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Abstract. Bayesian parameter estimation can be used to generate statistically optimal solutions to the problem
of cue integration. However, the complexity and dimensionality of these solutions is frequently prohibitive. In
this paper, we show how the complexity and performance characteristics of the optimal estimator for a task depend
strongly on the detailed formulation of the task, including the choice of representation for the scene variables. In
particular, some representations lead to simpler inference algorithms than others. We illustrate the problem of cue
integration for the perception of depth from two highly disparate cues, cast shadow position and image size, and
show how the complexity and performance of the depth estimators depends on the specific representation (choice)
of depth parameter. From the analysis we predict human performance on a simple depth discrimination task from
the optimal cue integration in each depth representation. We find that the cue-integration strategy used by human
subjects can be described as near-optimal using a particular choice of depth representation.
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1. Introduction

Cue integration (data fusion) is the process by which
we combine different kinds of image measurements
(e.g. edges, optic flow, color, etc.) to estimate quan-
tities of interest in the scene (e.g. shape or depth or
reflectance). Human visual perception uses well over
a dozen different cues to depth, including binocular
and motion parallax, pictorial cues, and the so-called
physiological or proprioceptive cues (cf. (Cutting and
Vishton, 1996)). For this many cues, cue integration
becomes a complex and potentially computationally
intractable problem.

Given a variable to be estimated like depth, cue inte-
gration is simplest when each cue provides a unique and
mutually compatible estimate of depth. However, such
simple cases are rare, and cue integration typically in-
volves solving a number of problems. For instance, dif-
ferent cues provide qualitatively different kinds of in-
formation about depth. Some cues provide information

about depth in different coordinate frames. Almost all
cues are ambiguous (e.g. unique up to an affine trans-
formation) unless other interacting scene variables are
known. And for a given task, some of the cues are more
reliable than others.

One solution to all these problems is to do Bayesian
cue integration, which uses all the information at hand,
both measured and due to prior knowledge, to form the
statistically optimal estimator. However, while opti-
mal strategies best integrate the information, there is
no guarantee that the resulting strategies are simple
enough to practically implement.

In this paper, we show how the complexity and per-
formance characteristics of the optimal estimator for a
task depend strongly on the detailed formulation of the
task. This dependence exceeds the level of detail gen-
erally provided by an informal description of the task.
For example, an informal description of a task might
be to discriminate the depths of two objects. We show
that the optimal estimator will depend on exactly what
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frame of reference we use. For instance, we can com-
pute the distance of one object relative to the other, or
relative to the observer, or relative to some fixed point
in world coordinates. The purpose of this paper is to
describe this dependence and its applications to under-
standing cue integration strategies used by the human
observer.

In the next section we describe the problems of cue
integration in greater detail.

1.1. Cue Integration

Optimal cue integration strategies use all of the avail-
able information to provide the statistically best esti-
mates of the scene variables of interest. Because of this,
in the presence of multiple cues or scene variables these
estimators suffer from problems of complexity and di-
mensionality. Here,estimation complexityis used to
indicate the number and difficulty of the computations
that result from having to consider variables jointly in
an estimate (e.g. evaluating functions ofN variables,
searching for maxima overN variables, etc.). Optimal
cue integration can quickly become intractable as the
number of cues and variables grows.

The most common solution to this problem is to try
to make separate estimates of scene variables from each
relevant cue. Because implementations of this solution
can be described as forming modules for computing
each scene variable estimate, systems that make sep-
arate estimates of scene variables are called modular.
Fully modular systems result when each scene variable
has a separate estimate from each image measurement
that is relevant (see Fig. 1).

The potential problems for cue integration created
by an unjustified commitment to a particular modular

Figure 1. Modular vs. non-modular visual systems. Image measurements of a cast shadow position and the image size of an object are related
to the depth. The non-modular system for cue integration has been called “strong fusion”.

structure have been addressed elsewhere (Clark and
Yuille, 1990; Landy et al., 1995). Briefly, the problems
can be summarized as: unjustified prior assumptions
on related scene variables, incompatible estimates of
scene variables, and difficulties combining different
estimates (the fusion problem). To illustrate, consider
the fusion problem. Given that we have several esti-
mates for an unknown quantityx, what do we do with
them? In order of simplicity, we could: discard the
worst estimates as outliers; take a linear combination
(often termedweak fusion); take linear combinations
modified by prior knowledge or other constraints; or,
we could cook up more complicated functions of the
estimates potentially incorporating prior knowledge or
other constraints.

Under particular conditions each of these fusion
methods is optimal, but many situations arise in which
it is sub-optimal to form separate estimates at all. An
important instance is when there are image measure-
ments that depend on several scene variables. In this
case, optimal estimation may need to consider all the
image measurements and scene variables together or
cooperatively. For instance, any image measurement
can be created by different combinations of surface ge-
ometry and reflectance, hence any estimate of surface
geometry must take into account the reflectance, either
through jointly estimating the quantities or by assuming
prior values for reflectance (Knill and Kersten, 1991).
Modular schemes typically assume prior values, but
without a statistical justification.

In contrast, Bayesian (optimal) inference insures
consistent inferences and optimal integration of cues
based on the confidence in the estimates, using fusion
rules that fall out of the inference. In addition, it af-
fords the ability to specify precise and consistent prior
information that can frequently be estimated offline.
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Clearly, the advantages of using optimal inference
are manifold. In this paper, we will discuss how the
computations for Bayesian cue integration can be sim-
plified by restricting a visual system to performing spe-
cific tasks. Further, we show that the degree of modu-
larity (and resulting estimation complexity) obtained
depends on both the task and more surprisingly on the
specific representation of the scene variables. These ef-
fects occur because changes in task and representation
can strongly modify the statistical dependence between
variables.

An outline of the remainder of the paper is as fol-
lows. We briefly review optimal inference. We will
then show how a specific task affects the statistical de-
pendence between variables, and analyze the condi-
tions under which optimal inference systems can still
be modular. We then show how the modularity of the
inference is a function of the representation chosen for
the scene variables, and how the representation can
have an sizable impact on the performance of the esti-
mator. We then illustrate these results with an extended
example of a cue integration problem in which the opti-
mal estimator undergoes strong changes in modularity
and performance with changes in the depth representa-
tion. These results form theoretical predictions that are
compared to a human psychophysical cue integration
task.

2. Optimal Inference and Task Dependency

We begin with a brief exposition of Bayesian (optimal)
inference.

Probabilistic approaches to scene estimation require
the specification ofp(S, I ), the joint probability dis-
tribution on the vector of scene attribute variablesS
and image measurement variablesI . This joint distri-
bution contains all the required information for making
optimal inferences and doing optimal encoding of the
image information. For the problem of inferring scene
descriptions from image measurements, we use Bayes’
rule to write the posterior probability as:

p(S| I ) = p(S, I )

p(I )
= p(I | S)p(S)∫

S p(I | S)p(S) dS
(1)

Optimal inference usesp(S| I ), but the form of the
estimators forSdepends on the task.

2.1. Defining Tasks

Intuitively, tasks are the actions that agents perform
within particular contexts. Each task implicitly or
explicitly places a set of demands on a visual system
through the visual inference of scene attributes required
for successful completion of the task. Similarly, the cost
associated with a failure to complete the task induces a
cost function on successful visual inference. Thus, the
first component of a task based visual system is a spec-
ification of the cost of inaccurate estimates of scene
properties. For instance, for a reaching task, the shape
and position of the object relative to the observer are
important, but the object’s spectral reflectance (color)
typically is not. The second component is the specifi-
cation of the context in which the task is performed. In
terms of decision theory, the context can be modeled
by the prior termp(S). For example, a reaching agent
can frequently assume that objects are stationary.

Bayesian decision theory provides a precise lan-
guage to model the costs of errors determined by
the choice of visual task (Yuille and Bulthoff, 1996;
Brainard and Freeman, 1997). Therisk R(Ŝ; I ) of
guessinĝSwhen the image measurement isI is defined
as the expected loss:

R(Ŝ; I ) =
∫

S
L(Ŝ, S)p(S | I ) dS, (2)

with respect to the posterior probability,p(S| I ). The
best interpretation of the image can then be made by
finding theŜ which minimizes the risk function. One
possible loss function is a delta function−δ(Ŝ−S). In
this case the risk becomesR(Ŝ; I )=−p(Ŝ | I ), and
then the best strategy is to pick the most likely interpre-
tation. This is calledMaximum a posteriori estimation
(MAP). A second kind of loss function assumes that
costs are constant over all guesses of a variable. This
is equivalent to marginalization of the posterior with
respect to that variable.

2.2. How a Task Determines
the Inference Computations

In a Bayesian decision theory framework, tasks specify
two things: a cost function and a prior distribution
that models knowledge about scene attributes in the
context of the task. We will consider how each affects
the inference computation in turn.
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2.2.1. Effect of the Cost Function. Scene variables
can be classified as being relevant or irrelevant to the
specific task at hand. An relevant variableSr needs to
be estimated precisely, and an irrelevant oneSir impre-
cisely or not at all. As we will show below, the irrelevant
variables can further be broken down into those that do
or do not influence the estimate of the relevant vari-
ables. Imagine we have three scene variables,Sr, Sg,
andSind that determine image formation.Sr is the rel-
evant scene variable to estimate precisely for the task
at hand.Sg influences our estimate ofSr, andSind does
not. We will now show how this classification emerges
from the cost function and the independence structure
of the posterior distribution.

The costs assigned to incorrect estimates are set by
the task. In general, narrow loss functions will be as-
signed to the scene variables that need to be estimated,
and broad or nearly constant loss functions will be as-
signed to the remaining scene variables. Thus the cost
function naturally divides the scene variables into two
groups, relevantSr, and irrelevantSir . Formally,{Sir} =
{S| L(Ŝ, S) = c} and{Sr} = {S| L(Ŝ, S) 6= c}.

The optimal decision involves computing the ex-
pected loss with respect to the posterior. As noted
above, the constant loss function is equivalent to
marginalization ofp(S| I ) over all of the irrelevant
variables. If we perform this marginalization offline,
then we can base our estimator only on the reduced
posteriorp(Sr | I ) = ∫Sir

p(Sr, Sir | I )dSir .
In this marginalization integral, some of the irrele-

vant variables will have an effect on shaping the re-
duced posterior, while others will have no effect. This
impact will depend on the degree of dependence be-
tween the relevant and irrelevant variables. In par-
ticular, if some irrelevant variable is independent of
Sr, then the joint distribution factors, and hence the
relevant posterior factors out of the marginalization
integral i.e.,

p(S | I ) = p(Sr, Sir | I ) = p(Sr, Sg | I )p(Sind | I )

so that∫
Sir

p(Sr, Sir | I ) dSir =
∫

Sg

p(Sr, Sg | I ) dSg

×
∫

Sind

p(Sind | I ) dSind

where
∫

Sind
p(Sind | I ) dSind= 1. Because of this factor-

ization, scene variables that are independent ofSr can

be safely ignored. In addition, image measurements
that depend solely on these variables may also be ig-
nored. What we have done is to factor the irrelevant
variables into two groups, those that won’t influence
the inference due to independence, and those scene
variablesSg, that are not estimated but nevertheless af-
fect the inference through marginalization. These vari-
ables are typically termed “nuisance” variables or more
recently “generic” variables (Freeman, 1994), from
which stems the ‘g’ subscript. There are two extreme
cases of how the nuisance variables affect the inference
depending on whether the prior distribution approaches
a delta function (i.e. the nuisance variable has a known
value) or it approaches a uniform distribution. We treat
both these cases in turn.

2.2.2. Effect of Known Nuisance Variables.In most
cases, the nature of a task supplies prior information
that is equivalent to fixing or restricting the values of
some of the scene variables. For instance, if an ob-
server’s task is to identify objects on an assembly line,
then a number of relevant variables are typically fixed,
such as the viewing direction and distance, and the light
source distance and direction. Restricting the task do-
main to rigid bodies allow the observer to treat object
geometry as time invariant. Note that most constraints
used to regularize vision problems can be expressed as
fixing a set of scene variables. For instance, in a world
of polynomial surfaces, the constraint that the task only
involves flat surfaces in the world, can be rephrased
as all non-linear polynomial coefficients are fixed at
zero.

If the prior probability distribution on a nui-
sance variable approaches a delta functionδ(Sg− Sg0),
marginalizing across the variable is equivalent to
conditioning on the fixed value of that variable:∫

p(S| Sg)p(Sg) dSg =
∫

p(S| Sg)δ(Sg − Sg0) dSg =
p(S| Sg0).

Conditioning can have a substantial impact on the
statistical dependence between the remaining vari-
ables, which can sometimes increase, and sometimes
decrease or eliminate the dependence.1 As an example
of the latter, consider a simple scene consisting of a
light source, a planar background, and a single object
that casts a shadow on the background (see Section 4).
Assume the observer of this scene is asked to estimate
the light source direction in one of two conditions: the
depth of the object is unknown, or the depth of the
object is known (see Fig. 2). Further assume the ob-
server has two cues available: the cast shadow position,
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Figure 2. Example showing how the set of required variables varies as a function of the task specifications. Left: Depth uncertainty. Right:
Depth specified (z= z∗).

and the image size of the object. Depending on the
condition, either both cues or only the shadow cue are
relevant. When the observer knows the depth of the ob-
ject, the image size cue is irrelevant to estimating light
source direction, because it only provides information
about depth. In the presence of depth uncertainty, both
cues are relevant, because the image size cue provides
information about depth that can be used to disam-
biguate the shadow cue, and because a given shadow
position can be produced by a family of object depths
and light source positions.

2.2.3. Effect of Marginalizing Unknown Nuisance
Variables, Sg. Problems frequently occur in which
the image data given the scene variables can be ex-
pressed as

I = f (x, S)+ ν(x, S)

where the functionf expresses the deterministic imag-
ing equations,Sg = x represents the nuisance variable,
S represents the remaining set of scene variables and
ν(x, S) is a term representing the imaging noise, which
is frequently a constant or a slowly-varying function of
x andS.

If, in addition to being slow-varying, the measure-
ment noise distribution has zero mean, and the likeli-
hood admits a quadratic approximation,2 then we can
make explicit the effect of the nuisance variable on the
resulting distribution.

In Appendix B, we show that the likelihood can be
written

p(I | x, S) ' g(x, S) exp

(− n
2(I − f (x, S))2

σ(x, S)2

)
where the imaging noise 1

σ(x,S)2 = ∂2k(I | x,S)
∂ I 2 | f (x,S), and

g(x, S)= exp(− n
2k( f (x, S) | x, S)), and k(I | x, S)

= − log(p(I | x,S))
n .

We also show that the marginal integral acrossx can
be approximated as:∫

p(x, S)p(I | x, S) dx

≈
√

2πσ(x̂(I , S), S)2

|∂ f (x̂(I , S), S)/∂x| p(x̂(I , S), S)g(x̂(I , S), S)

(3)

where x̂(I , S)= arg maxx exp(− n
2(I − f (x, S))2/

σ(x, S)2).
By assuming that the imaging noiseσ(x̂(I , S), S)2

≈ σ 2 (i.e. is nearly a constant), this last expression
shows that the likelihood after marginalization is domi-
nated by values ofSwhere|∂ f (x̂(I , S), S)/∂x| is close
to zero and disappears where|∂ f (x̂(I , S), S)/∂x| is
large. The important point here is that the posterior can
be dominated by the rate of change of the imaging func-
tion with the nuisance variablex, which will be impor-
tant when we consider the effects of changes of repre-
sentation on the inference in a later section. This result
and derivation is similar to Freeman (1994). The key
differences are that Freeman simply assumes a gaus-
sian posterior and centers the approximation around
a fixed value ofx, rather than around the maximum
x̂(I , S).

In general, the variables that the distribution is
marginalized over have a big impact on the likelihood,
and hence on the statistical properties of the estimator.
As a practical consequence, the uncertainty we have
on the nuisance variables has a greater impact on the
estimator than the particular properties of the measure-
ment noise distribution when the measurement noise
distribution is slowly varying across changes in scene
variables.

We have shown how the dependence between vari-
ables is a function of the task. In the next section we
show how the degree of modularity and estimation
complexity of an optimal inference is a function of both
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the statistical dependence between scene variables and
the choice of representation of the scene variables.

3. Dependence of Optimal Cue Integration
on Task and Representation

In this section, we discuss three ways in which task
specification affects the computational architecture for
an optimal cue integration problem. We show, given
the task: 1) how the degree of modularity and result-
ing estimation complexity of the optimal estimator is
a function of conditional independence between image
cues; 2) that a particular task, such as discriminating
depth, does not unambiguously specify the represen-
tation of the scene variable, and furthermore; 3) the
choice of variable representation results in differences
in the complexity of the cue integration and the perfor-
mance of the optimal estimators.

The third point in particular will bring us to our cen-
tral idea, illustrated with an example in Section 4, that
the choice of scene variable representation for a deci-
sion can determine the modularity and performance of
the optimal estimator.

3.1. Conditional Independence
Determines Modularity

Having discussed how statistical dependence between
variables depends on a task, we can now show how
this statistical dependence determines how variables
interact in performing optimal inference, which has
consequences for data fusion. The key element in op-
timal inference is the posterior, which we can rewrite
both in terms of the joint distribution and in terms of
likelihoods and priors:

p(Sr, Sg | I ) = p(I , Sr, Sg)

p(I )

= p(I | Sr, Sg)p(Sr, Sg)

p(I )
(4)

The probabilistic structure of the joint probability dis-
tribution p(I , Sr, Sg) can be represented by a Bayes Net
(Pearl, 1988; Jensen, 1966), which is simply a graphical
model which expresses the conditional independence
between the variables. Using labels to represent vari-
ables and arrows to represent conditioning (witha→ b
indicatingb is conditioned ona3), independence can
be represented by the absence of connections between
variables. Using these graphical models we can deter-
mine the interactions between variables by inspection.

Figure 3. Whether independent data measures are singly connected
to the estimated variableSx determines whether or not estimation
modules can be created forSx . Leftexample of Bayesian modularity.
Boxes show how the variables can be split to form two modules.
Rightexample of a non-modular estimation.

For instance if two sets of variables are completely in-
dependent, then the graphs of the variables are disjoint.

Because modularity is the ability to use different
image cues to produce independent estimates of the
variableSx, what determines modularity in a Bayesian
inference is whether or not the data are conditionally in-
dependent givenSx. When this is true, we can produce
separate likelihood functions forSx which can be com-
bined by multiplication (i.e.p(Ia, Ib | Sx) = p(Ia |
Sx)p(Ib | Sx)), a property we will callBayesian modu-
larity. Graphically, this requirement is equivalent to the
different image measurements being singly connected
to the variable of interest. Figure 3 shows examples
of a singly connected net and a non-singly connected
net. The non-singly connected net corresponds to the
case in which the data cues depend on more than one
scene variable, which is exactly the case that calls for
cooperative computation.

3.2. Dependence of Cue Integration
on Representations of Scene Variables

In moving from a general task description to a specific
implementation, there can be a choice with regard to
the exact scene variables used to do the inference. For
example, a task which involves inferring the relative
distance of objects from the observer can estimate any
function of the distances which do not change the rela-
tive depth ordering. However, this choice does make a
difference in terms of the properties of the estimator, in
particular in its performance and Bayesian modularity.

3.2.1. Affects on Performance. First, the particular
scene variables we estimate matter because Bayesian
inference is not invariant to reparametrizations of
continuous variables. Thus if we perform optimal
inference on one variable, we cannot just transform
the result to get optimal inference on the transformed
variable. This is due to the fact that transforming
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the variantx of probability distributiondF= p(x) dx
yieldsdF= p(g(y))g′(y) dywherex= g(y). Thus the
transformation will not yield the same inferences un-
lessg(y) is linear. This causes, for instance, binomial
and beta distributed densities which are identical in
x space to be substantially different iny= 1/x space
(Edwards, 1992). While this fact has been used to cri-
tique Bayesian inference (Edwards, 1992), it also has
the interpretation that the kind of information contained
about a variable and its transform by one distribution is
not the same as the information contained by another
distribution.

This lack of invariance makes a difference in the
performance characteristics of an estimator across
reparametrizations of continuous variables. Using the
same argument as above, one can show that measures
of performance (e.g. Fisher Information) for the trans-
formed random variable are not necessarily equal to
the same value of the performance measure calculated
using the original random variable.

3.2.2. Affects on Modularity/Complexity of the Infer-
ence. Second, the choice can determine how many
nuisance variables must be considered. For instance,
consider scene variablesx andy such thatx andy are
statistically dependent given the image data, butx+ y
andx − y are independent. If we estimatex, then we
must considery a nuisance variable. However, if we
estimatex + y, then nuisance variables disappear.

The complexity of the inference and the properties of
the estimator depend on which variables we marginal-
ize the distribution across. Changing representations
can introduce new unknowns that require marginaliza-
tion and change the dependence between the variable
of interest and the nuisance variables. We will show
examples of both of these effects in Section 4.

3.2.3. Affects on Marginalization. Third, the choice
of representation for the nuisance variables can have a
strong impact on the posterior and hence the properties
of the estimator. Consider the ideal (noiseless) imag-
ing equationI = f (x, S), whereSare the variables of
interest andx is a nuisance variable. What happens
to the posterior after marginalizing the nuisance vari-
able if x is changed tox=m(y)? The integral overy
becomes:∫

p(g(y), S)p(I |m(y), S)m′(y) dy

≈
√

2πσ(m(ŷ), S)2

|∂ f (m(ŷ), S)/∂y| p(m(ŷ), S)g(m(ŷ), S) (5)

However, |∂ f (m(ŷ), S)/∂y| can differ from
|∂ f (x̂, S)/∂x|, and thus the posterior after marginal-
ization will depend on the choice of representation.

What we have shown in this section is that the prop-
erties of optimal estimators are largely determined by:
1) the pattern of conditional dependence between vari-
ables; 2) the nuisance variables that the distribution is
marginalized across; and 3) the representation chosen
for the problem.

4. Estimating Depths from Image Size
and Shadow Displacement

In this section we perform a detailed analysis of
Bayesian cue integration for a simple problem, in order
to generate predictions that can be tested with human
psychophysical data. One of the challenges of testing
models of human vision is that the experimenter does
not have direct access to the variable representations on
which a decision is being made. We show that different
representations predict different patterns of cue inte-
gration for ideal observers, including which variables
interact, and how cue integration is confidence-driven.
Confidence-driven cue integration refers to strategies
that weight a cue’s contribution to the inference to
match its ability to provide reliable estimates. Given
these differences in ideal performance with changes in
representation, we can begin to infer the scene variable
representation used by the human observer by compar-
ing human and ideal performance.

4.1. Theory

We illustrate the dependence of Bayesian cue integra-
tion on task demands and conditional independence
with a simple scene due to Kersten et al. (l996). The
scene consists of a flat central square, a flat checker-
board background and a light source. The square floats
in front of the background, and the light source is posi-
tioned so that the square casts a shadow onto the back-
ground. The observer judges the depth of this square
vs. the depth of another square (simulated to be physi-
cally identical in 3D) presented at a different time. The
viewing distance, and the orientation of the square and
background were kept fixed. In this simplified world
the only cues to depth are the image sizea of the square,
and the position of the cast shadowβ (measured by the
visual angle subtended by the direction of gaze and
the shadow position). An example stimulus is shown
in Fig. 4.



80 Schrater and Kersten

Figure 4. An illustration of the stimuli used in the experiment. Two
movies depicting a square moving in depth are sequentially shown
to the observer. The image size of the square becomes larger and
the shadow moves away from the square with decreasing depth from
the checkerboard background. The image on the left illustrates the
reference condition in which the image size was maximal and the
shadow displacement minimal. The right hand side shows the test
condition which has variable image size and shadow displacements.
Subjects judged whether the reference or test square moved further
in depth at the end of the movie in a two-alternative forced-choice
method.

These cues are substantially different. The image
size is determined by the depth of the square from the
observer and the physical size of the square. Image size
information is most naturally used to estimate theego-
centric distance to the square. On the other hand the
shadow position is determined by variables in a differ-
ent depth representation. Cast shadow position is deter-
mined by theallocentricdistance of the square from the
background and the position of the light source. Thus
to integrate the shadow and image size data, we must
convert one, or both of the variables into a common
depth representation.

From the standpoint of traditional estimation, a
strong case can be made not to integrate the cues. When
we know that the sizes of the two squares are identi-
cal, then we can simply compare the likelihoods for
depth given the image size. When the likelihoods are
singly peaked, the optimal decision simplifies to com-
paring image sizes, and judging the larger one closer.
Similarly for the shadow cue, assuming the light source
direction is the same for both intervals, the square far-
ther from the background can be decided on the basis
of which shadow position is farther from the square.
Thus it might seem more natural not to integrate the
cues, and instead make separate judgments of depth
from the cues.

In contrast, Bayesian inference requires choosing
a common depth representation to integrate the cues.

Figure 5. Diagram illustrating the problem of inferring depth from
image size and cast shadow position in 1-D for the central square
in front of a checkerboard background (see Fig. 4). There are three
depth variables, distance to the backgroundrb, distance to the square
rs, and the distance of the square from the backgroundz. The cast
shadow positionx depends both on the light source positionα and
z. We assume that the observer can measure the angle subtended by
the shadow positionβ. The image sizea (not shown) of the object
depends on the physical 3D size of the squares and the viewing
distancers.

However, then the size of the square and the light source
direction can no longer be neglected. We considered
three possible common depth representations for the
inference. Each of these depth representations leads to
a different Bayes net and different properties of the op-
timal estimator. For each of the three representations,
however, the best way to determine which square is
closer is to compute MAP depth estimates for both in-
tervals and choose the smaller (closer to the observer)
value.

The geometric diagram in Fig. 5 illustrates the vari-
ables for the task. We will consider three ways of com-
puting the depths: the relative distance of the square
from the backgroundzr = z/rb, the absolute distance
of the square from the backgroundz, and the abso-
lute distance from the observerrs. These estimates are
illustrated in Fig. 6.

4.1.1. Representation 1: Estimating Relative Dis-
tance from Background (zr ). One way of judging the
depths of the two squares is to compute the relative dis-
tance from the background. This leaves 4 unknowns,
α, s, z, andrb with only two data variables, the image
sizea and the shadow positionβ. If the observer esti-
mateszr = z/rb, and represents the relative object size
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Figure 6. Diagram illustrating the depth variables to be estimated.
The variablezr= z/rb can’t be shown directly, because it is an equiv-
alence class ofz andrb distances.

sr = s/rb, then the resulting estimator does not need
knowledge of the value ofrb. By computing with the
scaled variables, we make our inferences more reliable
because we have eliminated the uncertainty we might
have inrb.

While computing distance relative to an arbitrary
background may seem contrived, the idea is similar to
computing depth relative to the fixation distance fre-
quently used in depth from stereo. From a psycholog-
ical standpoint, object depth is often evaluated relative
to a background context. There are situations, like sit-
ting at one’s desk, where a fixed object (the desk) is
familiar enough for it to make sense to compute dis-
tances relative to it. In addition, many perceptual tasks
do not require metric distance information (I can see
that there is a pen on my desk without calculating the
distances from myself to each of the objects).

In this representation the observer needs to estimate
the relative distancezr = z/rb of the square from the
background checkerboard wall. Both the image size
of the square and the shadow position are functions
of zr. The shadow position measurementβ (in terms
of visual angle),4 is a function ofzr and light source

positionα:

β = tan−1(zr tan(α))+ nβ (6)

The termnβ models the noise in the measurement.
For simplicity we take this to be a Gaussian random
variable, so thatβ is Gaussian distributed. The likeli-
hood function is given by:

p(β | zr, α) = 1√
2πσβ

× exp

(
− (β − tan−1(zr tan(α)))2

2σ 2
β

)
(7)

The image sizea is given by:

a = s

rs
+ na = s/rb

1− z/rb
+ na = sr

1− zr
+ na

wheresr is the actual size of the square relative to the
distance to the background, andna is a term which
models the noise in the measurement. We modeled the
size measure noise as log normal. We believe this is
a reasonable choice of noise distribution because both
sr and 1− zr are physically constrained to be positive
and more importantly, to model existing data on human
size and distance perception. Because human size and
distance discrimination thresholds are well-fit by in-
creasing power-laws, it is reasonable to assume that the
variance of the measurement noise effectively scales
up with the magnitude of the variable (Stevens, 1957),
which is a key property of the log normal distribution.
Given these assumptions, the likelihood fora is given
by:

p(a | zr, sr) = 1√
2πσaa

× exp

(
−
(

log(a)− log
( sr

1−zr

))2
2σ 2

a

)
(8)

We assume that the observer potentially has several
measurements of shadow position and image size avail-
able. The set of measurements forβ anda are repre-
sented using set function notation:{β}, {a}. To es-
timatezr we computep(zr | {β}, {a}). Assuming that
the repeated measurements of the image sizea and the
shadow positionβ are independent,p(zr | {β}, {a}) can



82 Schrater and Kersten

Figure 7. Bayes nets for the three depth representations. a) Bayes
net for relative distance to the background. This task involves esti-
mating object relations (world centered), and requires the least prior
knowledge. b) Bayes net for distance to observer. Notice that the use
of the shadow information requires integrating across two variables,
hence the shadow cue should have more uncertainty for this task.
c) Bayes net for metric depth from the background. Estimating the
distance from the background,z, is complicated by the image size
and shadow position measurements also being jointly dependent on
the observer’s distance to the background.

be written:

p(zr | {β}, {a}) = p({β} | zr)p({a} | zr)p(zr)

p({β}, {a})
p(zr | {β}, {a}) ∝ p({β} | zr)p({a} | zr)p(zr)

=
(∫

α

N∏
i=1

p(βi | zr, α)p(α) dα

)

×
(∫

sr

N∏
i=1

p(ai | zr, sr)p(sr) dsr

)
× p(zr),

whereN is the number of measurements. The Bayes
net which corresponds to this inference is shown in
Fig. 7(a). Note that this network is Bayes modular,
which shows up in the factoring of the likelihoods
above.

4.1.2. Representation 2: Estimating Depth to Square
(rs). As we interact with the world, there are instances
when viewer-centered depth is required, such as navi-
gating and reaching to objects. Thus, it is reasonable to
consider a second task in which one estimates the dis-
tance,rs, from the observer to the squares. The Bayes
net for this inference is shown in Fig. 7(b). In this case,
we must convert the shadow position cue’s dependence
on the allocentric distancez to the egocentric depthrs.
Using rb= z+ rs, we can write the shadow position
measurement as:

β = tan−1

((
1− rs

rb

)
tan(α)

)
+ nβ (9)

The likelihood function is given by:

p(β | rs, rb, α)

= 1√
2πσβ

exp

(
−
(
β − tan−1

((
1− rs

rb

)
tan(α)

))2
2σ 2

β

)
(10)

The image sizea is given by:

a = s

rs
+ na

Hence the likelihood fora is given by:

p(a | rs, s)= 1√
2πσaa

exp

(
−
(

log(a)− log
(

s
rs

))2
2σ 2

a

)
(11)

To base the decision onrs, we compute
p(rs | {β}, {a}):

p(rs | {β}, {a}) ∝ p({β} | rs)p({a} | rs)p(rs)

=
(∫

rb

∫
α

N∏
i=1

p(βi | rs, rb, α)p(α)p(rb) dα drb

)

×
(∫

s

N∏
i=1

p(ai | rs, s)p(s) ds

)
p(rs) (12)

Note that this inference is Bayes modular, and that
inference with the shadow cue requires dealing with
the additional unknownrb. Thus, for this representa-
tion, the uncertainty in our depth from shadow esti-
mates increases as compared with the relative distance
representation (Representation 1).

4.1.3. Representation 3: Estimating Absolute Dis-
tance to Background (z). Finally, the observer could
computez, the absolute distance from the square to the
background. This requires converting the image size
cue’s dependence on the egocentric depthrs to the al-
locentric distancez. After conversion, the distance to
the backgroundrb becomes a second unknown for both
cues. The Bayes net that corresponds to this inference
is shown in Fig. 7(c). The measurements can be written
in terms ofz as:

β = tan−1(z tan(α)/rb)+ nβ
(13)

a = s

rb− z
+ na.
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The likelihood functions are:

p(β | z, rb, α) = 1√
2πσβ

× exp

(
−
(
β − tan−1(z tan(α)/rb)

)2
2σ 2

β

)
(14)

p(a | z, rb, s)

= 1√
2πσaa

exp

(
−
(

log(a)− log
(

s
rb−z

))2
2σ 2

a

)
(15)

To estimatez we computep(z | {β}, {a}):

p(z | {β}, {a}) ∝ p({β}, {a} | z)p(z)

=
(∫

rb

(∫
α

n∏
i=1

p(βi | z, rb, α)p(α) dα

)

×
(∫

s

n∏
i=1

p(ai | z, rb, s)p(s) ds

)
p(rb) drb

)
p(z)

(16)

Note that the posterior no longer factors into sepa-
rate likelihoods forz, due to the joint marginalization
acrossrb. Thus, estimating absolutez is not Bayes mod-
ular. This has consequences for cue integration that we
explore below.

Because the three depth estimators require differ-
ent marginalizations, we expect that they will have
different estimation and performance characteristics.
We show that these expectations are correct below
by deriving explicit formula for the depth estimates
and the Cramer-Rao bound on the variance of these
estimates.

4.1.4. MAP Estimates. Maximum a posteriori esti-
mates of depth for each of the three representations
were computed from the posterior distribution after
marginalization. Marginalizations were approximated
using Laplace’s method, as described in Appendix A.
The goodness of all of the approximations was checked
by performing the marginalization integrals numeri-
cally. However, because these numerical integrations
have to be performed for each value of the image data
separately, we only performed these checks for the
range of values used in the psychophysical experiments
described below.

4.1.5. Representation 1: MAP Estimates for zr (Rel-
ative z). To compute the MAP estimates forzr from
shadow positionβ and the image size of the squarea,
we first need to marginalize the likelihoods forβ anda
across the light source directionα andsr respectively.

To marginalize
∏n

i=1 p(βi | zr, α) acrossα, we as-
sume a prior on light source directionp(α) that is uni-
form over [−π/2, π/2] (i.e. p(α) = 1/π ).

First note that:

n∏
i=1

p(βi | zr, α)= 1(
2πσ 2

β

) n
2

× exp

(
−
∑n

i=1(βi − tan−1(zr tan(α)))2

2σ 2
β

)

= 1(
2πσ 2

β

) n
2

exp

(
−n

β̂2 − β̂2

2σ 2
β

)

× exp

(
−n

(β̂ − tan−1(zr tan(α)))2

2σ 2
β

)
(17)

whereβ̂ is the mean of theN sampleβs, andβ̂2 is the
mean of theβ2

i .
Ignoring the likelihood factors that excludeα, we

need to compute the integral:

∫ π/2

−π/2
exp

(
−n

(β̂ − tan−1(zr tan(α)))2

2σ 2
β

)
p(α) dα

(18)

We use Laplace’s method (see Appendix A), which
involves computing a second order Taylor series expan-
sion of the exponenth(β̂ |α, zr) = − (β̂−tan−1(zr tan(α)))2

2σ 2
β

,

aroundαm= arg maxα h(β̂ |α, zr). Computing∂h(β̂ |
α, zr)/∂α and setting it equal to zero,αm can be solved
for yielding: αm(β̂, zr) = tan−1(tan(β̂)/zr).

From the Appendix, the integral can be
approximated:

∫ π/2

−π/2
p(α)p(β̂ | zr, α)

= p(αm(β̂, zr)) exp(nh(β̂ |αm(β̂, zr), zr))

×
√

2π

−n ∂
2h(β̂ |αm(β̂,zr),zr)

∂α2
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Plugging in the expressions forαm, h(β̂ | α, zr), and
p(α) = 1/π and simplifying yields:

∫ π/2

−π/2

n∏
i=1

p(βi | zr, α)p(α) dα

' czr(
z2

r cos(β̂)2+ sin(β̂)2
) (19)

wherec =
√

2

π(2πσ 2
β )

n−1
2
√

n
.

Using this expression we find the maximum likeli-
hoodzr occurs at:

arg max
zr

(p(β | zr)) = tan(β̂). (20)

This approximation is very good. Numerical evalua-
tions of the integral showed that the approximate max-
imum likelihood estimates were within 2% of actual,
and the mean Kullback-Leibler divergence between the
approximate and the actual distributions was much less
than one.

For the size change cue, we need to compute the
integral:

p({a} | zr) =
∫ ∞

0

n∏
i=1

p(ai | zr, sr)p(sr) dsr

=
∫ ∞

0

p(sr)(
2πσ 2

a â2
) n

2

× exp

(
−n

(
log(â)− log

( sr
1−zr

))2
2σ 2

a

)
dsr

whereâ = ∏n
i=1 ai /n is the geometric mean of then

samples.
The integral is analytically tractable. If the prior is

constant, it is easy to show that the integral evaluates to
a constant timeŝa(1−zr) and becausezr ≥ 0, the max-
imum likelihood estimate ofzr is always zero. Thus,
some knowledge of the relative size is crucial to com-
pute the relative distance. We used a log normal prior
onsr:

p(sr) = 1√
2πσsrsr

exp

(
− log(sr/µsr)

2

2σ 2
sr

)
.

To compute the integral, we combine the exponents
for the prior and likelihood and use traditional methods
of completing the square for log(sr) and factoring off

the part independent ofsr The result is:

p({a} | zr) = 1√
π
(
σ 2

â + σ 2
sr

)
â

× exp

(
− log(â(1− zr)/µsr)

2

2
(
σ 2

â + σ 2
sr

) )
(21)

whereσ 2
â = σ 2

a /n. The maximumzr with respect to
image size occurs at

arg max
zr

(p({a} | zr )) = 1− µsr/â (22)

if µsr < â and at zero otherwise.

4.1.6. Representation 2: MAP Estimate for rs. To
find the optimal estimate ofrs from the shadow cue,
we need to compute:∫

rb

∫
α

p({β} | rs, α, rb)p(rb) dαp(rb) drb

The first integral overα the same as performed in the
last section, except thatzr is replaced withrs/rb. We
also need to marginalize overrb, the distance to the
background. We assumed a log normal prior onrb

with parametersµrb andσrb. To marginalize, we used
a modified method (see Appendix A, case 2) in which
the Taylor series expansion is performed on the sum
of the exponents of the prior and the likelihood around
the location of the maximum of the combined prior and
likelihood. We find:∫

rb

∫
α

p({β} | rs, α, rb)p(rb) dαp(rb) drb

'
∫

rb

c
(
1− rs

rb

)(
1− rs

rb

)2
cos(β̂)2+ sin(β̂)2

p(rb) drb

' c(1− rs/µrb)(
(1− rs/µrb)

2 cos(β̂)2+ sin(β̂)2
) (23)

The maximumrs occurs at:

arg max
rs

(p({β} | rs)) = µrb(1− tan(β̂)). (24)

For the size change cue, marginalizing with respect
to a log normal prior ons yields:

p(â | rs) = 1√
π
(
σ 2

â + σ 2
sr

)
â

exp

(
− log(ârs/µsr)

2

2
(
σ 2

â + σ 2
sr

) ).
(25)
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The maximumrs with respect to image size occurs
at

arg max
rs

(p(â | rs)) = µs

â
. (26)

4.1.7. Representation 3: MAP Estimate for z.In op-
timal estimation ofz we cannot consider the shadow
cue and image size cues separately. To find the optimal
estimate ofz from the size and shadow cues, we need
to compute:

p({β}, {a} | z) =
∫

rb

(∫
α

n∏
i=1

p(βi | z, rb, α)p(α) dα

)

×
(∫

s

n∏
i=1

p(ai | z, rb, s)p(s) ds

)
× p(rb) drb

The integrals overs and α are identical to those
above, with the appropriate change of variables. To
compute the marginal acrossrb, we assumed a log nor-
mal prior onrb, and used Laplace’s method case 2, in
which the exponents ofp(β̂ | z, rb) andp(â | z, rb) are
combined and the Taylor series expansion is performed
around the joint maximum.

The resulting asymptotic approximation to the pos-
terior is:

p(z | {β}, {a})∝ µszcsc(β̂) sec(β̂)
√

2â
√

â2z2+ µ2
s

(
σ 2

â + σ 2
s

)
tan(β̂)2

× exp

− (z− µs tan(β̂)
â(1− tan(β̂))

)2

2
â2z2+µ2

s(σ
2
â+σ 2

s ) tan(β̂)2

â2(1− tan(β̂))2


× p(z) (27)

Table 1. Table of MAP estimates and Fisher information values for the three depth estimate represen-
tations. For the representations which admit modular estimates, the estimates are shown separately for
the shadow and image size cues.

Task Est from shadow Est from size Shadow Fisher info Size Fisher info

Relativez zr = tan(β̂) zr = 1− µsr

â

1√
2 tan(β̂)2

2â2

µ2
sr
(σ 2

sr
+ σ 2

â )

Dist. from obs. rs = µrb(1− tan(β)) rs = µs

â

1

µ2
rb

tan(β̂)2
2â2

µ2
s(σ

2
s + σ 2

â )

Absolutez z= µs tan(β̂)

â(1− tan(β̂))

2â2(1− tan(β̂))4

µ2
s tan(β̂)2

Neglecting the priorp(z), the exact MAP estimator
can be computed but is too complicated to present.
However, for the values of the parameters used in the
experiments,µ2

s(σ
2
â + σ 2

s ) tan(β̂)2 is small enough to
be neglected. Then the maximum likelihood can be
approximated by:

arg max
z
(p(z | {β}, {a})) ' µs tan(β̂)

â(1− tan(β̂))
(28)

when tan(β̂) ≥ 1, and 0 otherwise.
All the MAP estimates are summarized in Table 1.

4.1.8. Fisher Information. The Fisher Information
contained in the observable data on the parameterx is
given by:

I(x)=−N
∫

data
p(data| x)

× (∂2 log p(data| x)/∂x2) d(data) (29)

where the integral is over all possible values of the data.
It measures information in the sense that(1/N)I−1 is
a lower bound on the variance of any unbiased esti-
mator (Rao, 1973). We can also interpret the Fisher
Information as the variance parameter of the normal
approximation to the likelihood function. Because un-
biased maximum likelihood estimators are both asymp-
totically normal and achieve the lower bound with in-
creasing sample size, the Fisher Information is also the
asymptotic variance of the estimator (Tanner, 1996).

We computed the Fisher Information for each of
the likelihood functions derived in the previous sec-
tion. To compute the Fisher Information, we plugged
the expressions for the likelihoods into Eq. (29), and
computed the integral either analytically or using a
Laplace approximation. For the likelihoods involving
the shadow cue, the integrals are analytically tractable.
However, the integrals over the likelihoods involvingz
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and the size change cue required approximation. The
Laplace approximation, Case 1, (see Appendix A) was
used in which the second derivative of the log likeli-
hood played the role of the prior.

As an example of the approximate Fisher Informa-
tion calculation, consider the likelihoodp({a} | rs) for
a sample size of one. The second derivative of the log
likelihood with respect tors is equal to− 1−log(ars/µs)

(σ 2
a+σ 2

sr )r
2
s

,
so that

I(a | rs) =
∫

a
p(a | rs)

1− log(ars/µs)(
σ 2

a + σ 2
sr

)
r 2

s

da (30)

I(a | rs) = 1√
π
(
σ 2

a + σ 2
sr

)
×
∫

a

1

a
exp

(
− log(ars/µsr)

2

2
(
σ 2

a + σ 2
sr

) )

× 1− log(ars/µs)(
σ 2

a + σ 2
sr

)
r 2

s

da

Expanding the exponent in a Taylor series around
the maximum likelihoodr ∗s = µs

a and using Laplace’s
approximation we find:

I(a | rs) = 2(
σ 2

a + σ 2
sr

)
r 2

s

Evaluating the Fisher Information at the maximum
likelihood yields:

I(a | r ∗s ) =
2a2(

σ 2
a + σ 2

sr

)
µ2

s

The results of the other Fisher Information calcula-
tions are summarized in Table 1.

4.1.9. Cue Integration Using the Fisher Information.
When independent likelihood functions for the depth
variable can be derived (Bayesian modularity), themin-
imum varianceestimator can be expressed in terms of
the individual MAP estimates and the Fisher Informa-
tion for each of the cues (Blake et al., 1996; Rao, 1973).
Let ma denote the MAP estimate andIa(ma | x) the
Fisher information for the image size cue, andmβ the
MAP estimate andIβ(mβ | x) the Fisher Information
for the shadow cue. Then the two cues are combined
by a linear combination of the individual estimates,
weighted by their inverse variances:

mbest= maIa(ma | x)+mβIβ(mβ | x)
Ia(ma | x)+ Iβ(mβ | x) . (31)

which is a specific prediction of a confidence-driven
decision (recall that confidence-driven cue integration
refers to strategies that weight a cue’s contribution
to the inference by its ability to provide reliable es-
timates). In addition to being the mimimal variance es-
timate,mbest is also approximately the MAP estimate
for the combined cues.

The lower bound on the variance ofmbest is given
by:

1

Ia(ma | x)+ Iβ(mβ | x) (32)

Becausers andzr= 1− rs/rb are related by a linear
transformation, we know that probability distributions
on zr should transform gracefully to distributions on
rs. This is in fact shown by the maximum likeli-
hood estimates forrs and zr. For example, combin-
ing z∗r = tan(β̂) and r ∗s =µrb(1 − tan(β)), we find
z∗r = 1− r ∗s /µrb, which expresses the relationship be-
tween rs and zr, given rb is replaced by its mean
µrb. However, note that our MAP estimate forz,
z∗ = µs tan(β̂)

â(1− tan(β̂))
is not what we would expect from weak

fusion, which would show up as a weighted linear com-
bination ofz=µrb tan(β̂) & z=µrb(1− µsr

â ), nor can
it be produced by converting either thez∗r or ther ∗s to z.
Thus, in this case strong (non-modular) fusion (Clark
and Yuille, 1990) has resulted from marginalization.

Inspecting the Fisher information functions, we can
determine how the informativeness of the cues vary as a
function image size and shadow position. For all three
representations, the informativeness of the shadow cue
decreases with increasing distance of the shadow from
the square, while the informativeness of the image size
cue increases with image size. Thus shadow informa-
tion is useful when an object is close to the object it
casts its shadow on, while image size information is
useful when an object is close to the observer.

4.2. Human Performance

We have shown how ideal performance varies given dif-
ferent parameterizations of the ideal’s decision variable
and that different choices of variable predict different
patterns of cue integration. We performed a shadow
and image size cue integration experiment to investi-
gate whether or not human observers make Bayesian-
like use of both cues to estimate the depth of the
square (Lawson et al., 1998).

Computer graphics animations of a 2 cm by 2 cm
target square moving in depth were created by a
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displacement of the shadow from an initial position and
by a size change of the square. Participants viewed two
animations presented sequentially (the reference and
test images in randomized order) and were asked to
judge which of the two squares moved further in depth
from the background.5 Responses were recorded via
a mouse button click. In the reference image, size
change was maximal (28%) and shadow displacement
was minimal (0.5 cm). In the test image, size change
ranged from 16% to 28% (16%, 19%, 22%, 25%,
28%) and shadow displacement from 0.5 cm to 2.5 cm
(0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm). The viewing
distance was 20 cm, and the simulated light source had
an averageα of 22.5 deg.

Figures 8 and 9 show data for two naive subjects.
The probability the observer chose the test as moving
further in depth is plotted against the shadow displace-
mentβ. Each of the five curves corresponds to a dif-
ferent test image size, shown in the legend box in the
upper right panel. Discounting the shadow information
would result in constant curves as a function ofβ with

Figure 8. Data for one observer is shown in the bottom panel. The
probability that the observer chose the test as moving further in depth
is plotted against the shadow displacementβ. Each of the five curves
corresponds to a different test image size. Each probability is an esti-
mate from 60 trials, and the error bars represent the standard errors of
the estimate. The reference stimulus is the same as the test stimulus
with the maximal image size and the minimal shadow displacement.
The upper three panels show the probabilities predicted by the ap-
proximate cue integration models for the three representations. The
model free parameters were set by maximum likelihood fits to the
data.

Figure 9. Data for a second observer is shown in the bottom panel.
See Fig. 8 for details.

all the probabilities less than 0.5 (because the test image
sizes are all less than the reference image size), while
discounting image size information would result over-
lapping curves. For both subjects the curves are nei-
ther overlapping nor flat, demonstrating that observers
do use both kinds of information. To assess whether
observers were weighting the cues based on their re-
liability, we compared the human data to approximate
performance of the three cue integration models.

The performance of the three different estimators
on the task was approximated using the MAP estimate
and Fisher Information equations. The optimal deci-
sion rule for the task is to choose the interval with the
larger (smaller) MAP estimate of the distance from the
background (from the observer). If we approximate
the MAP estimatesµ as being Gaussian, then we can
use the fact that the inverse of the Fisher information is
a lower bound on the variance of an unbiased estimator
to write an approximate upper bound on performance.
The decision variable is then normally distributed with
mean given by the difference in map estimates, and
the variance given by the sum of the reciprocals of the
Fisher Information. This performance approximation
is quite coarse. However, simulations showed that the
networks had similar qualitative behavior. The perfor-
mance of the three estimators is illustrated in the upper
panels with the model free parameters set by maximum
likelihood fits of the models to the data. The relative
distance observer (Task 1) has two parameters, the sum
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of the image size variance and the variance of the prior
on square size,σ 2

a + σ 2
s , and the mean of the prior

on square sizeµs. The distance to square observer
(Task 2) has both these free parameters and a third for
the mean of the prior onrb. The absolute distance ob-
server (Task 3) has two free parametersµs andµrb.
Note that the behavior of the relative distance and the
depth-from-observer models are qualitatively similar
to both subjects’ data, with the depth-from-observer
model being the better predictor for the data sets of
both subjects.

Note that the data from the two subjects are qualita-
tively different.6 Subject ARL shows an initial increase
in p(‘closer’) with increasing shadow displacementβ,
followed by a decrease, especially for the smaller image
sizes. The depth-from-observer model shows qualita-
tively similar behavior, when the prior expectation on
the distance to the backgroundµrb is reduced by about
20% and the estimate of distance from image size has
less uncertainty. Moving the assumed background for-
ward has the effect of increasing the reliability of the
shadow cue close to the background, which accounts
for the initial increase inp(‘closer’), while the reduc-
tion in assumed size-change noise causes the flattening
of the curves.

The absolute distance model provides a poor fit to
the data. The main cause is that the absolute distance
model estimates are rather insensitive to changes in the
values of the cues. This insensitivity causes a strong
flattening and lack of variability between the perfor-
mance curves. This inflexibility is not a result of the
approximations, in that simulations show the same
behavior. This suggests that the visual system is not
optimized to compute the metric distances between
objects.

5. Discussion

Given the computational cost of doing Bayes inference
over traditional estimation (e.g. need to compute whole
posterior, not just estimate), why might the expense be
worth it? One reason could be that ensuring consis-
tency is practical. Doing optimal cue integration with
consistent cues allows very good estimation of scene
variables from data, even when the number of data
samples are less than the number of unknown scene
variables and with very little prior knowledge. As an
example, Fig. 10 shows the marginal distributions for
all of the scene variables in the depth-from-observer
network given only two image size and shadow posi-
tion measurements, and flat priors on all the variables.

Figure 10. Simulation of the depth-from-observer network for just
two data samples ofa andβ and uniform priors on all the variables.
Curves in the first four panels represent the posterior distributions
across each of scene variables. The dashed lines show the true value
of each of the variables. The last two panels show the likelihood
functions forrs from the image size and shadow position data.

Dashed lines mark the true values of the scene vari-
ables, which were chosen from among the values used
in the experiments. Notice that the MAP estimates are
nearly correct for all four variables despite the broad
posteriors. This result is in fact typical, and the plots
shown were randomly generated (i.e. no intentional se-
lection bias).

While the data do not unequivocally establish the
human depth representation, the fact that the depth-
from-observer model is more similar to the subjects’
data is somewhat surprising. After all, we make per-
ceptual decisions about the relative distances between
objects all the time. Further, although the perception
of depth from shadows and size is phenomenally quite
strong (Kersten et al., 1997), observers can readily see
the animations as simulations on a flat screen and hence
unreachable. On the other hand, the visual system is
highly adapted for reach. If the visual system can only
optimize for one depth variable, then distance from the
observer is a sensible one.

While the idea that the visual system is only opti-
mized for certain variables may seem counter to the
visual system being well described as an optimal esti-
mator, this possibility would be a natural consequence
of trying to perform optimal inference with a fixed com-
putational architecture.

5.1. Multiple Tasks

Although we have shown how the computational bur-
den of optimal inference can be reduced, our solution
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required specialization by restricting inference to par-
ticular tasks. However, it is possible for an optimal
inference system to remain computationally efficient
and perform multiple tasks.

For a system that must perform multiple tasks us-
ing a common architecture, the scene variables that are
shared between tasks should be constrained to have a
common representation. This is an issue of great im-
portance in trying to understand the trade-offs made by
the human visual brain between flexibility and special-
ization (Goodale et al., 1994). For example, consider
an object recognition task that only requires estimating
the relative depths of points on the object. If another
task involves a ballistic reach that requires metric depth
information, then a metric depth representation may be
more desirable for both tasks.

Because the estimation complexity of optimal infer-
ence varies as a function of the nuisance variables and
conditional independence, it is computationally advan-
tageous to choose the representation that results in the
simplest architecture for the set of tasks.

Although we have discussed the simplifications af-
forded by complete statistical independence, we have
laid the groundwork for the use of principled ap-
proximations. Basically we can trade off performance
against estimation complexity. If variables are nearly
independent, then there will be little cost to perfor-
mance in treating them as independent. In practice we
can break the links between variables by evaluating
the weakly dependent nuisance variablesSx at their
most probable valuesS∗x to produce a Bayes modu-
lar system: p(Ia, Ib | Sx, Sy)→ p(Ia, Ib | Sy, S∗x) =
p(Ia | Sy, S∗x)p(Ib | Sy, S∗x). Thus the order in which
links should be broken can be determined by a mea-
sure of independence like the mutual information, and
the cost of assuming independence can be assessed by
comparing the approximate performance to the optimal
performance.

6. Summary

This paper starts from the premise that a fundamental
goal of a visual system is to make optimal statistical es-
timates of scene variables given some image data. We
showed how a specific task and representation chosen
for the scene variables affects the modularity and per-
formance of an inference computation. We argued that
these ideas lay the foundation for introducing approxi-
mations that may yield more efficient algorithms for op-
timal cue integration. We analyzed in detail Bayesian

inference for a simple depth estimation task involving
two disparate cues, image size and cast shadow po-
sition, for three different depth representations. From
the analysis we generate predictions for human per-
formance on a simple depth discrimination task from
the optimal estimator using each representation. We
found that human observers’ decisions are near-optimal
for certain depth representations, in that they weight
the information from the two cues in accord with their
informativeness.

Appendix A: Laplace Approximations
to an Integral

A.1. Case 1: Likelihood Much Narrower than
the Prior

We used Laplace’s method (Tanner, 1996; Freeman,
1994) to construct analytic approximations to the re-
quired integrals, which are of the form:∫ b

a
p(x)p(I | x, S) dx (33)

wherep(I | x, S) is the likelihood function of the data
I given a particular nuisance scene variablex and the
remaining (both required and nuisance) scene variables
S. Let p(I | x, S)= exp(nh(I | x, S)), and suppose
h(I | x, S), is smooth and unimodal as a function of
x,7 with a maximum at̂x(I , S), andx is a scalar. The
parametern represents the number of independent sam-
ples or the reciprocal of the measurement noise, that can
go to infinity (i.e. the high sample/low noise limit).8

Performing a Taylor series expansion ofh around the
point x̂(I , S) to second order, we have:

h(I | x, S) ≈ h(I | x̂, S)+ (x − x̂)
∂h(I | x̂, S)

∂x

+ (x − x̂)2

2!

∂2h(I | x̂, S)

∂x2
(34)

Becausex̂(I , S) is the location that maximizes
h(I | x̂, S), the linear term is zero. Ifx̂(I , S) is
in (a, b) and p(x̂(I , S)) 6= 0,9 then the exponen-
tial term dominates the integral and we have the
approximation:10

∫ b

a
p(x) exp(nh(I | x, S)) dx

≈ p(x̂) exp(nh(I | x̂, S))
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×
∫ b

a
exp

(
n
(x − x̂)2

2

∂2h(I | x̂, S)

∂x2

)
dx

≈ p(x̂) exp(nh(I | x̂, S))

√
2π

−n ∂
2h(I | x̂,S)
∂x2

A.2. Case 2: Prior Width on Order of the Likelihood

In the approximation above, the assumption that the
prior was broad with respect to the likelihood allowed
us to neglect the prior except for the contribution of a
scale factor at the maximum likelihood. We can han-
dle the case where the width of the prior is on the order
of the likelihood with a slight modification of the pre-
vious procedure. Letp(I | x, S)= exp(nk(I | x, S))
and p(x)= exp(nm(x)). Then let h(I | x, S)= k
(I | x, S)+m(x), and proceed as before, performing a
Taylor expansion around the maximum ofh.

Appendix B. Effect of Marginalizing Nuisance
Variables on the Posterior

Problems frequently occur in which the image data
given the scene variables can be expressed as

I = f (x, S)+ ν(x, S)

where the functionf expresses the deterministic imag-
ing equations,x represents the nuisance variable,Srep-
resents the remaining set of scene variables andν(x, S)
is a term representing the imaging noise, which is fre-
quently a constant or a slowly-varying function ofx
andS.

If, in addition to being slow-varying, the measure-
ment noise distribution has zero mean, and the like-
lihood admits a quadratic approximation,11 then the
effects of marginalization can be shown to dominate
the resulting distribution.

We write the likelihood function p(I | x, S)=
exp(−nk(I | x, S)), wheren is a parameter like the
sample size that can be made large. To show the
dominance of marginalization, we expandk(I | x, S)
in a Taylor series to second order inI about Imax=
arg maxI k(I | x, S) = f (x, S):

k(I | x, S) ≈ k(I | x, S) | f (x,S)
+ 1

2

∂2k(I | x, S)

∂I2

∣∣∣∣
f (x,S)

(I − f (x, S))2

(35)

where we have used the fact the linear term goes to zero
at f (x, S).

Thus the likelihood can be written

p(I | x, S)

' g(x, S) exp

(
−n

2
(I − f (x, S))2/σ(x, S)2

)
where 1

σ(x,S)2 = ∂2k(I | x,S)
∂ I 2 | f (x,S), and g(x, S)= exp

(− n
2k( f (x, S) | x, S)).

We wish to marginalize the distribution acrossx, and
hence approximate the integral:

p(I | S) ≈
∫

p′(x, S)

× exp

(
−n

2
(I − f (x, S))2/σ(x, S)2

)
dx (36)

wherep′(x, S)= g(x, S)p(x, S), which absorbs theg
factor into the prior.

We now use Laplace’s method to approximate this
integral. In the previous section, we show that integrals
of the form of Eq. (36) can be approximated by:

p(I | S) ≈ p′(x̂, S) exp(nh(I | x̂, S))

√
2π

−n ∂
2h(I | x̂,S)
∂x2

(37)

where x̂(I , S)= arg maxx h(I | x, S), and h(I | x, S)
=− 1

2(I − f (x, S))2/σ(x, S)2.
However, becauseI − f (x̂, S) = 0 for all I andS,

exp(nh(I | x̂, S)) is equal to one. In addition, it is easy
to show that the second derivative ofh with respect to
x evaluated at̂x simplifies to:

∂2h(I | x̂, S)

∂x2
= (∂ f (x̂, S)/∂x)2

σ(x, S)2

Using these simplifications, Eq. (37) reduces to:

p(I | S) ≈
√

2πσ(x̂(I , S), S)2

|∂ f (x̂(I , S), S)/∂x| p
′(x̂(I , S), S) (38)
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Notes

1. The change in dependence between the remaining variables de-
pends on the causal and statistical influence relations between
the variables.

2. E.g. the measurement noise distribution is dominated by its sec-
ond moment or there are multiple samples, so that a quadratic ap-
proximation is justified on the basis of the central limit theorem.

3. In graph theory,a is called theparentof b.
4. The decision to measure the angle rather than some other related

quantity like the projected shadow distancel = tan(β) matters
little because the posterior is dominated by the marginalizations.
It can be shown that the effect of measuringl amounts to replac-
ing every instance ofβ in the formula with tan−1(l ).

5. For another set of trials whose data does not appear here, ob-
servers were asked to judge which squareappeared closer. Al-
though the two questions constituted different tasks, there was
no measurable effect of question type on performance.

6. Kersten et al. (1997) report size change and shadow displace-
ment results in a different experiment which also showed statis-
tically significant differences between subjects in cue integration
strategies.

7. Unimodal can be relaxed to having a dominant maximum, i.e.
a global maximum orders of magnitude larger than the local
maxima.

8. Although this technical condition is required for the validity of
the asymptotic expansion, Laplace’s method frequently works
well even whenn = 1.

9. For maxima at end points or vanishingp(x̂(I , S)), the method
yields slightly different approximations.

10. We have neglected a term involving the integration limits because
for all the integrals we consider the term evaluates to 1.

11. E.g. the measurement noise distribution is dominated by its
second moment or there are multiple samples, so that a quad-
ratic approximation is justified on the basis of the central limit
theorem.
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