition of a 
loss function for the psychophysical application, although 
King-Smith et al. (1994) note in this context that the 
mean of the posterior probability density function (pdf) 
minimizes the mean-squared error of the final estimate. 

Application in psychophysics, The problem in psy- 
chophysics is two-fold: on the one hand the experimenter 
wants to estimate the threshold with the least possible 
number of trials, on the other hand he wants an optimal 
placement for these trials. The first problem is one of 
sequential estimation, first formulated by Wald (1947), 
and the latter is a problem of decision theory. When 
Bayesian or maximum-likelihood methods are used in 
psychophysics the goal is to use all available informa- 
tion t to place the next stimulus presentation as close as 
possible to the true, but unknown, location of the thresh- 
old. The best the experimenter can do is to place the stim- 
ulus presentation at the current best threshold estimate 
which is obtained by calculating the likelihood function, 
respectively the posterior probability density function 
(posterior pdf), sequentially during the experiment. 

Calculation of  the likelihood or unnormalized posterior pdf  
After trial n of a session, when n stimulus presentations 

tin the ML approach this is restricted to the information collected 
during the current experiment; whereas in the Bayesian approach 
general knowledge about the location of the threshold, e.g. the 
distribution of thresholds in some reasonable collective, can also 
be included. 
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Let X be a random variable whose probability density function (pdf) depends on some parameter set O = 
(01,192 . . . . .  Ok). Let f (x lO)  denote the conditional joint pdf of one instance x of the random variable X, which 
also depends on the parameter set O. The probability of obtaining exactly this instance x of X and corresponding 
responses Z is denoted by f (x lO) .  In an actual experiment f (x lO)  can be calculated from the set ofn  presentations 
at different values of stimulus intensity x = (Xl, x2 . . . . .  xn) and the corresponding responses z = (zl, z2 . . . . .  zn), if 
a parametric model for the psychometric function is assumed. 

Maximum likelihood 
The basic idea of the method of maximum likeli- 
hood is given by the following consideration: Dif- 
ferent populations generate different data samples 
and any given data sample is more likely to have 
come from one population than from others. The 
method of maximum likelihood is based on the 
principle that we should estimate the parameter 
vector @, which describes the psychometric func- 
tion, by its most plausible values, given the ob- 
served sample vector x. In other words, the max- 
imum likelihood estimators of 01,  t92 . . . . .  19k are 
those values of the parameter vector for which the 
conditional joint pdf  f (xIO)  is at maximum. The 
name likelihood function denoted by L(O) is given 
to f (x lO) ,  viewed as a function of the parameter 
vector @. Therefore, 

Bayes' estimation 
Important for the Bayesian viewpoint is (1) the con- 
cept of subjective probability and (2) not to look for 
a fixed value of a parameter, but to derive a prob- 
ability distribution for the possible values of the 
parameters. 
Let g(O) denote the prior pdf of O. Then, given the 
sample data vector x, the posterior pdf  p(OIx) of 
O is derived by Bayes' theorem 

f(xIO)  g(O) 
p(Olx) h(x) 

where h(x) denotes a constant factor, depend- 
ing only on the data x, which is the normalizing 
marginal distribution of the posterior pdf  h(X) = 

~ f (x lO)  g(O) dO. The unnormalized posterior pdf  

can be rewritten as 

L(O) = f (x IO) .  

The maximum of the likelihood function is - -  as 
the name suggests - -  the maximum likelihood es- 
timator for the parameter vector O. 

L(O) = p(OIx)h(X)  

= f (x lO)g(O) .  

The function £(O) = L(O)g(O) is an unnormalized 
probability distribution for the parameter vector O. 

It is easily seen that the only difference between the likelihood function and the posterior pdf is the multiplication 
by the prior pdf  g(O). Apart from the philosphical aspects, the ML estimation is a special case of the more 
general Bayesian estimation. A Bayesian estimation with the mode (maximum) of the posterior pdf  as estimator 
and a rectangular (uniform, or constant) a priori distribution is exactly equivalent to the ML-estimator. The 
rectangular prior pdf is called, in Bayesian terminology, a non-informative prior, or a prior o f  ignorance. The a 
priori distribution g(O) expresses our prior knowledge about the distribution of the parameter O, in which, e.g., 
the distribution of the thresholds in the population, or hardware constraints of the setup, can be incorporated. 
It is an example of a subjective probability (or a belief) about the parameter vector O. 

Textbox 4. Comparison of maximum likelihood and Bayes estimation. 

at intensities (xl . . . . .  x~) = x have taken place, the like- 
lihood function (unnormalized conditional joint pdf for 
parameter vector O given the data x, see also Textbox 4) 
is given by 

n 

£(OlXl . . .x~) = p(Olx)  f ( x )  = 1--I £ (o lx i )  (20) 
i=l 

n-I 

= L(OIx~) 1--I £(Olx~) 

Each £(Olx~) is the probability that the subject has given 
a particular answer - -  correct or incorrect - -  at the stim- 
ulus intensity xi which was presented at trial i. This prob- 
ability is considered for different values of the parameter 
set O. The general formulation of the parameter set O 
stands for the multiparametric case, in the situation where 
only the single parameter of the threshold is estimated, 

this set O reduces to 0, the threshold. 
In psychophysics, the probability of a particular answer 

is given by the psychometric function, i.e. qJ(xi, 0). For 
the calculation of the likelihood the stimulus intensity xi 
is fixed and the value of the threshold 0 is considered as 
the variable. The likelihood function £(OIx~) for a single 
trial i is given by 

~p+ (xi, 0) = q'(xi, 0) 
L(01xj) 

tp_(x i ,  O) 1 - tP(xi, O) 
(21) 

where p+ and p_ stand for the probability for a correct (+) 
and incorrect ( - )  response of the subject. These prob- 
abilities are in turn given by the psychometric function 
and its complementary. 

To facilitate the calculation of the likelihood, all ver- 
sions have chosen the psychometric function to be trans- 
lation invariant on the x-axis. The set of possible values 
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for the threshold Oi coincides with the set of possible stim- 
ulus values xi and the values of the single-trial likelihood 
can be calculated from a fast lookup-table. 

In the case of  ML estimation it was traditional to work 
with the logarithm of  the likelihood rather than with the 
likelihood function itself. * 

Llog(19) = lnL(O) = lnf(XIO) 

Use of the logarithm does not change the location of the 
mode (maximum), since the logarithm is a monotonic 
transform. However, its use complicates the calculation of 
both the mean and the median of the posterior pdf, and 
obscures the interpretation of the likelihood as a proba- 
bility density for the location of the threshold when a spe- 
cific data set is given. Although the distinction between 
the log-likelihood and unmodified probabilities sounds 
minor, it has caused some confusion about the interpre- 
tation of the log-likelihood and the posterior pdf in the 
psychophysical literature (Lieberman & Pentland, 1982; 
Emerson, 1986a). 

A-priori density As pointed out in Textbox 4, the a- 
priori density g(@) expresses our prior knowledge about 
the distribution of the parameter 19, in which, for exam- 
ple, the distribution of the thresholds in the population, 
or hardware constraints of the setup, can be incorpo- 
rated. In equation (20) the history of the session up to 
trial n - 1 is represented by the t e rm I-[n_--i 1 L(OIXi).  This 
term expresses our posterior knowledge at trial n, but can 
also be looked at as the prior pdf  for trial n + 1. It in- 
cludes to some degree the information contained in the 
prior density at the beginning of the experiment. If, at the 
start of a session, the experimenter has no information 
about where the threshold could be, a simple solution is a 
rectangular, or uniform prior density, which assigns every 
possible value of the threshold location the same proba- 
bility. Since in almost all practical cases the experimenter 
has some knowledge about the location, this information 
should be included, e.g. by using a stepwise uniform den- 
sity having a higher probability in some subrange than in 
the rest of the interval. The experimenter should ensure 
that the prior pdf  at the beginning never dominates the 
posterior pdf  at the end of the experiment (see Martz & 
Waller, 1982, last paragraph of Sec. 5.2 for a discussion 
on dominant likelihoods). This is normally the case when 
the prior density is relatively fiat compared to final pos- 
terior pdf. The use of a deliberately choosen prior den- 
sity can speed up the experiment since it favours presen- 
tations in the beginning of the experiment at reasonable 
values. An example where bad stimulus placement during 
the first few trials can be counterbalanced by a reason- 
able prior, is the behaviour of pure maximum likelihood 
methods (uniform prior and the maximum of the poste- 
rior pdf  as estimator): If  the first response of the subject 
is correct, the second trial will be presented at the lowest, 

* This was more convenient to work with in the times of slide rules and 
hand calculation, and for analytical solutions. With the powerful 
personal computers available nowadays, the computational time 
saving is irrelevant. 

and if it is incorrect, at the highest possible value. When 
a prior is used as, e.g. in ZEST, QUEST and ML-TEsT, 
these large jumps into uninteresting regions during the 
first trials are reduced. 

A-posteriori density. King-Smith et al. (1994) have dis- 
tinguished, as mentioned above, measurement bias from 
interpretation bias. The latter they relate to the a-posteriori 
probability density for the location of the threshold. The 
value of the posterior pdf  at a given stimulus level is the 
probability t that the current set of answers are obtained 
with the threshold at this level. In the discrete case, the 
posterior pdf  is given by 

£(Olxl . . . x , )  
ppost(O, x) = ~.~.n=l £(Oj l x l . . .  xn) ' (22) 

where n is the number of trials done, and m indexes the 
number of different stimulus values which are under con- 
sideration for being the threshold. It is important for the 
correct interpretation of the posterior pdf  that it brack- 
ets the threshold sufficiently, which means that the prob- 
ability for the threshold lying at either of both ends is 
neglectable. 

Best estimate. The current best estimate of the thresh- 
old is - -  in the ML approach - -  the location of the max- 
imum (mode) of equation (20). In Bayesian theory there 
is no single best estimate, The estimator is different for 
different loss functions. If  a squared-error loss function is 
used, the best estimate is given by the mean of the poste- 
rior pdf. For an absolute-error loss function the median 
of the pdf  is the best estimator. The mode (maximum) 
of the posterior pdf  has the intuitively appealing inter- 
pretation of being the "most likely" or plausible value, 
given the prior and the data, but cannot be derived from 
any of the standard loss functions. For the application 
in psychophysics, King-Smith et al. (1994) and Emerson 
(1986a) were able to show by simulations that the mean 
is superior to the median or the mode: With the same 
number of trials, the mean yielded more reliable and less 
biased estimates of the psychophysical threshold than the 
mode. 

Pelli (1987a, b) suggested using the value as an estima- 
tor that minimizes the variance of the posterior pdf by 
looking ahead and calculating all possible combinations 
till the end of the experiment. King-Smith et al. (1994) 
have shown that with a one and two trial look-ahead this 
minimum variance estimator has only slight advantages 
over the mean. Since the mean of the posterior pdf  as es- 
timator minimizes the variance of the estimate, the com- 
putational overhead necessary for doing the look-ahead 
can be dispensed with. 

Termination rules. For the termination of the sequential 
estimation procedure most of the implementations advise 

Sadly, this is completely true only if the psychometric function used 
in equation (21) matches that of the subject in all degrees of 
freedom. 
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the experimenter to use a fixed number of trials, although 
Dantzig (1940), as cited by Sen (1985), has shown that 
the estimation of the location parameter 0 within a pre- 
specified confidence interval (Or, Ou) is impossible with 
a fixed sample size when the variance of the underlying 
distribution is unknown. For psychophysical thresholds, 
where the slope of the psychometric function is not ex- 
actly known in advance, this implies that it is impossible 
to obtain threshold estimates with a predetermined vari- 
ance when only a fixed number of trials are performed. 
Therefore it is preferable to use a dynamic termination 
criterion within the framework of sequential statistics. A 
session is then ended when a desired level of confidence 
in the obtained threshold location is reached, i.e. when 
a predetermined variance of the threshold estimate is at- 
tained. 

In the Bayesian approach the posterior pdf is a proba- 
bility density for the location of the threshold parameter. 
Therefore, for a desired confidence level of y, solving the 
following equations leads to a condition where the best 
estimate of the threshold value lies in the interval (0t, 0u) 
with probability y 

(9 / + t~o 

p(OIx)dO=l-2 y and ~p(OIx)dO-  1-~Y.(23) 
- o o  0u  

In most cases equation (23) can easily be calculated from 
equation (22), the posterior pdf or normalized likelihood 
by summing up the values of the posterior pdf from the 
best estimate in both directions until a cumulative value 
of 2 ~ is reached. The upper and lower bounds are the 
stimulus values which correspond to these two values. 

In a different approach, Watson and Pelli (1983) and 
Harvey (1986), referring back to Wiiks (1962), advised a 
likelihood-ratio test for determining a confidence inter- 
val. The arguments given by these authors for applying 
the test are not fully developed and three questions arise: 
first, the test does not account for the sequential nature 
of the estimation problem. Second, it is only asymptoti- 
cally valid, i.e. only for a large number of trials. Third, it 
requires the underlying function to be a cumulative dis- 
tribution function, which is not the case for the psycho- 
metric function as explained in equation (3). The further 
development of QUEST by Laming and Marsh (1988)and 
their approximation to the variance of the best estimate 
provides a better solution. The escape from parametric 
models as given by Sen (1985), especially the derivation of 
sequential nonparametric confidence intervals (Chap. 4.5) 
and the sequential likelihood-ratio test (SLRT, Chap. 6.2) 
might lead to a new solution to the termination problem. 

The tests which are currently used for termination have 
a slight drawback due to their parametric nature: The 
width of the posterior pdf is influenced by the slope of 
the psychometric function, which is used to calculate the 
posterior pdf [see equation (21)]. This conforms to my ex- 
perience with the Bayesian probability interval approach 
and, according to Madigan and Williams (1987), also for 
the likelihood ratio approach mentioned above. As a re- 
suit, for an assumed steep slope the posterior pdf tends to 

be very narrow and the confidence intervals tend to be too 
small, and therefore the resulting sessions tend to be very 
short. For shallow slopes the posterior pdf is broad and 
confidence intervals are too large and the resulting ses- 
sions tend to be very long. As for any parametric model, 
correct confidence/probability intervals are only obtained 
if the assumed slope matches that of the subject. To be on 
the safe side with such a dynamic stopping criterion, it is 
advisable to underestimate the slope (which is equivalent 
to an overestimation of the spread, or standard deviation) 
used in equation (21) relative to the subject's slope. This 
guarantees that the true confidence interval is narrower 
than the one which is calculated from the posterior pdf 
and the sessions tend to be slightly longer than it would 
be necessary. From preliminary results of extensive simu- 
lations * I can provide the following rule of thumb. Ad- 
just one of the following three parameters, the slope, the 
width of the confidence interval, or the confidence level, 
until the procedure stops after the following number of 
trials, on average: yes-no method, 20; 8-AFC, 25; 4-AFC, 
30; 3-AFC, 37.5; 2-AFC, 50. 

Psychophysical incarnations of Bayesian and ML- 
methods. Since the first intimation of a sequential 
maximum-likelihood procedure by Hall (1968, 1981) 
several others have been suggested: QUEST (Wat- 
son & Pelli, 1979, 1983) BEST PEST (Pentland, 1980; 
Lieberman & Pentland, 1982), ML-TEsT (Harvey, 
1986), QUADRATURE METHOD (Emerson, 1986b), 
IDEAL (Pelli, 1987a, b), YAAP (Treutwein, 1989, 
1991; Treutwein & Rentschler, 1992), and ZEST (King- 
Smith, Grisby, Vingrys, Benes & Supowit, 1991; King- 
Smith et al., 1994). All use maximum-likelihood or 
Bayesian estimators and differ only in minor aspects 
(for an overview see Table 2). ML-TEST, QUEST and 
ZEST use a psychometric function defined over the phys- 
ical domain of the stimulus intensity variable, which is 
scaled in logarithmic steps. These methods therefore use 
a cumulative Weibull distribution, although ML-TEST 
leaves it up to the user to choose from three different 
psychometric functions (Weibull, cumulative normal and 
logistic). BEST PEST and YAAP implement a logistic 
function, which is defined over the index of the likeli- 
hood array. ML-TEsx and QUEST use heuristic priors, 
where M L-TEST simulates a small number of trials at a 
guessed threshold location and QUEST fills the prior with 
a broad normal density centred at a guessed location 
of the threshold. Both, ML-TEsT and QUEST do not 
include this prior for calculating the final estimate. King- 
Smith et al. (1994) have chosen for their implementation 
of ZEST to use the following prior: the prior is calculated 
from an analytical approximation to the distribution of 
the threshold in a representative group t of normal sub- 
jects and patients. They also checked that this prior does 

* I am currently working on a comparitive evaluation of adaptive 
psychophysical procedures, the influence of different parameters 
and their mismatches on the estimate. 

t For two different tasks a total number of 18,944 and 70,247 thresholds 
were included in these histograms. 
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TABLE 2. Comparison of important details of Bayes' and maximum likelihood adaptive procedures 

Estimator Prior pdf Termination criterion 

Hall (1968) ML - mode uniform number of trials 

normal density with mean 
QtmST (1979) Bayes - mode and variance specified by number of trials 

experimenter 

BEST PEST (1980) ML - mode uniform number of trials 

small number of simulated 
ML-TEST (1986) ML - mode trials at a specified X 2 test 

threshold 

Emerson (1986) Bayes-  mean uniform number of trials 

normal density with mean 
Bayes - minimum variance and variance specified by number of trials IDEAL (1987) lookahead 

experimenter 

YAAP (1989) Bayes- mode/mean uniform probability interval 

analytic approximation to number of trials 
ZEST (1991) Bayes - mean test group histogram 

not dominate the posterior. All other procedures imple- 
ment a rectangular, or - -  in Bayesian terminology - -  
noninformative, prior. Only YAAP and ML-TEsT imple- 
ment a dynamic stopping criterion; ML-TEST uses the 
likelihood-ratio approach and YAAP uses the probability 
interval. YAAP and ZEST use unmodified probabilities, 
all other methods work with the log-likelihood. ZEST, 
YAAP * and Emerson's procedure use the mean of the 
a posteriori for placing the stimuli and calculating the 
final estimate, all other procedures implement the mode. 

The STEP Method is a special case: Simpson (1989) 
suggested to use a step function for the psychometric 
function and to fit the step function to the binary sin- 
gle trial responses. Although Simpson claims that one 
of the main advantages of his method is that no slope 
has to be specified, the use of a step function is equiva- 
lent to using a standard psychometric function template 
(Textbox 2 and Fig. 2) with a slope of infinity. More- 
over, a step function is discontinuous and all standard re- 
gression routines, linear or nonlinear, require continous 
and differentiable functions. The derivation of his algo- 
rithm is therefore highly questionable and is not backed 
up by adequate references f . It is possible that the STEP 
method can be explained in the concepts of a maximum- 
likelihood method or of a linear regression to a trans- 
formed psychometric function (see Textbox 3; in the latter 
case a special sequential linear regression using indicator 
variables, see Collett, 1991, Chap. 3.2.1) and thus given a 
sounder basis. In both cases, however, his claim that no 
slope for the psychometric function must be specified, is 
off the point. Simpson's reasoning is mainly ad hoc and 
based on Monte-Carlo simulations, which were criticized 
by Watson and Fitzhugh (1990) in that they do not con- 
stitute a reasonable model of the experimental process. 

*After I received a preprint of King-Smith e t  al. (1994) in 1993, I 
switched from mode to mean. 

t In personal communication Simpson refered to linear regression using 
indicator variables (Neter, Wassermann and Kutner (1990), Chap. 
1o). 

EVALUATION 

Adaptive procedures can be compared by conducting 
threshold measurements with real subjects or by con- 
structing computer simulations. Both methods of evalu- 
ation present different problems: 
• When real experiments with subjects are used to 

evaluate psychophysical methods, as done, e.g. by 
Hesse (1986), McKee et al. (1985), O'Regan and 
Humbert (I 989), Shelton and Scarrow (1984), Still- 
mann (1989) or Woods and Thomson (1993), the 
variability of the estimated thresholds is overloaded 
by: 
• the variability of the true threshold in sub- 

jects, be it inter- or intraindividual variability, 
e.g. circadian variations, attention, alertness, 
or sleepiness, and 

• systematic trends of the true threshold, e.g. 
learning, masking, or adaptation. 

It is very difficult to separate these effects in real 
experiments from systematic or random errors in 
the estimation process, i.e. to decide whether the 
variability is due to bias or insufficient precision 
of estimation process or to true variability in the 
subjects. 

• When simulations are used to evaluate psychophys- 
ical methods, as done, e.g. by Emerson (1986a), 
Kershaw (1985), Leek, Hanna and Marshall (1992), 
Lieberman and Pentland (1982), Madigan and 
Williams (1987), Maloney (1990), Rose, Teller and 
Rendleman (1970), Simpson (1989) or Swanson 
and Birch (1992). In this case, a model for the psy- 
chophysical observer is chosen and responses are 
generated according to the probabilities associated 
with this observer model. The following questions 
arise: 
• Does the chosen observer model reflect a 

real observer's behaviour? e.g. does it include 
guessing and/or lapsing rates [see equations 
(1) and (2)]? What happens, if one of these 
parameters or the slope of the simulated 
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observer does not match the parameters of 
the model? This is especially important for 
parametric methods like APE, Hall's hybrid 
method and all Bayesian/ML methods. 

• What happens, and how can one simulate an 
observer in a forced choice design who is bi- 
ased towards one interval? Human observers 
are known to behave non-randomly; if they 
are asked to produce random numbers, they 
avoid sequential repetitions (Brugger, Landis 
& Regard, 1990). How can this behaviour be 
included in an observer model? 

• Does the random number generator fulfil 
what it promises * 9 

The only computer simulation study which was able 
to overcome the problem of random number gen- 
eration is by King-Smith et  al. (1994) where dif- 
ferent Bayesian estimators were evaluated by enu- 
merating a// combinations of possible response se- 
quences. One of the important result of this study 
was that the mean of the posterior pdf gives unbi- 
ased estimates. 
A complete comparative evaluation - -  even of a rep- 

resentative subset only - -  is beyond the scope of this ar- 
ticle. There are too many points, which have to be taken 
into consideration. To extract the evaluation from pub- 
lished material does not really help since many of the 
evaluative studies do not cover a representative subset 
of adaptive procedures. Some ignore complete groups of 
methods, some of the evaluations seem to be biased to- 
ward the procedure suggested by the author. Furthermore 
there is only rare published material on the important 
matter of sequential dependencies, e.g. learning, masking, 
or adaptation, which violate the requirement of station- 
arity. The stationarity is a minimum requirement for all 
adaptive methods. But also in the classical methods non- 
stationarity influences the results; in the method of con- 
stant stimuli, e.g. non-stationarity is reflected by a shal- 
lower psychometric function. 

The influence of different levels of the lapsing rate 
was investigated by Swanson and Birch (1992). They 
compared maximum-likelihood estimates with UDTR 
estimates for four levels of Pl (0%, 5%, 10'¼,, and 15%) 
and found unacceptable bias for the ML-methods intro- 
duced by high lapsing rates. In their study, the parametric 
model did not reflect the lapsing rates, but this is similar 
to a real experiment where the experimenter does not 
normally know the guessing or lapsing rates before the 
experiment. One of the consequences could be to include 
a certain number of "catch trials", randomly interleaved 
in the normal sequence, which are located far above or 
below the estimated threshold, to simultaneously esti- 
mate these rates. The results of this estimation should be 
used in the parametric model for the final estimate which 

* This is a point which is easily overlooked. Low quality library routines 
for generating random numbers are frequently used. Some of 
them produce numbers having serial correlations or short term 
cycles, see Park and Miller (1988), and Press et  al. (1992). 

means a reanalysis of the experiment after it's end with 
a more correct model. 

If two parameters are estimated, i.e. threshold and 
slope of the psychometric function, O'Regan and Hum- 
bert (1989) found that small samples (100 data points 
simulated with n = 10 number of presentations at N = 10 
stimulus values, method of constant stimuli) produce 
both, low precision and biased estimates. These results 
were obtained for either maximum-likelihood and pro- 
bit analysis and they are in accordance with the study 
of McKee et  al. (1985). Similar results were found by 
Leek et  al. (1992) who compared the method of constant 
s t imul i ,  APE,  and UDTR. 

Madigan and Williams 0987) compared QUEST, BEST 
PEST, and PEST in a yes-no and a two-alternative forced 
choice situation with slope mismatches. They found that 
moderate mismatches - -  apart from the influence on a 
dynamic termination criterion - -  do not produce adverse 
effects on the estimation process. Similar results were 
found by Green (1990). According to my own experience 
shallow slopes tend to distribute the presentations more 
widely around the "true" threshold value whereas steep 
slopes focus the presentations around that value. At the 
same time, steep slopes make procedures very susceptible 
to mismatched guessing and lapsing rates and easily yield 
outlying "bad" estimates, whereas shallow slopes tend to 
tolerate these mismatches between the assumed paramet- 
ric model and the subject's "true" parameters easier. 

DISCUSSION 

After almost a decade, there is still no solution to the 
problems pointed to by Harvey (1986, p. 629f): 

"Subjects in psychophysical experiments do violate both the as- 
sumption of stationarity and of independence (Shipley, 1961; 
Taylor, Forbes & Creelman, 1983) by showing lapses and sequen- 
tial dependencies of their responses. [...] When psychometric 
functions are measured in experiments in which the subject is 
asked to report wether or not the stimulus was seen (or heard), 
lbr example, the dependent variable is the hit rate. Several au- 
thors (Naehmias, 1981; Watson & Pelli, 1983) have suggested 
that these data may be fit with logistic or Weibull functions 
setting y [the guessing rate] equal to the false alarm rate. The 
problem with this approach is that the false alarm rate is not 
constant: there is a different false alarm rate tbr each point on 
the psychometric function." 

Harvey suggested forced choice methods as a solution 
for these problems. For being criterion free, forced choice 
requires an unbiased observer, which cannot be taken 
for granted. Besides the problem of non-random be- 
haviour of subjects, it is possible that the observer in 
spatial forced choice designs, has a preferred location 
for guessing. In temporal forced choice designs inter- 
actions in time are possible. Masking or afterimages, 
e.g. are quite pronounced at low spatial frequencies and 
can yield to a preference of one of the intervals. Forced 
choice methods can also lead to practical difficulties, e.g. 
in a clinical setting, when a patient says "You are forcing 
me to guess and you want to base your final diagnosis 
on what I guess. Is this really a trustworthy method?" 
It is impossible to explain to most of these patients the 
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benefits of forced choice designs like the independence 
of the criterion, etc. One solution could be a kind of 
"signal detection" adaptive testing, where the observer 
is required to assign his same/different judgement to 
several categories and the experimenter evaluates these 
categorial responses dynamically in terms of signal detec- 
tion or choice theory. This means evaluating sensitivity 
(e.g. d', ct) and criterion (e.g. c, b) on line and placing 
the stimulus presentations according to the sensitivity 
results. Another important drawback of forced choice 
experiments, when the number of alternatives is is limited 
to two, is the fact that the necessary number of trials to 
reach a certain precision must be increased at least by a 
factor of 2 - 3 compared to a yes-no design (see McKee 
et al., 1985; King-Smith et al., 1994). 

To avoid sequential interactions, it is a good idea to 
interleave independent runs for different parameters in 
one session. For example, in an experiment for measur- 
ing contrast sensitivity, the runs for the different spatial 
frequencies could be randomly interleaved and thereby 
sequential interactions between succeeding trials are min- 
imized. 

CONCLUSIONS 

Although the methods of stochastic approximation 
were advocated for sensitivity data 43 years ago and 
mentioned subsequently for psychophysical application 
by several other authors (Smith, 1961; Falmagne, 1986; 
King-Smith et  al., 1994), they were ignored by practising 
psychophysicists. It is time that these methods should 
receive more attention. Since they are non-parametric, as 
opposed to the Bayesian and maximum-likelihood meth- 
ods, it can be expected that psychophysical procedures 
based on stochastic approximation are less susceptible 
to parameter mismatches than are parametric meth- 
ods. Preliminary results of simulations indicate that the 
accelerated stochastic approximation has a similar per- 
formance as mean-Bayesian methods, which seems to be 
near optimal performance. Besides other valuable theo- 
retical results (for overviews see Dupa6, 1984; Sampson, 
1988), Taylor (1971) has used the asymptotic variance 
of the Robbins-Monro process, i.e. stochastic approxi- 
mation, as the touchstone for evaluating performance 
of adaptive procedures. To my knowledge no one has 
applied any of these methods directly to psychophysics. 

Until there are usable results concerning the perfor- 
mance of stochastic approximation methods, I advise the 
following, depending on what the experimenter wants to 
know: 
• Threshold and slope: there is no clear winner here. 

Probably a method like AVE could be further de- 
veloped in the following way: keep two stimuli far 
from threshold, one well above and one well be- 
low, for estimating the guessing and lapsing rate 
and then target three stimulus sequences (e.g. by 
a stochastic acceleration method) at values reason- 
ably spaced between the guessing and lapsing rate 
i.e. one at the percentage correct for the threshold 

and the other two two-thirds of the difference be- 
tween the guessing/lapsing rate and the threshold 
performance above and below the threshold perfor- 
mance. Estimating could be done by some appropri- 
ate method, like a linearized approach, a maximum 
likelihood estimator, a two-dimensional Bayesian 
mean estimator, or a nonlinear regression routine 
like the Levenberg-Marquardt compromise. * 
Only the threshold: use a Bayesian method with 
a mean estimator and a dynamic termination cri- 
terion, which terminates after about 20 trials for 
yes-no, about 50 trials for a two-alternative forced 
choice design, or about 30-25 trials for a 4-8 alter- 
native design. 
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