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Temporal dynamics in bistable perception 
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Bistable perception is fundamentally a dynamic process: Our perceptual experience continuously alternates when an 
ambiguous or rivalrous stimulus is observed. Here we present a method to analyze instantaneous measures of 
dominance and transition between percepts. The analysis extracts three time-varying probabilities. First, the transient 
preference represents the probability of perceiving one interpretation at one instant. Second, the reversal probability is the 
probability that the current percept will change at the next evaluation. Finally, the survival probabilities are the probability 
that at one instant the current percept will not switch to the alternative interpretation. We derive the relationships between 
these probabilities and offer a test of independence between consecutive percepts. We also introduce a simple technique 
to sample the observer’s perception at regular intervals. The analyzing method is illustrated with the example of binocular 
rivalry. We demonstrate Levelt’s second proposition with the survival probability measure and show that the consecutive 
rivalrous percepts are not independent. 
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Introduction 
Bistable perception arises when a stimulus can be in-

terpreted in two distinct ways. Two experimental situations 
have been specifically designed to produce bistable percep-
tion. First, the stimulus can be such that it does not con-
tain enough information to lead to a unique interpretation. 
Examples of such ambiguous stimuli are the Necker  
cube (Necker, 1832; Attneave, 1971) and other three-
dimensional objects (e.g., Mamassian & Landy, 1998, 
2001). The second experimental situation occurs when the 
stimulus contains conflicting information about the plausi-
ble interpretations. Examples of such rivalrous stimuli in-
clude those presented during binocular rivalry (e.g., 
Wade,1975a; Tong, 2001; Blake & Logothetis, 2002) and 
those where depth cues are in conflict (van Ee, Adams, & 
Mamassian, 2003). 

A full explanation of bistable perception involves an 
understanding of why one of the percepts is perceived first 
and why percepts alternate at a particular rate when the 
stimulus is continuously presented for a long time. These 
two aspects of bistability are most likely intertwined: The 
stronger a percept is, the more likely it will be perceived 
first and perceived more often once the percepts start to 
alternate. Therefore, the mechanisms responsible for the 
selection of the first percept and the rate of reversal to the 
other are likely to involve common structures, although 
this has yet to be demonstrated empirically. 

The tools used to measure ambiguous and rivalrous 
perception are however still rudimentary. Most measures 
are based on the concept of the phase duration, which is 
the length of time during which one percept is sustained. 

In his influential monograph on binocular rivalry, Levelt 
(1965) uses the mean dominance duration (the mean of the 
phase durations), the relative predominance (percentage of 
the total viewing time that one percept is reported), and the 
alternation rate. A more detailed picture is obtained by re-
porting the whole distribution of phase durations. Like 
most time distributions (Leopold & Logothetis, 1999), this 
distribution is positively skewed, that is, short durations are 
more frequent than long ones (see Figure 2 below). There 
are thus several valid probability distribution functions that 
can be used to fit the distribution of phase durations (De 
Marco et al., 1977), among which the most popular are the 
gamma (e.g., Levelt, 1967) and log-normal (e.g., Lehky, 
1995) distributions. Best-fitting parameters are then used to 
summarize the data. 

Phase durations provide an important description of 
bistable perception. Short phases are an indication of an 
unstable system, and thus the search for the conditions that 
affect perceptual stability benefits from the analysis of 
phase durations or alternation rates (e.g., Blake, Sobel, & 
Gilroy, 2003). There are however two issues with focusing 
on phase durations to study bistable perception. 

First, the distribution of phase durations does not 
really represent the dynamics of bistability because the 
times at which the durations were recorded are not taken 
into account. Even if consecutive phase durations are un-
correlated (e.g., Fox & Hermann, 1967), the distribution 
cannot capture slow variations in the rate of reversals (see 
discussion on stationarity below). It is therefore appropriate 
to look for an alternative measure that preserves the order 
of events. 
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The second issue arises once the distribution is fitted 
with a gamma or other distribution. Surprisingly, these pa-
rameters are often left completely uninterpreted. One con-
sistent finding, though, is that the two parameters of the 
gamma distribution (λ and r; see Figure 2) are strongly cor-
related (Borsellino et al., 1972; De Marco et al., 1977) and 
often identical. While the reason for this correlation is still 
not clear, it does indicate that the gamma distribution has 
one degree of freedom too many. 

In this study, we propose a simple method to record 
and analyze bistable data. We argue that the analyzing 
method satisfactorily addresses the two concerns high-
lighted above. Even though the analysis is relatively inde-
pendent of the way the data have been obtained, we also 
present a straightforward way to record the observer’s per-
cept at regular intervals. 

The usual approach in studying bistable perception is 
to ask observers to press one of two keys whenever their 
percept changes. With this method, there is a potential 
danger of contamination of the perceptual data with the 
motor responses. For instance, the observers could re-
evaluate the stimulus whenever they press a key to reassure 
themselves that their response really matches their percept, 
and this in turn might accelerate the reversal rate. On the 
contrary, observers could momentarily release their atten-
tional focus, and potentially slow down their reversal rate. 
One way to avoid the contamination of bistable perception 
with motor responses, including eye movements and 
blinks, is to use afterimages (Wade, 1974, 1975b). How-
ever, this method is not appropriate if one is interested in 
the changing percept with time. We propose here an alter-
native way to record the observer’s time-varying percepts. 

In short, the method is as follows. Observers are pre-
sented with an ambiguous stimulus and are prompted to 
report their percept repeatedly at the sound of an auditory 
beep. The beeps are separated by an average of 2 s with a 
random temporal jitter to preclude anticipation. Several 
runs are recorded in this way for each experimental condi-
tion. The analysis then consists of computing a survival 
probability, namely the probability that one percept for one 
beep time survives onto the next beep. This survival prob-
ability is computed for the whole duration of the run, 
thereby providing an instantaneous representation of the 
perceptual dynamics. Two main aspects can then be ex-
tracted from this survival probability: a time constant re-
flecting the time to reach a stationary regime, and an as-
ymptotic value reflecting the mean survival probability in 
the stationary regime. 

Next we provide the details of the method and apply it 
to a classical case of binocular rivalry. In particular, we de-
scribe how the method can be used to test Levelt’s second 
proposition. We conclude with a discussion of the merits 
of our method over the more traditional approach of re-
porting the parameters of the gamma distribution. 

Experiment 1: The technique 
We present our technique for studying the temporal 

dynamics of bistable perception with the help of a binocu-
lar rivalrous stimulus. Because this stimulus is very com-
mon (for a review, see Blake, 1989), it will be easy to com-
pare our technique with more conventional approaches. 
We use this example to define the concepts of transient 
preference, reversal probability, and survival probabilities. 
To track the temporal effects of an initial perceptual bias, 
we impose a large contrast difference between the two eye’s 
images. 

Methods 

Participants 
Two undergraduate students (one male, one female) 

from the University of Glasgow took part in this experi-
ment. They were naïve about the purpose of the experi-
ment, gave their consent before running the experiment, 
and were paid for their participation. Both observers had 
normal visual acuity in both eyes. 

Stimuli 
Stimuli were Gabor patches (sine wave gratings modu-

lated by a Gaussian envelope) oriented at ± 45 deg relative 
to the vertical (Figure 1A). The orientation of the Gabors 
was randomized from one trial run to the next with the 
constraint that the orientation in one eye was always or-
thogonal to that in the other eye. The size of the Gabor was 
kept small to minimize fused or piecemeal percepts where 

F
s
O
i
c
o

 

timevisual

auditory

response

time

time

on
off

beep

R
L

B

A

igure 1. General methods. (A). Example of a binocular rivalry
timulus used in this study. (B). Time course of a run of trials.
nce the visual stimulus is on, an auditory beep is presented at

ntervals of approximately 2 s. Observers have to report their
urrent interpretation (here, Left or Right orientation) at the time
f the beeps. 



Journal of Vision (2005) 5, 361-375 Mamassian & Goutcher 363 

the interpretation is a mixture of the left and right images. 
The size (at half-height of the Gaussian envelope) was 
0.83 deg of visual angle in diameter. The spatial frequency 
of the grating was set to 2.5 cycles/deg. The contrast ratio 
between the left and right eye images was fixed to 25%. 
Which eye saw the full-contrast Gabor and which eye saw 
the 25%-contrast Gabor was randomized between trials. In 
the analyses below, we combine trials according to the 
stimulus contrast, so we present our results relative to ei-
ther the high-contrast or low-contrast stimulus rather than 
left or right eye. 

The stimuli were surrounded by a frame composed of 
small squares, half of them black, the others white. This 
frame was non-rivalrous (same contrast in both eyes) and 
had zero disparity. 

Stimuli were presented on a split-screen Wheatstone 
stereoscope where the display was a 21-in Sony Trinitron 
CRT monitor driven by an Apple PowerMac computer. 
The experiment was controlled by a program that ran un-
der Matlab using the PsychToolbox functions (Brainard, 
1997; Pelli, 1997). The experiment was run in a dark room 
and the observers had to place their heads in a chin- and 
head-rest to minimize head movements. The viewing dis-
tance was 80 cm. 

Procedure 
Observers were repeatedly prompted to report the per-

ceived orientation of the Gabor at the sound of an auditory 
beep (Figure 1B). Beeps were presented on average every 
2 s, starting 1 s after the stimulus onset. A small temporal 
jitter was introduced to reduce anticipatory responses. This 
jitter was drawn from a uniform distribution extending 
500 ms before and after the planned mean time occurrence 
of the beeps. In practice, the first beep could therefore oc-
cur anytime between 0.5 s and 1.5 s after stimulus onset, 
the next beep anytime between 2.5 s and 3.5 s, and so on. 

Observers had to press one of two keys with their left 
or right index fingers, reporting their percept at the time of 
the beep. If uncertain, they were asked to choose the per-
cept that appeared the strongest. Responses made more 
than 1 s after the beep were discarded. This strict constraint 
allowed us to ascertain that a response did not interact with 
the next beep. To minimize the probability of missing the 
first beep, a count-down from 5 s before the stimulus onset 
was displayed on the monitor. The zero-disparity frame was 
also presented during this count-down to help stabilize ver-
gence before stimulus onset. 

In this first experiment, the presentation duration of a 
run (the time when the Gabors were shown) was set to 50 s. 
Each observer ran 100 such runs (50 at each contrast ratio 
balanced across the two eyes) with a short break between 
consecutive runs. 

Results 
The results are split in phase durations, transient pref-

erence, reversal probability, and survival probabilities.  

Phase durations 
The traditional way to analyze data from bistable ex-

periments is to report the distribution of the phase dura-
tions. Phase durations of each dominant percept (here the 
orientation of the high- and low-contrast Gabors) can be 
computed by counting the consecutive number of times 
that a given percept is reported to be identical. For in-
stance, if the same orientation is perceived for three con-
secutive beeps before the percept reverses to the other ori-
entation, this particular phase will be assigned a duration of 
6 s (3 times the inter-beep interval of 2 s). 

It is clear that the phase durations we have recorded 
are affected by the inter-beep interval. We missed phase 
durations shorter than 2 s, but also slightly exaggerated all 
phase durations (by combining two phases that were sepa-
rated by a missed phase). More discussions of this issue can 
be found in Appendix D. 

Figure 2 illustrates the distribution of phase durations 
for the high-contrast percepts for the two observers (the 
low-contrast percepts had similar distributions but fewer 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

   = 9.15 sec (    = 427)

   = 2.56,    = 2.20

DM

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

   = 7.60 sec (    = 483)

   = 2.96,    = 3.03

Normalized Phase Duration

F
re

qu
en

cy

KM

N

r

µ

λ

N

r

µ

λ

 

Figure 2. Phase-duration analysis for the two observers in
Experiment 1. The distributions of phase durations are well
fit by a two-parameter (λ, r) gamma distribution of the form
g(x)=[λrxr-1/Γ(r)]exp(-λx), where Γ is the gamma function. The
phase durations have been normalized to their respective means
(µ) before the fitting procedure was applied. 
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bins). In these plots, the phase durations have been nor-
malized relative to their respective means (µ = 9.15 s and 
7.60 s for observers DM and KM, respectively). The distri-
bution of these phase durations follows a sharp rise and a 
slow fall that is well summarized by a gamma distribution 
(Levelt, 1965). The best-fitted parameters for the gamma 
distribution fall between 2 and 3, and this is consistent 
with numerous previous studies (for references, see Blake 
& Logothetis, 2002). From this analysis of the phase dura-
tions, it seems therefore that our method of recording the 
dynamics of binocular rivalry did not substantially affect 
the pattern of responses. 

Transient preference 
What the phase-duration analysis fails to capture, how-

ever, is the time course of the percepts. A natural depiction 
of this time course is provided by the transient preference. 
The transient preference is simply the proportion of per-
cepts consistent with one of the two interpretations, here 
arbitrarily chosen as the high-contrast Gabor. This propor-
tion is computed by taking the average of the percepts 
across all runs, separately for each beep time. 

Not surprisingly, both observers show an initial strong 
bias for reporting the orientation of the high-contrast im-
age. The initial bias is in fact so consistent with the high-
contrast image that the transient probability is not signifi-
cantly different from 1 at the first beep. Interestingly 
though, this initial bias gradually wears off and the tran-
sient preference reaches a stable regime (Figure 3). 

To summarize the dynamics of transient preferences, 
we fit the data with a scaled cumulative Gaussian with  
3 degrees of freedom (see Appendix A). The first degree of 
freedom α is the asymptotic value of the stationary regime. 
The second degree of freedom τ is the time constant to 
reach the stable regime. Finally, the third degree of freedom 
σ is the slope of the function at its inflexion point. We de-
fine the time constant as the time at the intersection of the 
asymptotic line and the tangent at the inflexion point (see 
Figure 3 and Appendix A). 

Figure 3. Transient preference for the two observers in
Experiment 1. The transient preference is the proportion of re-
sponses corresponding to the high-contrast image for each beep
occurrence. There is a strong initial bias for the high-contrast
image, but this bias wears off after several seconds for both ob-
servers. The procedure used to estimate the time constant τ of
this process is illustrated in red on the top graph. Error bars indi-
cate standard error of the means. 

Both observers show similar asymptotic values in the 
stationary regime (α = 0.709 and 0.708 for observers DM 
and KM, respectively). In spite of this similarity, the observ-
ers took different amounts of time to reach these stationary 
regimes (τ = 21.5 s and 7.3 s, respectively). This fundamen-
tal difference in temporal dynamics between observers was 
not readily visible in the phase-duration analysis. 

Reversal probability 
While the transient preference is a good description of 

the current percept, it is not a measure of the stability of 
that percept. We define the reversal probability as the 
probability that the current percept will change at the next 
beep, irrespective of the current percept. The reversal prob-
ability therefore reflects how fast percepts change. If we let 

v represent the reversal probability and u the alternation 
rate (in number of changes per second), then 

u v δ= , (1) 

where δ is the mean inter-beep interval (here 2 s). In other 
words, the higher the reversal probability, the faster  
the alternation rate. We should note that in this equation,  
v ≤ 1 because it is a probability. If the reversal probability is 
too close to 1 for comfort, the experimenter should attempt 
to reduce the inter-beep interval or avoid the use of the 
discrete sampling technique. As a conservative rule, we sug-
gest that caution is exercised if v > 0.5. 
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Similarly to the analysis of the transient preference, the 
reversal probability is strongly biased at first and gradually 
reaches a stable regime (Figure 4). The initial bias is in favor 
of a slow alternation rate, so much so that for our stimulus, 
the initial reversal probability is not significantly different 
from zero. We fit these data with a scaled cumulative Gaus-
sian, again with 3 degrees of freedom (see Appendix A). 
The first degree of freedom is the asymptotic value of the 
stationary regime and is very similar between observers  
(α = 0.373 and 0.366 for observers DM and KM, respec-
tively). The second degree of freedom is the time constant 
to reach the stable regime and is defined as for the tran-
sient preference (i.e., the intersection of the asymptotic line 
and the tangent at the inflexion point). The third degree of 
freedom is the slope of the function at its inflexion point 
and is positive for both observers, indicating that the alter-
nation rate progressively increases within a run of trials. 

We shall use the reversal probability as a measure of 
stationarity: When the reversal probability is stable over 
time, we can say that the alternation of percepts has 
reached its stationary regime. The fitted time constants τ 
are very different between the two observers, observer DM 
being much slower to reach a stationary regime than KM 
(τ  = 19.5 s and 5.3 s, respectively). The start of the station-
ary regime can be defined as time (τ + δ) where the added 
δ reflects the fact that reversal probability refers to the pre-
dicted percept at the next beep. These values (21.5 s and 
7.3 s, respectively) match very well the time constants found 
for the transient preference. Note however that there is no 
particular relationship between the transient preference 
and the reversal probability (for details, see Appendix B). In 
particular, if the two percepts were matched in strength, we 
would expect a balanced transient preference from the start 
of the run (i.e., 0.5), and yet we may still observe a reversal 
probability resembling the one found here. It is for this 
reason that we define the duration of the nonstationary 
regime from the reversal probability and not simply from 
the transient preference. 

 

Figure 4. Reversal probability for the two observers in
Experiment 1. The reversal probability is the probability that the
current percept will change at the next beep. From the time con-
stant of the fitted function, we can isolate the initial nonstationary
regime (on the left side of the dashed vertical line). 

Survival probabilities 
The transient preference and reversal probability de-

scribe the time course of the current percept and the stabil-
ity of that percept. Another way to represent this informa-
tion is to use the survival probabilities. The survival prob-
ability is the likelihood that the next percept will be identi-
cal to the current one. It is defined as a conditional prob-
ability on the current percept (see Appendices B and C for 
its precise definition). There are therefore two distinct sur-
vival probabilities, depending on whether the current per-
cept is that of the high- or low-contrast image. 

Survival probabilities for our two observers are shown 
in Figure 5. There are two curves for each observer, one 
corresponding to the percept linked to the high-contrast 
stimulus (in filled blue symbols) and the other to the low-
contrast stimulus (in open red symbols). The larger error 
bars for the low-contrast percepts simply reflect the fact that 
there were fewer measurements available to estimate these 

probabilities. As with the previous two analyses, the survival 
probabilities were fitted with scaled cumulative Gaussian 
functions (Appendix A). We focus our attention on the 
asymptotic values of the best fits. 

For both observers, the survival probability of the high-
contrast percept is larger than the one for the low-contrast 
percept. In other words, if the high-contrast stimulus is the 
one perceived at one instant, it has a larger probability to 
survive to the next beep than if it were the low-contrast 
stimulus. This result was to be expected because we already 
saw that the high-contrast stimulus was chosen more often 
(Figure 3). The analysis of the survival probabilities allows 
us to split the contribution of each stimulus to the high-
contrast dominance. Asymptotic values for the high-
contrast percept were αH = 0.740 and 0.744 for observers 
DM and KM, respectively, compared to the asymptotic val-
ues for the low-contrast percept αL = 0.369 and 0.393, re-
spectively. 

The survival probabilities are transient measures of 
dominance: The higher the survival probability of one per-
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cept, the more likely this percept will be sustained and the 
less likely the other percept will arise. There is therefore a 
direct relationship between the transient preference and 
the survival probabilities (see Appendix B). Similarly, the 
reversal probability can also be expressed as a function of 
the survival probabilities (see again Appendix B). 

Because both the transient preference and the reversal 
probability can be expressed as a function of the survival 
probabilities, these latter two are sufficient to describe the 
temporal dynamics of bistability by themselves. Note that 
this description is valid here only to the first order (that is, 
how the current state will affect the next state). Higher or-
der survival probabilities can be defined with a history go-
ing back a few beeps. For instance, a second-order descrip-
tion would be obtained by measuring how the next state 

depends on the current and previous states. These higher 
order descriptions are beyond the scope of this study (e.g., 
see Maloney, Dal Martello, Sahm, & Spillmann, 2005). 
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Experiment 2: Stationarity 
The first experiment allowed us to define our proce-

dure to measure and analyze bistable perceptions. In a sec-
ond experiment, we test the robustness of the technique on 
a larger population of observers. In addition, we extend the 
duration of the runs six-fold to ensure that beyond the 
critical time constant, the regime of alternations is indeed 
stationary. 

Methods 

Participants 
Seventeen undergraduate students from the University 

of Glasgow took part in this experiment. Six more ran the 
experiment but were later discarded because they missed 
too many responses (see Procedure below). All were naïve 
to the purpose of the experiment, gave their written con-
sent, and were paid for their participation. The observers 
had normal or corrected-to-normal visual acuity in both 
eyes. 

Stimuli 
Stimuli were the binocular rivalrous Gabors used in 

Experiment 1. The contrast of the left and right eye images 
were set to 100% and 25%, respectively.  

 

Figure 5. Survival probabilities for the two observers in
Experiment 1. The survival probability is the conditional probabil-
ity that the next percept will be identical to the current one. The
two different percepts here are the orientation corresponding to
the high-contrast stimulus (H, in blue) and the orientation of the
low-contrast stimulus (L, in red). Error bars were used for the
maximum likelihood fit and are proportional to the inverse of the
square root of the number of samples (large error bars indicate a
small number of samples). 

 

Procedure 
Observers were repeatedly prompted to report the per-

ceived orientation of the Gabor at the sound of an auditory 
beep. Responses made more than 1 s after the beep were 
discarded. If an observer missed more than 25% of the to-
tal number of responses, he or she was discarded. While 
this threshold may appear large, one has to remember that 
this experiment involved naïve participants who were not 
particularly thrilled to look at rivalrous Gabors in a dark 
room for an hour. Experienced observers have almost no 
missed responses (see previous experiment).  

In this second experiment, the presentation duration 
of a run (the time the Gabors were shown) was extended to 
5 min. Each observer ran eight such runs with a short break 
between consecutive runs. 

Results 

Transient preference 
The transient preference for the high-contrast stimulus 

is shown in Figure 6. Similarly to Experiment 1, there is a 
strong initial bias that wears off after about 6 s. The mean 
preference in the stationary regime is 0.613. There is no 
apparent change in transient preference beyond the critical 
time constant.  
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Figure 6. Transient preference for Experiment 2. The plot shows
the mean preference across all observers for the high-contrast
interpretation. Error bars are standard errors between observers.

 

Reversal probability 
The reversal probability is shown in Figure 7. It slowly 

increases before reaching a stationary regime at 0.455. Con-
trary to the previous experiment, the initial reversal prob-
ability is significantly greater than zero, possibly reflecting 
the long-lasting effects of a six-fold increase in presentation 
time. A fit with a scaled cumulative Gaussian allows us to 
isolate the initial nonstationary regime, which lasts 27 s on 
average across all observers. 

Survival probabilities 
The survival probability for the high-contrast interpre-

tation was consistently larger than that of the low-contrast 

interpretation (Figure 8). Beyond the time constant, the 
survival probabilities stayed constant. In the stationary re-
gime, the fitted asymptotic values were αH = 0.62 and 
αL = 0.42. 

Independence 
The survival probabilities provide a direct test for the 

independence of consecutive responses. Two consecutive 
responses are independent if the next percept cannot be 
predicted from the current one. Interestingly, a condition 
of independence is that the two survival probabilities sum 
to 1 (see Appendix C). Figure 9 shows the distribution of 
survival probabilities across all observers for Experiment 2 
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Figure 9. Independence test. The survival probabilities for both
low- and high-contrast interpretations are plotted against each
other for each observer. The green dashed line represents the
constraint for two consecutive percepts to be independent. 

 
Figure 8. Survival probabilities for Experiment 2. The survival
probabilities are shown in red up-triangles and blue down-
triangles for the high-contrast and low-contrast stimuli, respec-
tively. 
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Figure 7. Reversal probability for Experiment 2. Once the sta-
tionary regime is reached (on average after 27 s), the reversal
probability is constant. 
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(once they have reached the stationary regime). The sums 
of the pairs of survival probabilities for each observer are 
on average larger than 1 (mean: 1.050; SE across observers: 
0.029), indicating that consecutive percepts are not inde-
pendent. This result is seemingly in contradiction with pre-
vious reports that have consistently argued for independ-
ence (Fox & Hermann, 1967; Blake, Fox, & McIntyre, 
1971; Walker, 1975; Lehky, 1995). However, it is impor-
tant to remember that their independence test was on con-
secutive phase durations rather than consecutive percepts. 
Our dependence result might reflect the gradual build-up 
of adaptation to one percept while this percept is surviving, 
whereas the independence of phase durations suggests that 
the adaptation is reset whenever a transition occurs. 

Experiment 3: Perceptual biases 
The first two experiments have demonstrated the use of 

the survival probabilities to describe the temporal dynamics 
of bistable perception. In this third experiment, we look at 
how the survival probabilities vary with the strength of the 
competing stimuli. We vary the relative strength of each 
stimulus by altering the contrast of the stimulus in one or 
the other eye. 

Methods 

Participants 
Twenty-two naive undergraduate students took part in 

this experiment. Seven of these participants were discarded 
because they failed to respond quickly enough (see Proce-
dure below). The analysis below was carried out on the 15 
remaining participants. 

Stimuli 
Stimuli were identical to those used in the previous ex-

periment, except that six contrast conditions were used. 
The contrast ratios between the right and left eyes were 
chosen equi-distant on a log-scale: 0.5, 0.66, 0.87, 1.15, 
1.52, or 2.0. The first three contrasts were obtained by set-
ting the contrast of the left eye to 1.0 and varying the con-
trast of the right eye between 0.5 and 0.87 (see legend of 
Figure 13); the last three contrasts were similarly obtained 
by exchanging the roles of the left and right eyes. 

Procedure 
The procedure was similar to that used in the previous 

experiment. Observers ran eight consecutive blocks of runs 
where each block contained one run for each contrast ratio, 
presented in random order. Observers took a short break 
between each run and a longer break between each block. 

The inter-beep interval was again 2 s on average and 
participants had to respond within 1 s after each beep. 
Those participants who missed more than 25% of the re-
sponses were removed from the final analysis. 

Results 

Transient preference 
As expected, the higher the contrast of one eye’s image, 

the larger the probability that the interpretation is consis-
tent with that image. This behavior can be readily seen by 
looking at the transient preference to report seeing the im-
age presented to the right eye (Figure 10). As for the previ-
ous experiments, the transient preference was fitted with a 
scaled cumulative Gaussian. 
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Figure 10. Time-varying transient preferences for the right-eye
image in Experiment 3. Each plot corresponds to a different con-
trast ratio between the two monocular images (right eye over left
eye). Error bars are standard errors between observers. 

 
The transient preference increases (positive slope pa-

rameter) if the asymptotic value is less than 0.5, and de-
creases (negative slope) if the asymptotic value is more than 
0.5. This relationship between the slope and the asymptote 
accentuates the effect of contrast for the initial transient 
preference. While the asymptote changes modestly with 
contrast, the initial interpretation is dramatically influ-
enced by contrast. To reveal this effect further, we have 
isolated the very first interpretation (at the first beep) from 
the subsequent ones. Figure 11A shows how the first re-
sponse changes with contrast, and separately, how the 
mean subsequent responses change with contrast. The 
change in slope of the fitted cumulative Gaussians shows 
the difference between the very first response and the other 
responses. In spite of this difference, there is still a very 
good correlation between the two (Figure 11B). Hupé and 
Rubin (2003) found a similar exaggerated bias of the first 
response for bistable motion stimuli. 

Survival probability 
The survival probabilities for the left and right eye im-

ages cross over as the contrast ratio varies between 0.5 and 
2 (Figure 12). As expected, the survival probability is larger 
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Figure 12. Time-varying survival probabilities for Experiment 3.
Red up-triangles now refer to the left-eye image, blue down-
triangles to the right-eye image. The survival probabilities cross
over as the contrast ratio increases over unity. 

for the image that has the higher contrast, and the differ-
ence in survival probabilities reduces as the contrast ratio 
gets close to 1. 

If we restrict ourselves to the stationary regimes, we can 
plot the asymptotic value of the survival probabilities as a 
function of the contrast ratio (Figure 13). Values of the 
contrast ratio between 0.5 and 1.0 were obtained by fixing 
the contrast of the left eye image to 1.0 and increasing the 
contrast of the right image between 0.5 and 1.0. We note 
that in this range of the contrast ratios, the asymptotic 
value of the left survival probability varies more rapidly 
than that of the right survival probability (the slope of  
the line relating survival asymptote to contrast ratio is  
–0.246 vs. –0.079 for the left and right survival probabili-
ties, respectively). Conversely, in the range of contrast ratios 
larger than 1.0, obtained by fixing the contrast of the right 
eye image, it is the right survival probability that varies 
faster with contrast ratio (slopes of 0.040 vs. 0.213 for the 
left and right survival probabilities, respectively). The ratio 
of the slopes between the most affected and the least af-
fected eyes is close to 4 (3.1 and 5.3 for the ranges [0.5, 1] 
and [1, 2], respectively). 

This behavior is in close agreement with Levelt’s sec-
ond proposition (Levelt, 1965, 1966). According to Levelt, 
an increase of the stimulus strength in one eye does not 

increase the mean duration of the ipsilateral percept, but 
instead reduces the mean duration of the contralateral per-
cept. More recent studies have found a weak but significant 
effect of the mean dominant duration of the ipsilateral eye 
(Mueller & Blake, 1989; Bossink, Stalmeier, & de Weert, 
1993). We found here that even though a change of 
strength of one eye’s image does affect the survival prob-
ability of that image, this effect is 4 times smaller than the 
effect on the other eye’s image. In other words, an increase 
in stimulus strength in one eye does not dramatically boost 
the survival probability of that eye, but instead greatly de-
creases the survival probability of the other eye. 

 

Figure 11. Comparison of mean initial and subsequent re-
sponses in Experiment 3. (A). The mean first response (red open
symbols) rises quickly with contrast ratio, whereas the mean
subsequent responses (filled blue symbols) rise much more
slowly with contrast ratio. (B).There is a very good correlation
between the mean first response and the subsequent responses
(Pearson’s correlation, R =  0.79). 
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Figure 13. Effect of contrast on the asymptote of the survival
probabilities for Experiment 3. The two horizontal bars below
represent the contrast of each eye to produce a given contrast
ratio. The survival probabilities approximate Levelt’s second
proposition: Increasing the contrast of one eye’s image mainly
decreases the dominance of the other eye. 
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One final analysis consists in looking at the relation-
ship between the two survival probabilities for different 
contrast ratios (Figure 14). We again restrict ourselves to 
the stationary regime. We can see that the sum of the two 
survival probabilities is always larger than 1, indicating that 
two consecutive percepts are never independent. The lack 
of independence (as indicated by a departure from 1 for the 
sum of the survival probabilities) seems to increase for 
more unbalanced stimuli (as the contrast ratio deviates 
from 1). 

General discussion  

Figure 14. Relationship between the asymptotic value of the sur-
vival probabilities in Experiment 3. The sum of the two survival
probabilities (for the left [LE] and right (RE) eyes) is always
greater than 1, indicating that two consecutive percepts are not
independent. 

In this work, we have presented a procedure for analyz-
ing the temporal dynamics of ambiguous and rivalrous per-
ception. The procedure consists of measuring the time-
course of the survival probability of each interpretation, 
that is the probability that the current percept will be sus-
tained for a short duration. 

We see several advantages in reporting survival prob-
abilities. First, the survival probability is a transient meas-
ure of perception and is therefore relevant for the study of 
the temporal dynamics of bistable perception. Second, it is 
sufficient to estimate several other characteristics, such as 
the transient preference (instantaneous probability of see-
ing one percept) and the reversal probability (instantaneous 
probability of experiencing a change of percept). Third, it 
contains critical information about whether the first re-
sponse is more biased than the subsequent responses and 
about the duration of the initial nonstationary regime. 
Fourth, it provides a test of independence for percepts 
taken at regular intervals. 

The report of survival probabilities should provide a 
finer measure of similarity between two bistable processes. 
Previous studies that tested whether two conditions had 
similar temporal dynamic properties had to rely on the 
mean alternation rate (Andrews & Purves, 1997; Chen & 
He, 2003; van Ee, 2005) or on the gamma distribution (Lo-
gothetis, Leopold, & Sheinberg, 1996; Leopold & Logothe-
tis, 1999). It will be of interest to compare the asymptotic 
values and time constants of the survival probabilities in 
these experiments. While we prefer the procedure de-
scribed in this work to collect the survival probabilities, it is 
also possible to estimate these entities from existent ex-
periments that were obtained with the more traditional 
method of continuous data collection (see Appendix D). 

One may question the effect of presenting regular 
beeps on the dynamics of bistable perception. It is indeed 
possible that these beeps will influence the subjective state 
of the observer. However, given that the rate of beeps is 
identical for all observers and for all conditions, this influ-
ence should be constant throughout the course of a trial 
and across conditions. Consider the result that phase dura-
tions are longer at the beginning of the trial than in the 
middle and end. With the continuous response method, 
the observer would press a key less often at the beginning of 

the trial. In contrast, with the discrete method, the beeps 
and the responses occur at the same rate throughout the 
trial. Overall, one could argue that the discrete sampling 
method constrains the attentional load of the observer. If 
confirmed to be true in future studies, this would be a seri-
ous advantage for the discrete method because different 
bistable stimuli are affected differently by attention (e.g., 
Lack, 1978; Meng & Tong, 2004; van Ee, van Dam, & 
Brouwer, 2005). Potentially, the lack of attentional control 
may also participate in the large inter-subject variability typi-
cally reported in bistable experiments (e.g., Carter & Petti-
grew, 2003). More work is clearly needed to compare the 
continuous and discrete recording methods. 

Our analyzing method can also easily be generalized to 
multistable perception where the observer’s percepts alter-
nate between more than two interpretations. In this case, as 
many survival probabilities should be defined as there are 
distinct percepts. In addition, transition probabilities 
should be introduced to test whether some transitions be-
tween two percepts are favored over others (as shown by 
Suzuki & Grabowecky, 2002). While we can anticipate that 
the survival probabilities will reach a stationary regime simi-
larly to that found in this study, the transition probabilities 
might follow very different dynamics. 

Another extension of our method is to consider higher 
order conditional probabilities. We have restricted our-
selves to determine how well the next percept can be pre-
dicted from the current one (first-order analysis), and it will 
be interesting to include the knowledge of the previous 
percept (second order) as well as older percepts. Ultimately, 
one could look at the probability of a reversal as a function 
of time since the last reversal, which is sometimes called the 
“hazard function” (Taylor & Aldridge, 1974). These analy-
ses should provide strong constraints for plausible models 
of bistable perception (e.g., Dayan, 1998; Laing & Chow, 
2002; Wilson, 2003). 
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In summary, we have proposed a technique to measure 
and analyze some of the fundamental properties of the 
temporal dynamics of ambiguous and rivalrous perception. 
We are currently measuring the survival probabilities in a 
variety of bistable stimuli to compare the similarities across 
stimuli and tasks. 

Appendix A: Fitting functions 
The transient preference, reversal probability, and sur-

vival probabilities share a similar time-course. We chose to 
represent this temporal function by a scaled cumulative 
Gaussian with 3 degrees of freedom. The 3 degrees of free-
dom are the asymptotic probability (α) in the stationary 
regime, the time constant (τ) to reach that stationary re-
gime, and the slope (σ) of the function at the inflection 
point. The time constant is defined as the intersection of 
the asymptotic line and the tangent of the function at the 
inflexion point (see Figure 3). The fitting function comes in 
two types, depending on whether the function is mono-
tonically increasing (positive σ) or decreasing (negative σ). 

Let G(m, s, t) represent the usual cumulative Gaussian 
distribution with mean m and variance s2 at time t  

( )( )2 2
2

1( , , ) exp 2
2

t
G m s t x m s dx

sπ−∞

= − −∫ . (2) 

The scaled cumulative Gaussian fitting function H is 
then defined as follows. When σ > 0, 

2
( , , , ) , ,

2 2
H t G tα αα τ σ α τ

σ πσ

 
= −

 




. (3) p R

Alternatively, when σ < 0, 

( )
2

1 1( , , , ) 1 1 , ,
2 2

H t G α αα τ σ α τ
σ πσ

 − − = − − +
 
 

t


. (4) 

The function H presents a singularity at σ = 0. By con-
vention, we shall define 

( , ,0, )H tα τ = α . (5) p R

The 3 degrees of freedom of the scaled cumulative 
function H were adjusted to the data with a maximum like-
lihood procedure that took into account the variability of 
each data point to estimate the best fit. 

Appendix B: Survival probability 
The knowledge of the survival probabilities is sufficient 

to infer the mean transient preference and the reversal 
probability. We detail here the relationships between these 
different entities. 

Let δ be the mean sampling interval (i.e., 2 s in our ex-
periments). Let also R(t) be the event representing the fact 

that the right eye’s image is perceived at time t [and simi-
larly for the left eye’s image L(t)]. Given that the two eyes’ 
images are the only two possible interpretations, we have 

( ) ( )( ) ( ) 1p R t p L t+ = . (6) 

The survival probability for the right eye’s image sR(t) is 
the probability that a percept R at time t will survive at time 
(t + δ). It is therefore defined as the conditional probability 

( )( ) ( ) | ( )Rs t p R t R tδ= + . (7) 

The survival probability of the left eye’s image sL(t) is simi-
larly defined. Note that sR(t) and sL(t) do not necessarily 
sum to one (see Appendix C).  

With the knowledge of the survival probabilities, we 
can estimate the transient preference at the next beep 
p(R(t + δ)) 

( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )

( )( ) ( )

( ) ( ) ( )( )

, ,

| ( ) ( )

| ( ) ( )

( ) ( ) 1 ( ) 1 ( ) .R L

p R t p R t R t p R t L t

p R t R t p R t

p R t L t p L t

s t p R t s t p R t

δ δ δ

δ

δ

+ = + + +

= + +

+

= + − −

 (8) 

In the stationary regime, we have 

( ) ( )( ) ( ) (p R t p R t p Rδ+ = = )  (9) 

and Equation 8 for the transient preference reduces to 

( ) ( ) ( )1 2L L Rs s s= − − − . (10) 

This relationship between transient preference and 
survival probabilities is illustrated in Figure 15. 

In a similar way, the probability v(t) that the current 
percept will reverse at the next beep can be expressed as 

( ) ( )( ) ( ) ( )( )
( )( ) ( )

( )( ) ( )

( ) ( ) ( ) ( )( )

( ) , ,

| ( ) ( )

| ( ) ( )

1 ( ) ( ) 1 ( ) 1 ( )R L

v t p L t R t p R t L t

p L t R t p R t

t L t p L t

s t p R t s t p R t

δ δ

δ

δ

= + + +

= + +

+

= − + − −

 (11) 

.

In the stationary regime, we can use the expression we 
found for the transient preference probability (Equation 
10). In doing this, the reversal probability reduces to 

( ) ( ) ( )2 1 1 2L R Lv s s s s= − − − − R . (12) 

The relationship between the reversal probability and 
the survival probabilities is illustrated in Figure 16. 

A comparison between Figures 15 and 16 makes it 
clear that there are no simple relationships between the 
transient preference and the reversal probabilities. In other 
words, the transient preference and reversal probability 
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Figure 15. Contour plot of the relationship between the transient
preference and the survival probabilities. Each blue line repre-
sents the pairs of survival probabilities that are compatible with a
given transient preference (indicated by the number on the line).
The two red dots represent the two observers in Experiment 1.
The green dashed line indicates the independence constraint
(see Appendix C). 

 

 

Figure 16. Contour plot of the relationship between the reversal
probability and the survival probabilities. Each blue curve repre-
sents the pairs of survival probabilities that are compatible with
given reversal probabilities (indicated by the number on the line).
The red dots and the green line are identical to that of Figure 15.

represent different aspects of the temporal dynamics of 
bistability, but both of these aspects can be described from 
the knowledge of the survival probabilities. 

Appendix C: Independence 
How independent are consecutive responses? This 

question can be answered easily thanks to the survival 
probabilities. We first list all four possible transitions be-
tween consecutive responses and their corresponding ex-
pressions in terms of survival probabilities: 

( )

( )

( )

( )

( ) | ( ) ( )
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( ) | ( ) 1 (
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If one percept is independent of the previous one, then 
these conditional probabilities reduce to 

( )
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From these equations, the following constraint 
emerges: 

( ) ( ) 1R Ls t s t+ = . (15) 

This constraint is a necessary and sufficient condition 
for the percepts to be selected independently of the previ-
ous ones. The constraint is depicted as a green dashed line 
in Figures 15 and 16. 

When the percepts are independent, the transient 
preference and reversal probabilities simplify. In the sta-
tionary regime, we can take back Equations 10 and 12 de-
rived in Appendix B to find 

( )

( )

2 1

R

R R

p R s

v s s

=


= − .
  (16) 

Appendix D: Continuous data 
In this Appendix, we report a simple procedure to re-

analyze previous data sets that were collected with the usual 
method of asking observers to report any change of percept 
as soon as it occurred. While we prefer our method of data 
collection, because it allows for a better control of the ob-
server’s attention, the following procedure might be helpful 
to extract survival probabilities of existing data sets. 

We ran six observers with the same stimuli as in the 
first and second experiments (contrast ratio of 0.25), pre-
sented for 5 min at a time. Observers saw eight such ses-
sions. Instead of responding at regular intervals, observers 
were given two keys assigned to the two possible interpreta-
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tions (left- and right-oriented Gabors) and asked to press a 
key continuously according to their current percept. If their 
percept was a fusion of the two interpretations, they were 
allowed to press both keys simultaneously. 

Analysis 
To compute the survival probabilities in an experiment 

where observers report continuously their percept, we need 
to sample the data at regular intervals. For the sake of com-
parison, we sampled the data with a period of 2 s, starting  
1 s after the onset of the stimulus (Figure 17). 

It is clear that such a coarse sampling is likely to miss 
transitory percepts shorter than 2 s, and erroneously mix 
consecutive identical percepts that are separated by a very 
short transient. As a result, the mean phase durations will 
be exaggerated in the sampled version of the continuous 
data (on average across observers by 15.2% in our experi-
ment). However, this exaggeration affects all conditions 
similarly, and is therefore of little concern as long as the 
experimenter is aware of it. In addition, it is fair to remem-
ber that even with continuous data collection, very short 
phases are likely to be missed because of the observers’ un-
willingness to press two keys in very fast alternation. Our 
discrete method of data collection has the advantage of be-
ing objective in setting the threshold for the smallest phase 
analyzed. 

 

Figure 17. Conversion between continuous and discrete sam-
pling. Only the first 60 s of a 5-min run are shown. Times when
the two keys were pressed simultaneously are assigned a per-
cept value of 1.5. 
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Results 
Sampled data were averaged together for the six ob-

servers. The survival probabilities look similar to those re-
ported in the other experiments detailed in this manuscript 
(Figure 18). The asymptotic values are 0.55 and 0.67 for the 
low- and high-contrast interpretations, respectively. 
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