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In psychophysical studies, the psychometric function is used to model the relation between physical stimulus intensity and 
the observer’s ability to detect or discriminate between stimuli of different intensities. In this study, we propose the use of 
Bayesian inference to extract the information contained in experimental data to estimate the parameters of psychometric 
functions. Because Bayesian inference cannot be performed analytically, we describe how a Markov chain Monte Carlo 
method can be used to generate samples from the posterior distribution over parameters. These samples are used to 
estimate Bayesian confidence intervals and other characteristics of the posterior distribution. In addition, we discuss the 
parameterization of psychometric functions and the role of prior distributions in the analysis. The proposed approach is 
exemplified using artificially generated data and in a case study for real experimental data. Furthermore, we compare our 
approach with traditional methods based on maximum likelihood parameter estimation combined with bootstrap 
techniques for confidence interval estimation and find the Bayesian approach to be superior. 
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Introduction 
Psychophysics explores the connection between physi-

cal stimuli and subjective responses. The psychometric 
function relates the stimulus intensity (“physics”) on the 
abscissa to the observer’s response (“psychology”) on the 
ordinate and is the central function in the analysis of data 
obtained from psychophysical studies. This is true not only 
in classical psychophysical settings in experimental psychol-
ogy but also equally true in clinical or developmental stud-
ies where the datasets are typically even smaller, and thus 
proper statistical procedures are even more important. It is 
also true in awake-behaving neurophysiology studies where 
the datasets may be larger but the problem of stimulus-
independent errors or “lapses” (Wichmann & Hill, 2001a) 
may be more pronounced. 

Given that psychophysical experiments tend to be time 
consuming and tiring for the observers, many methods 
have been developed to estimate only a single point of the 
psychometric function, typically a point in the interval be-
tween 50% and 90% correct performance termed the 
threshold. These so-called adaptive methods vary the stimulus 
strength based on previous responses of the observer; adap-
tive methods can be divided into nonparametric (Garcia-
Perez, 1998; Rose, Teller, & Rendleman, 1970; Taylor, 
1971; Wetherill & Levitt, 1965) and parametric (Alcalá-
Quintana & Garcia-Pérez, 2004; King-Smith & Rose, 1997; 
Kontsevich & Tyler, 1999; Madigan & Williams, 1987; 
Pelli, 1987; Pentland, 1980; Snoeren & Puts, 1997; Wat-
son & Pelli, 1983; Watt & Andrews, 1981), the latter in-

cluding some methods that are explicitly Bayesian (Alcalá-
Quintana & Garcia-Pérez, 2004; Kontsevich & Tyler, 1999; 
Watson & Pelli, 1983). For a review of some of the most 
common adaptive methods, see  Treutwein (1995). 

However, in many cases it is important not only to 
know a single point of the psychometric function but also 
to estimate it in its entirety. Differences between experi-
mental conditions may not lead to different threshold val-
ues but the slope of the psychometric functions could have 
changed significantly (Green & Swets, 1966; Wichmann, 
1999). In principle, all trials taken during a run of an adap-
tive method could be used to estimate the complete psy-
chometric function, but this is not recommended because 
the sampling, optimized to estimate only a single point, is 
sub-optimal for complete function estimation (Kaernbach, 
2001). 

There exists a fairly comprehensive literature on esti-
mating the psychometric function (Klein, 2001; O'Regan & 
Humbert, 1989; Treutwein & Strasburger, 1999), with 
some studies additionally covering sampling issues and 
goodness-of-fit (Wichmann & Hill, 2001a, 2001b) or non-
parametric estimation methods (Miller & Ulrich, 2001). 
Comparatively few studies, however, have investigated how 
to obtain reliable confidence intervals for the estimated 
parameters of psychometric functions (Finney, 1971; Foster 
& Bischof, 1991, 1997; Maloney, 1990; McKee, Klein, & 
Teller, 1985; Wichmann & Hill, 2001a, 2001b). There ap-
pears to exist a general consensus, however, that bootstrap 
methods offer more reliable confidence intervals than 
methods based on asymptotic considerations due to small 
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datasets typical in psychophysical research (between 50 and 
1000 trials per psychometric function). In this work, we 
present experiments suggesting that Bayesian inference 
methods are likely to lead to more accurate point estimates 
and confidence intervals than do bootstrap-based tech-
niques. 

The binomial mixture model 
In this section, we formally derive a basic statistical 

model of the process that generates the data. The object of 
interest is a parametric psychometric function F(x,θ) parameter-
ized by θ, which maps the stimulus intensity x to the [0,1] 
interval. This function is commonly chosen to have a sig-
moidal form like cumulative density functions of various 
probability distributions. We will discuss several common 
choices below in Parameterization and prior distributions. 

The psychometric function relates the observer’s re-
sponse to stimulus intensity. In an nAFC experimental set-
ting, there is a chance probability πc that the observer 
“guesses” the correct answer independent of the stimulus. 
This probability of making the correct guess is usually  
πc = 1/n, where n is the number of possible choices (the n 
in nAFC). In a long sequence of experimental trials, the 
observer occasionally lapses (i.e., makes a random choice 
independent of the stimulus). In vision experiments an ob-
vious example is blinking while the stimulus is presented. 
This probability of lapsing πl is a nuisance parameter, but it 
is necessary to take its effect into account in statistical 
modeling as shown by Wichmann and Hill (2001a, 2001b). 

We now have all quantities for a basic model to relate 
the psychometric function F to the probability of giving the 
correct answer in a single nAFC stimulus presentation. 
Given the stimulus intensity x, the event of correct dis-
crimination is a Bernoulli variable with probability of suc-
cess equal to  

( ) (1 ) (1 ) ( )c l l c c c lx F xθ π π π π θ π π π 
 Ψ , , , = − − , + + , (1) 

where F(x,θ) characterizes the change of discriminability as 
a function of the stimulus intensity. The model comes in 
the form of a mixture of two Bernoulli distributions, which 
is again a Bernoulli distribution. With probability πl the 
observer lapses and has chance πc to guess the correct an-
swer. With probability (1 − πl) the observer does not lapse 
and has a chance of (1 − πc)F(x,θ)+πc, which is F(x,θ) 
scaled to the [πc,1] interval, to give the correct answer.  

The psychophysical experiment can be seen as a se-
quence of such Bernoulli trials. Often only a small number 
{x1,…,xk} of distinct stimulus intensities are used in  
an experiment, which allows a more compact representa-
tion. By aggregating the trials for identical stimulus  
intensities, we compress the data to a set of triples  
D = {(x,N,n)i|i = 1,…,k} such that at contrast xi we con-
ducted Ni trials and observed ni correct responses. Because 
ni is a sum of Bernoulli variables, it has a binomial distribu-
tion 
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where Ψ is given by Equation 1. Equation 2 describes the 
assumed generative model of the data (i.e., the sampling dis-
tribution). Furthermore, read as a function of θ and πl for 
observed D, we refer to it as the likelihood of the binomial 
mixture model. 

What we have described thus far is the standard bino-
mial mixture model for parametric psychometric functions 
as assumed in virtually every study on psychometric func-
tion fitting (e.g., Klein, 2001; Maloney, 1990; Treutwein & 
Strasburger, 1999)—except for the addition of the nuisance 
parameter πl (Wichmann & Hill, 2001a). Furthermore, this 
model is easy to analyze and efficient to implement. Never-
theless, in data analysis one should always be aware of the 
model’s assumptions, and the conclusions drawn from an 
analysis should obviously not be trusted more than the as-
sumptions they are based on, whether we apply Bayesian 
inference or any other statistical method. For example, the 
assumption that for a given stimulus intensity the Bernoulli 
trials all have the same probability of success ignores adap-
tation processes, learning, and other forms of nonstationar-
ity. For well-trained psychophysical observers this assump-
tion is justified (Blackwell, 1952), but for naïve observers it 
may not always hold true, and the residuals of the fit have 
to be examined in detail (Wichmann & Hill, 2001a). A 
second potential worry concerns the choice or assumption 
of a particular parametric form of F. Typically, there are 
few a priori reasons to favor one sigmoidal function over 
another. In practice, however, the estimates of threshold 
and slope of the psychometric function rarely differ signifi-
cantly from one F to another (Wichmann & Hill, 2001b).  

Bayesian inference for  
psychometric functions 

Here we describe how the data collected in psycho-
physical experiments can be used to do Bayesian inference 
about the parameters θ of a psychometric function F(x,θ) 
and the lapse probability πl. 

First we give a general description of how inference is 
performed in the Bayesian framework, using a simplified 
notation. Starting point is a model of the process of how 
the data that we can observe is generated. Let p(D|φ) be a 
statistical description of this model where D denotes ob-
servable data and φ are model parameters. In a nutshell, the 
problem is that the true generating parameter φ* is hidden, 
but by observing data we can reduce our uncertainty about 
its value. In the Bayesian framework, probability distribu-
tions over parameter values are used to describe beliefs and 
uncertainties about the parameter value in the data-
generating process. 
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The prior distribution p(φ) represents beliefs about the 
value of the true parameter φ* previous to an inference step. 
By inference we refer to the process of integrating the in-
formation contained in observed data D and the prior p(φ) 
into a posterior distribution p(φ|D). The posterior is ob-
tained according to Bayes’ rule:  

( ) (( )
( )

p D pp D
p D

) .φ φφ |
| =  (3) 

This can be understood as a weighting in which prior 
beliefs about φ* are weighted proportionally to their com-
patibility with the observed data. The weighting is given by 
the likelihood function, which is p(D|φ) as a function of φ 
for given D. Prior and posterior are probability distribu-
tions describing two states relative to an inference step and 
correspond to potentially different beliefs about the value 
of the parameter that generated the data. For details, the 
reader is referred to O'Hagan (1994) and Jaynes (2003), to 
mention only two textbooks on Bayesian statistics.  

We now describe how this framework can be applied to 
infer something about the parameters of psychometric 
functions. In the following, we assume the data are gener-
ated according to the binomial mixture model for some 
specific parametric type of F(x,θ). In psychophysical studies 
data D = {(x,N,n)i |i = 1,…,k} are collected to learn about 
θ and πl. Again Bayes’ rule describes how the observed data 
consistently reduce the uncertainty about the underlying 
value of θ and πl. Formally, the posterior is obtained ac-
cording to Bayes’ rule  

( ) ( ) ( )
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where p(θ) and p(πl) are prior distributions, p(D|θ,πl,πc) 
acts as the likelihood, and p(θ,πl |D,πc) is the posterior. The 
posterior distribution summarizes all information con-
tained in the observations and the prior about θ and πl. 
Unfortunately, solving the integral in the denominator ap-
pears to be analytically intractable such that the posterior 
cannot be computed in closed form. Even if we could com-
pute the posterior, the distribution would be of a nonstan-
dard type, and we would be unable to work with it analyti-
cally. We therefore have to use approximative techniques to 
describe the information presented by the posterior.  

Point estimates and confidence intervals 
The most simple approximation to the information 

represented by the posterior distribution is to state a single 
point estimate of the true parameter values. In the Bayesian 
framework, choosing a point estimate is considered a deci-
sion problem in which the decision maker minimizes an 
expected risk, where the expectation is taken with respect 
to the posterior distribution (Jaynes, 2003). The risk func-
tion characterizes the loss associated with a discrepancy be-
tween the point estimate and the unknown true parameter 
value. For example, the expected absolute error is mini-

mized by the median of the posterior distribution (MED). 
Likewise, minimizing the expected squared error leads to 
choosing the mean of the posterior (MEAN).  

The mode of the posterior, which will be referred to as 
the maximum a posteriori (MAP) estimate, is obtained for a 
loss function, which is zero if the estimate and the true 
value match exactly and 1 otherwise. In the binomial mix-
ture model, assuming the psychometric function is differ-
entiable, gradient-based methods can be used to find the 
MAP point estimate  

( ) ( ) ( ) ( )argmax
l

MAP p D p pl l c
θ π

θ π θ π π θ π
,

, = | , , .l
 (5) 

If the prior p(θ)p(πl) is taken to be constant (i.e., a flat 
prior), the maximum likelihood (ML) estimator is derived 
as a special case.  

Another simple approximation technique is Laplace’s 
method, by which the posterior is approximated by a Gaus-
sian distribution that is found by a second-order Taylor 
expansion around the mode. This method is applicable in 
the proposed setting but the approximation might be poor. 
An obvious drawback is that the approximation is symmet-
ric and fitted locally around the mode but can be poor in 
approximating the tails of the posterior. We therefore do 
not consider this method in the following.  

The posterior distribution represents the remaining 
uncertainty after having seen the data. An obvious problem 
is that any notion of uncertainty or confidence is lost when 
only point estimates are stated. A convenient way of ex-
pressing how narrowly a parameter is determined is to state 
confidence regions. Given a confidence level γ∈(0,1), the 
notion of a confidence region is conceptually different in 
frequentist and Bayesian statistics (DeGroot & Schervish, 
2002).  

In the Bayesian framework, it is valid to define a γ con-
fidence region simply as a region in which the true parame-
ter values are believed to lie with probability γ. This can be 
stated because the parameters are random variables, and we 
can express our degree of belief for any statement regarding 
the parameters by evaluating the statement under the pos-
terior distribution.  

In frequentist statistics confidence regions are con-
structed and interpreted differently. In this setting, the re-
gion itself is a random variable that contains the true pa-
rameter value with probability γ. This means that if the ex-
periment is repeated infinitely many times, the proportion 
of computed regions containing the true value would be γ. 
For a particular data set, it is not possible to state a prob-
ability assignment that the true parameter lies in a com-
puted confidence interval.  

In case the distribution of an estimator cannot be 
computed analytically, a common strategy in frequentist 
statistics is to compute approximate confidence intervals 
using bootstrap methods (Efron & Tibshirani, 1993). The 
basic idea is to repeatedly generate artificial data sets. For 
each artificial data set, the parameters are re-estimated and 

 



Journal of Vision (2005) 5, 478-492 Kuss, Jäkel, & Wichmann 481 

the variability of these estimates is used to estimate confi-
dence intervals. In parametric bootstrap methods, artificial 
data sets are generated from the model using maximum 
likelihood estimates of the parameters. Wichmann and Hill 
(2001b) describe parametric bootstrap techniques to esti-
mate confidence intervals for parameters of psychometric 
functions. The accuracy of confidence intervals obtained by 
this method crucially depends on the accuracy of the 
maximum likelihood estimate.  

From a Bayesian point of view, the posterior represents 
the uncertainty about the true parameter values and should 
therefore be used to make confidence statements. Ap-
proximations using sampling methods are also common in 
Bayesian statistics in situations in which the posterior can-
not be computed analytically. The difference is that in the 
Bayesian framework, samples are generated from the poste-
rior over parameters. This can be implemented using 
Markov chain Monte Carlo techniques.  

Approximate inference by Markov chain 
Monte Carlo sampling 

In this section, we describe the basic idea of using 
Markov chain Monte Carlo (MCMC) methods for ap-
proximate Bayesian inference. For more technical introduc-
tions, the reader is referred to MacKay (1999, 2003), while 
more comprehensive reviews can be found in Neal (1993) 
and Gilks, Richardson, and Spiegelhalter (1996). 

Recall the simplified notation introduced in the previ-
ous section. Assume some data D have been observed and 
we want to compute the posterior according to Bayes’ rule 
Equation 3. A common situation is that we can evaluate 
the likelihood p(D|φ) and the prior p(φ) for every possible 
value of φ, but we cannot compute or work with the  
posterior analytically. MCMC methods sidestep this prob-
lem by generating samples from the posterior p(φ|D)  
using only evaluations of the unnormalized posterior  
q(φ|D) = p(D|φ)p(φ). The idea behind this is that the sam-
ples characterize the posterior distribution sufficiently well. 

In particular, statistics of the samples can be used to ap-
proximate properties of the posterior distribution. For ex-
ample, the mean of the samples is an approximation to the 
mean of the posterior distribution.  

To generate a sample from the posterior, a random se-
quence of parameter values φ1,φ2,…,φn is generated such 
that the distribution of φn asymptotically becomes identical 
to the posterior as the length of the sequence n increases. 
In the MCMC terminology, the sequence is called a chain 
and each element is referred to as a state. In practice the 
chain is generated for a finite length n and the state φn is 
interpreted as a sample of the posterior. The procedure is 
repeated until enough samples are obtained such that the 
characteristics of the posterior distribution can be well ap-
proximated by statistics of the generated samples.  

For this mechanism to work, the sequence has to be 
constructed in a particular way following the Metropolis-
Hastings rule, which determines how consecutive states in a 
chain are found. Assume φt is the current state. To find a 
valid consecutive state φt+1, a candidate value φ′ is proposed 
from a proposal distribution p(φ′|φt), for example, a Gaussian 
distribution centered at φt. The decision whether φ′ is ac-
cepted as consecutive state depends on the ratio  

( )( )
( ) (

t

t t

pq D
q D p )

φ φφπ
φ φ φ

′′ ||
= .

′| |
 (6) 

According to the Metropolis-Hastings rule, the pro-
posal φ′ is accepted if π > 1; otherwise, the probability of 
acceptance is equal to π. The first fraction in the definition 
of π captures whether the proposed state is in a region of 
higher posterior density than the current state. The second 
term captures the reversibility of the proposed state transi-
tion in case the proposal distribution is asymmetric (for the 
Gaussian example mentioned above this term is equal to 
1). Because φt+1 depends only on φt and not on the history 
of states, the resulting chain is called a Markov chain. See  
Figure 1 for an example.  

 

φ 2

φ1  

Figure 1. Illustration of Markov chain Monte Carlo (MCMC) sampling. The ellipse represents a contour of a posterior p(φ|D) we want to
sample (i.e., that we want to approximate). The left panel shows a chain (after 10 proposed states) generated by Metropolis-Hastings
sampling using local moves [the proposal distribution is Gaussian p(φ′|φt) = N(φ′|φ′,σ2I)]. States are depicted by points and consecutive
states are connected by lines. The central panel shows a chain (after 10 proposed states) obtained using hybrid MCMC sampling. Note
that the states appear to be less dependent, whereas the number of accepted states is larger. The right panel shows 2000 samples
generated using hybrid MCMC. 
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The computational efficiency of MCMC sampling de-
pends on how the consecutive state is proposed. While 
simulating the Markov chain, states that occur close-by in 
the chain are dependent through the proposal distribution. 
Refinements of this scheme are directed toward improved 
proposal distributions such that this dependence is re-
duced. This has the effect of reducing the length of the se-
quence n after which the state can be considered an ap-
proximately independent sample of the posterior.  

In the following we use hybrid Monte Carlo sampling, 
which is also known as Hamiltonian sampling, as described 
by Neal (1993) and MacKay (2003). New states are pro-
posed using a procedure that can be understood as a dis-
crete simulation of Hamiltonian dynamics. The sampling 
scheme requires additional parameters to be set, namely the 
number of steps (so-called leapfrog steps) and the step sizes 
used in the discrete simulation.  

The main idea of this work is to use hybrid MCMC 
sampling to generate samples from the posterior (Equation 
4) over the parameters of psychometric functions. Once we 
are convinced that the MCMC samples we have generated 
are representative of the posterior, they can be used to es-
timate certain characteristics of the posterior distribution. 
The empirical mean of the samples can be used as an esti-
mate of the expectation of the posterior distribution 
(MEAN). Likewise, the sample median is an approximation 
to the median of the posterior distribution (MED). The 
empirical quantiles of the samples can be interpreted as 
estimates of the quantiles of the posterior distribution. We 
refer to the interval between the (1 −  γ)/2 and (1 + γ)/2 
empirical quantiles of the samples as an approximate Bayes-
ian γ confidence interval.  

Before we present examples of this approach, the fol-
lowing section describes parameterizations of psychometric 
functions and the role of prior distributions in the analysis. 

Parameterization and  
prior distributions  

In psychophysical practice the experimenter has certain 
beliefs about the mechanism of interest, otherwise the ex-
periment could not be designed. Expressing prior beliefs 
and parameterization of the model go hand in hand. It is 
therefore advantageous to parameterize the model close to 
the way the scientist thinks about the mechanism it de-
scribes. In the following section, we describe a convenient 
parameterization of psychometric functions, before we dis-
cuss various forms of prior distributions on their parame-
ters.  

Parameterization of the  
psychometric function 

Let F(x,θ) be the psychometric function and F−1 its in-
verse. In the analysis of psychophysical data, a common 
interest is to locate the threshold m = F−1(0.5) and a range 
for which the detectability varies with the stimulus inten-
sity. A common way of characterizing the sensitivity of  
an observer is the (inverse) slope of the psychometric  
function at the threshold location. Another way of describ-
ing the range of interest is the width w defined as  
w = F−1(1−α) − F−1(α). This is the length of the interval 
between F−1(α), the stimulus intensity at which F(x,θ) = α, 
and F−1(1 − α) for some small α. As default we use α = 0.1, 
such that w is the range in which F ranges from 0.1 to 0.9. 
(see Figure 2a). The parameterization of the psychometric 
function in terms of threshold and width has been pro-
posed by Alcalá-Quintana and Garcia-Pérez (2004). An ad-
vantage of this parameterization is that w comes in the scale 
of the stimulus itself, whereas the value of the slope is usu-
ally difficult to interpret. Furthermore, the width is more 
general than the slope in the sense that it can be used in 
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Figure 2. Types and parameterization of psychometric functions. (a) illustrates the parameterization of psychometric functions in terms
of threshold location m and width w between F−1(α) and F−1(1−α). The example shows a Gumbel function for α = 0.1. (b) exemplifies
different types of psychometric function. The logistic, Gaussian, and Gumbel functions are shown for m = 5 and w = 5. The Weibull
functions are plotted for m = 5 and s = 0.5. 
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models for which the slope at a particular point does not 
determine the entire psychometric function.  

We now show how various common functions used to 
model F can be parameterized such that θ = [m,w]. Note 
that the approach described in this study is not limited to 
this particular parameterization of F. Many of the functions 
used to model F also appear in statistical generalized linear 
models (GLMs) in which they are called response functions 
(McCullagh & Nelder, 1989). 

The logistic function, which is called logit response 
function in GLMs, can be parameterized as  

1

logistic
( )( ) 1 exp ( )zF x x m
w
αθ

−
 , = + − − 

  
,


  (7) 

where z(α) = 2ln(1/α−1). The function is point symmetric 
around the threshold. If w is positive the functions have 
positive slope and negative slope if w is negative.  

The cumulative density function (cdf) of the normal 
distribution Φ, the probit response, can be parameterized as  

gauss ( )
( )
wF x x m

z
θ

α


, = Φ | ,
 

,

  (8) 

where z(α) = Φ−1(1−α)−Φ−1(α) using the quantile function 
Φ−1 (inverse of cdf) of the standard normal distribution. 
The resulting functions often appear very similar to the 
logistic (see Figure 2b).  

The Gumbel function can be derived from the cdf of 
the Gumbel distribution and is known in GLMs as the  
log-log model. We use the parameterization   

gumbel ( )

( ) (1 )1 exp exp ( ) (0 5) ,

F x

z z x m z
w

θ

α α

, =

 − −− − − + . 
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where z(α) = ln(−ln(α)). The Gumbel function is asymmet-
ric. For small x the function is similar to the logistic func-
tion but approaches 1 faster as the stimulus intensity gets 
larger. The asymmetry can be reversed, and we obtain the 
reversed Gumbel function  

rgumbel ( )

(1 ) ( )exp exp ( ) (0 5) ,

F x

z z x m z
w

θ

α α

, =

 − −− − 


+ . 


 (10) 

where again z(α) = ln(−ln(α)).  
Another frequently found functional form is related to 

the cdf of the Weibull distribution, which is also asymmet-
ric. Using the Weibull function is equivalent to using a 
Gumbel function for log-transformed stimulus intensities. 
Unfortunately, the Weibull function cannot be parameter-
ized in terms of a width parameter w. Instead, we param-
eterize the function by threshold location m and slope at 

threshold F
x m

s ∂
∂= . So we use the following parametric 

form for the Weibull function 
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21 exp exp ln( ) ln( ) ln(ln(2))
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F x

sm x m
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and  

( )

rweibull ( )

2exp exp ln( ) ln( ) ln(ln(2))
ln(2)

F x

sm x m
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for the reversed Weibull function. Both Weibull functions 
are defined for x > 0 and tend to 0 as x→0, which makes 
them conceptually appealing in many psychophysical set-
tings. 

Prior distributions 
Ideally, a prior distribution describes the scientist’s de-

gree of belief for all hypotheses about the true model pa-
rameters. For continuous parameters, one could “draw” a 
curve over the parameter space representing the shape of 
the prior. The line would be at zero for parameter values 
that are believed to be absolutely impossible and otherwise 
proportional to the degree of belief in the hypothesis that 
the pen is over the true value. Using a prior from a para-
metric family of distributions can be seen as a convenient 
approximation to this “drawn prior” because it reduces the 
prior to a parametric form with a few parameters. In prac-
tice, a simple technique to find a parametric representation 
of prior beliefs is to plot probability density functions from 
a convenient family of distributions. Varying the parame-
ters one can often find a function that is close to the drawn 
prior. One should also sample from the prior and inspect 
whether the corresponding model is consistent with prior 
beliefs.  

Often scientists unfamiliar with Bayesian data analysis 
feel that using informative priors—reflecting their under-
standing and uncertainties about the data-generating proc-
ess—somehow “distorts” the inference process. Expressing 
prior beliefs is certainly nontrivial and requires great care. 
A common misconception is that using a flat, constant 
prior on model parameters is equivalent to expressing no 
prior information about the data-generating process—from 
a Bayesian point of view this is exactly what non-Bayesians 
do when they do not specify any prior explicitly. In fact, 
this prior describes the belief that every parameter value is 
equally likely to the scientist. However, this is typically not 
what the scientists intend: What they want is to allow every 
model or shape of the model to be equally likely, that is, 
they want a flat prior in model space. Typically, a flat prior 
on parameters is, unfortunately, not flat in model space. 
For psychometric functions this is illustrated in Figure 3. 
Here we show that using flat priors on the parameters θ 
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Figure 3. Simply changing the parameterization of the psychometric function makes flat priors favor steep psychometric functions–the
prior is flat on parameters but not in function space. We approximate a flat prior on the elements of θ by uniform distributions on the
interval [-1000,1000]. For (a) the logistic psychometric function was parameterized F(x,θ) = (1+exp(-(θ1x+θ2)))-1. We then sampled val-
ues of θ from the flat prior and plotted the corresponding psychometric function. For (b) the parameterization as shown in Equation 8
was used. Note the different x scales. 

strongly favors very steep psychometric functions in Figure 
3a, whereas if we simply re-parameterize our psychometric 
function, this tendency to favor steep psychometric func-
tions disappears in Figure 3b.  

Using a flat prior for the lapse rate πl, a uniform distri-
bution on [0,1], indeed represents maximal uncertainty. 
The hypotheses that every experimental observation was 
independent of the stimulus or that no lapse occurred are 
equally likely. That might reflect the uncertainties of a sci-
entist under certain circumstances, but in general the no-
tion of a lapse implies a rare event. Note that a flat prior on 
the lapse probability allows the model to explain all the 
data as a sequence of lapses, which intuitively minimizes 
the credibility of every observation. So if the scientist can 
safely assume that the lapse rate of an observer in a given 
task is small, the observations become more informative 
about the psychometric function and so its parameters can 
be better identified. On the other hand, excluding the po-
tential existence of outliers forces the model to explain 
every single observation such that a single observation can 
become decisive. Note also that in the procedures described 
by Wichmann and Hill (2001a, 2001b) the parameter simi-
lar to the lapse rate is constrained during the ML optimiza-
tion.  

It can lend insight to examine how sensitively the pos-
terior reacts to changes of the prior. The more data are 
available and the data are informative about the parame-
ters, the less influential the prior will be. Comparing poste-
riors and priors can illustrate how informative the experi-
mental data are about the parameters. When the data do 
not reduce the uncertainty about a certain parameter, then 
both distributions will be the same, expressing the beliefs 
are unchanged. The only warning is not to put zero prior 
probability on potential parameter values unless one knows 
that they are impossible (Cromwell’s dictum).  

We now describe some families of distributions that 
will be used as priors for the parameters of psychometric 
functions in the experiments described in the following 
sections. For details on the distributions, the reader is re-
ferred to any standard text book on statistics (e.g., DeGroot 
& Schervish, 2002).  

The lapse parameter πl takes values in the unit interval, 
and therefore the Beta distribution p(πl|α,β) = Beta(πl|α,β) 
is a convenient choice (see Figure 4a). For α = 1 and β = 1 
the uniform distribution on [0,1] is a particular case.  

Considering priors for the elements of θ, parameteriz-
ing the psychometric function as described above is advan-
tageous because the parameters have a more intuitive inter-
pretation. For convenience, we specify the priors independ-
ently p(θ) = p(θ1)p(θ2). Especially for the location, parame-
ter m, a normal (Gaussian) distribution, is a convenient 
choice if its value is unconstrained. By setting the standard 
deviation to increasingly large values, the prior becomes 
vaguer. For parameters that are known to be strictly posi-
tive, for example, the width w or the slope s, the gamma  
or the log-normal distribution can be used. If x is  
log-normal distributed, log(x) follows a normal distribu-
tion. See Figure 4b for examples of gamma and log-normal 
probability density functions. This section sketched only a 
small selection of possible densities one can use for specify-
ing priors on the parameters of psychometric functions. If 
common distributions are not sufficient to model the prior, 
mixtures of distributions can also be used.  

Experiments 
Here we present and discuss simulations based on syn-

thetic data and a case study in which we analyze real ex-
perimental data. Experiments in which the data are gener-
ated from the model can be useful for examining how well 
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Figure 4. Illustration of the form of probability density functions of the beta, gamma, and log-normal distribution for different parameter
values. Note that the probability density functions are scaled to the unit interval. 

the true parameters can be identified, depending on the 
properties of the data. We do not aim at providing an ex-
haustive set of experiments for all possible data situations. 
Instead, the focus will be on understanding the advantages 
and difficulties of the proposed method.  

Synthetic data 
For illustration purposes, a data set from the binomial 

mixture model (Equation 2) is generated, where F is a 
Gumbel function with threshold location m = 5, width  
w = 3 (for α = 0.1), and lapse probability πl = 0.05. For  
k = 6 stimulus intensities xi, corresponding to the F values 
equal to 0.1, 0.3, 0.6, 0.74, 0.84, and 0.94, we generate  
Ni = 60 samples respectively, which sums to 360 Bernoulli 
trials in total. 

How to choose a prior in artificial experiments is a 
problematic issue. In the following examples the prior 

should be accepted as a toy-prior for demonstration pur-
poses. For the lapse probability we use a Beta(2,50) prior 
(see Figure 4a). On the threshold location we put a wide 
normal prior with mean µ = 2 and SD σ = 10, which ex-
presses very little information about m. On the width we 
put a log-normal prior distribution logN(1,1) (see Figure 
4b). Using hybrid MCMC sampling we simulate a Markov 
chain of 2000 samples from the posterior with 100 leapfrog 
steps and step sizes (0.5,0.1,0.2), which were chosen to ob-
tain an acceptance rate of approximately 80% and very lit-
tle autocorrelation between samples.  

Furthermore, we compute the posterior sample MEAN, 
MAP, and ML point estimates, for which the correspond-
ing Ψ(x,θ,πl) are depicted in Figure 5a. By taking samples 
from the MCMC chain and plotting the corresponding 
Ψ(x,θ,πl), we obtain Figure 5b. Each of the sampled func-
tions represents a hypothesis about the underlying genera-
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Figure 5. Synthetic data example. (a) shows the generated data set (dots), the Ψ(x,θ,πl) that was used to generate the data, and three
estimates thereof. The maximum likelihood estimate (ML) clearly overestimates πl and infers a too small width w. The estimate that ap-
pears closest to the generating Ψ(x,θ,πl) corresponds to the mean of MCMC samples and the maximum a posteriori (MAP) estimate. In
(b) we plot a large number of hypotheses, each corresponding to an MCMC sample.  
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Figure 6. Synthetic data example. Plots of prior densities and histograms of posterior samples. Each plot (a–c) corresponds to one
model parameter (πl, m, and w) and shows the normalized histogram of MCMC samples of the posterior distribution in comparison to
the prior density. Vertical lines mark the value that was used to generate the data, the ML, and MAP point estimates and the 0.05, 0.5,
and 0.95 empirical quantiles of the MCMC samples. The interval between the 0.05 and 0.95 quantiles is the approximate Bayesian 90%
confidence interval. (d) shows a scatter plot of w and m parts of the samples. Note the negative correlation, which corresponds to the
necessity of steeper functions as the threshold location is moved to the right. 

tive function valid under the posterior. The functions are 
relatively close for large values of x but show rather large 
differences for smaller stimulus intensities. This can be in-
terpreted such that the experimental observations for low 
stimulus intensities do still support a rather wide range of 
hypotheses about the width of the psychometric function.  

We can gain more insights into the posterior by in-
specting the MCMC samples. To illustrate how much the 
data reduced the uncertainty about the parameters, we 
graphically compare priors and posteriors, of which the 
posterior is approximated by a normalized histogram of 
MCMC samples (see Figure 6).  

For the lapse rate shown in Figure 6a, we observe that 
the posterior is very similar to the prior, which indicates 
that the data did not allow us to reduce our uncertainty 
about this parameter. In many experiments we observed 
that identifying the lapse rate is relatively difficult. Never-

theless, the posterior samples of m and w are generated, 
while the assumed πl value varies according to the prior. 

For the threshold location m, the samples shown in 
Figure 6b suggest that the threshold location is well in-
ferred from the data. The prior, which was a wide normal, 
is approximately constant in the plotted region, and we 
observe that the data were very informative. The posterior 
samples of the width w illustrated in Figure 6c show that 
the data were informative about w but the remaining un-
certainty is still relatively large. Note that the function sam-
ples given in Figure 5b already indicated that the posterior 
still supports a rather wide range of hypotheses on w. 

We can use the empirical quantiles of the MCMC 
samples to estimate the quantiles of the posterior distribu-
tion. We take the range between the 0.05 and 0.95 empiri-
cal quantile as an approximation for the Bayesian 90% con-
fidence interval. 

 

http://www.buginword.com
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To examine the accuracy of point estimates and the 
approximated Bayesian confidence regions, we conducted a 
large set of repeated experiments. We compare approxi-
mate Bayesian confidence intervals estimated from MCMC 
samples with confidence intervals obtained using a paramet-
ric bootstrap (Efron & Tibshirani, 1993). In parametric 
bootstrap methods i = 1,…,B, artificial or synthetic data sets 
Di* are generated from one’s fitted model using the maxi-
mum likelihood estimates θ̂ , ˆ lπ , and, if appropriate, ˆ cπ  
of the parameters as generating parameters for the synthetic 
data sets. For each synthetic dataset Di*, we obtain another 
set of maximum likelihood estimates [ ˆ ˆ ˆl c i]π πθ

∗ ∗ ∗, ,  and thus a 
bootstrap distribution of i = 1,…,B values for each parame-
ter. From these distributions we obtain bias-corrected and 
accelerated confidence intervals (Efron, 1987), currently 
considered state of the art in bootstrap techniques. (For the 
bootstrap experiments, we used the psignifit software 
implementation of the method sketched above and de-
scribed in more detail by Wichmann and Hill, 2001b.) 

In the experiments we varied the number of trials N 
and the lapse parameter πl. The Gumbel function as de-
scribed above with m = 5 and w = 3 and same sample loca-
tions were used. The data set size N takes the values 90, 
360, and 900 and lapse rate is set to either 0.05 or 0.15. 
For each of the six conditions, we generated 1000 data sets.  

Performing a large set of MCMC simulations is compu-
tationally demanding, and we cannot inspect each individ-
ual chain. We used one set of parameters for hybrid 
MCMC sampling for each of the six conditions and later 
removed those rare runs in which the acceptance rate was 
lower than 50%. As above we used priors p(m) = N(2,10) 
and p(w) = logN(1,1).  

For data sets generated with a lapse rate πl = 0.05, we 
used a Beta(2,50) prior for πl. To make similar information 
available to the bootstrap method, we constrained the πl 
parameter to [0,0.1] during maximum likelihood estima-
tion. For data sets generated with πl = 0.15, we used 
Beta(2,20) and [0,0.25]. The use of different prior distribu-
tions is necessary because either method—Bayesian infer-
ence and bootstrapping—is highly sensitive to the prior in-
formation on πl. This is not a problem, however, because it 
appears realistic to assume that an experimenter is to some 
degree aware of the lapse rate and asymptotic performance 
of a subject during experiments resulting in different prior 
beliefs.  

First we examine the accuracy of several point estimates 
for m and w. We compare the MAP estimate, the MCMC 
sample mean (MEAN) and median (MED), the maximum 
likelihood (ML) estimate, and the constrained ML (CML) 
estimate computed by psignifit. Each line in the fol-
lowing table states the median of the absolute errors 
|m−m*| of these point estimates in 1000 repeated experi-
ments for the different values of N and πl. 

N πl MAP MEAN MED ML CML 
90 0.05 0.301 0.316  0.289 0.349 0.336  
90 0.15 0.370 0.426  0.353 0.418 0.401  

360 0.05 0.147 0.141  0.136 0.166 0.165  
360 0.15 0.232 0.175  0.179 0.241 0.230  
900 0.05 0.102 0.088  0.090 0.109 0.110  
900 0.15 0.183 0.131  0.139 0.166 0.155  

Table 1. Median of absolute errors |m-m*| for threshold.  
πl = lapse probability, MAP = maximum a posteriori estimate, 
MEAN and MED = mean and median of MCMC samples, ML = 
maximum likelihood estimate, CML = constraint maximum likeli-
hood estimate.  

For estimating m, the sample median MED consistently 
shows good accuracy. Note that the MED minimizes the 
expected absolute error so this result conforms to the the-
ory. 

N πl MAP MEAN MED ML CML 
90 0.05 0.906 1.331  1.024 1.446 1.363  
90 0.15 0.905 2.113  1.128 1.717 1.655  

360 0.05 0.479 0.517  0.478 0.629 0.635  
360 0.15 0.559 0.616  0.574 0.828 0.826  
900 0.05 0.314 0.334  0.320 0.400 0.401  
900 0.15 0.464 0.431  0.405 0.502 0.495  

Table 2. Median of absolute errors |w-w*| for width parameter.   

The width w is best estimated by the MAP followed by 
the MED. The errors decrease with sample size and in-
crease for the large lapse rate.  

We now compare the reliability of bootstrapped and 
Bayesian confidence regions. We therefore compare the 
frequency at which the true generating value was included 
in the approximated 90% confidence interval. In theory 
this frequency should become exactly 90% for large num-
bers of repeated experiments. Larger values correspond to 
over-conservative statements, whereas smaller values indicate 
over-confidence. With the frequency we also report the me-
dian width of the computed confidence intervals.  
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 πl Accuracy Width Accuracy Width 

90 0.05 0.783  1.422  0.903 9.049  
90 0.15 0.707  1.558  0.911 18.258  
60 0.05 0.863  0.757  0.883 3.184  
60 0.15 0.795  0.915  0.865 4.148  
00 0.05 0.848  0.488  0.859 1.934  
00 0.15 0.818  0.682  0.867 2.573  

e 3. Accuracy and width of bootstrap confidence intervals. 

 m w 
 πl Accuracy Width Accuracy Width 

90 0.05 0.911  1.765  0.933 8.103  
90 0.15 0.922  2.340  0.981 11.882  
60 0.05 0.918  0.750  0.931 2.959  
60 0.15 0.926  0.884  0.937 3.745  
00 0.05 0.919  0.457  0.916 1.694  
00 0.15 0.901  0.585  0.916 2.209  

e 4. Accuracy and width of approximate Bayesian confi-
e intervals.

http://www.bootstrap-software.org/
http://www.bootstrap-software.org/
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For the threshold location m, the approximated Bayes-
ian confidence intervals exhibit accuracy close to the de-
sired 90% for all six conditions. The bootstrap confidence 
intervals appear to be over-confident, especially for small 
data sets and high lapse rates. For small data sets N = 90, 
the width of the Bayesian confidence regions is larger, 
whereas for larger data set sizes, the Bayesian confidence 
intervals exhibit higher accuracy but smaller interval width.  

For the w parameter, both the bootstrap and the Bayes-
ian confidence regions were found to be relatively accurate. 
The Bayesian confidence regions tend to be conservative, 
especially for N = 90 and πl = 0.15, whereas the median 
width over the confidence regions is consistently smaller.  

In the presented set of synthetic experiments, the 
Bayesian MCMC sampling-based estimators were found to 
give more accurate point estimates and more accurate and 
tighter confidence regions.  

A case study 
Data for the case study are taken from a visual contrast-

discrimination task published by Henning, Bird, and 
Wichmann (2002). Observers either performed sinusoidal 
contrast increment detection or detected a contrast incre-
ment applied to a pulse train grating; both were two-
interval forced-choice tasks. For both conditions the con-
trast of the added signal was varied using the method of 
constant stimuli.  

The aim of the experiment was to determine whether 
the two conditions yielded similar or different discrimina-
tion thresholds. Both stimuli—the sine wave and the pulse 
train—have the same fundamental frequency, but the pulse 
train has additional higher frequency components. Hence, 
one might expect that these facilitate discrimination and 
therefore the threshold for the pulse condition might be 
lower. 

First we analyze the data from the sine wave condition. 
The data come from one of the observers and consist of  
13 blocks with 50 trials each. Each block was measured at a 
different contrast between 0.5% and 7.5%. Using a 
Weibull function to explain the data is a common choice 
for contrast experiments. Instead of directly fitting a 
Weibull, we have found it more convenient to log-
transform the contrast and use a Gumbel function. As 
pointed out before, these two possibilities are equivalent, 
but the Gumbel function allows a more intuitive parame-
terization in terms of the width.  

Next, we have to specify our prior beliefs about the pa-
rameter values. For the lapse rate, a convenient choice for 
the prior is the beta distribution. We expect from our ex-
perience with observers that some of the trials are lapses. A 
reasonable choice that makes small lapse rates more likely 
than big lapse rates is α = 2 and β = 50 (see Figure 4a). 
This prior also expresses our belief that observers are 
unlikely to perform errorlessly. The mean of the prior dis-
tribution is given by α/(α + β) ≈ 4% and the mode is  

(α − 1)/(α + β − 2) = 2%. Thinking about the stimulus, we 
can derive a conservative prior on the threshold location. 
At 100% contrast, a sine wave can clearly be seen, but at 
about 10%, the task becomes difficult. This is the range in 
which we would expect the threshold. At 1% the task seems 
almost impossible. A reasonable prior on log-contrast 
threshold therefore has a maximum at −1 (10%). We can 
take a Gaussian with this mean. Even though −2 corre-
sponding to 1% and 0 corresponding to 100% seem to be 
unlikely threshold values, we do not want to rule out these 
hypotheses a priori. Therefore, SD 1 seems to be a conser-
vative choice.  

A width smaller than zero would correspond to a psy-
chometric function for which performance increases with 
lower contrasts, so we constrained the prior to positive val-
ues. A width of 2 log-units is highly unlikely because it 
would mean that the psychometric function potentially 
ranges from 1% to 100% contrast. Therefore, a width be-
tween 0.5 and 1.5 log-units seems to be a reasonable range. 
For positive parameters, the gamma distribution is a com-
mon choice for the prior. By plotting a gamma distribution 
for α = 2 and β = 1.5, we found it to be a good description 
of our beliefs. The mean is given by α/β =1.33 and the 
mode by (α − 1)/β = 0.66. The standard deviation that is 
given by / 0 9α β 4= .  is large enough to support values 
even bigger than 2.  

Once we have specified the prior, we can sample from 
the posterior. For this we have to set values for the number 
and sizes of the leap-frog steps; this requires some “hands-
on” experience with MCMC but is not particularly diffi-
cult. We come back to this issue at the end of the article. 

Figure 7 presents histograms of the posterior samples 
generated by hybrid MCMC sampling. First, we inspect the 
posterior samples of the threshold parameter. The MAP, 
ML, and MEAN point estimate for the threshold all lie be-
tween −1.7 and −1.65 log-units (i.e., at a contrast between 
2% and 2.2%). Furthermore, we compute the approximate 
Bayesian 90% confidence region from empirical quantiles 
of the samples. The Bayesian confidence interval ranges 
from −1.74 to −1.59 log-units or 1.8% and 2.6% contrast 
(the outermost dashed lines in Figure 7). Information like 
this is necessary if one wants to compare thresholds from 
different conditions. 

When comparing priors and posteriors, we observe that 
the priors for the threshold and the width parameter were 
flat relative to the posterior distributions. The posterior of 
the lapse rate parameter is similar to the prior, which shows 
that the data did not allow a reduction in uncertainty about 
this parameter. Figure 7 also depicts the maximum likeli-
hood (ML) and the maximum a posteriori (MAP) estimates. 
The difference between the two indicates how much the 
prior has influenced the MAP estimate. The difference for 
the lapse rate is substantial, which again emphasizes the 
importance of the prior on this parameter. The ML esti-
mate suggests that far more than 10% of the observations 
were lapses, which also explains why the width is estimated 
to be relatively small. 
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Figure 7. Sine condition. The estimated posterior distributions for the lapse parameter (a), the threshold (b), and the width (c) of the
psychometric function. Vertical lines depict MAP estimates, ML estimates, and quantiles at 5%, 50%, and 95%. The solid black line
shows the prior distribution. For the threshold and width, the prior is relatively flat compared to the posterior. 

m

D
en

si
ty

−1.85 −1.75 −1.65 −1.55

0
2

4
6

8

w

D
en

si
ty

0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

(a)                      (b)               (c)

πl

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

20

Prior specified
Prior flat

 

Figure 8. Sine condition. The estimated posterior distributions for the lapse parameter (a), the threshold (b), and the width (c) of the
psychometric function. The posterior was computed with the same prior as in Figure 7 and for a flat prior for comparison. For the
threshold parameter, there is hardly any difference between the two posteriors, which comes as no surprise because the Gaussian prior
is almost flat in the relevant region. For the lapse parameter, the influence of the prior is substantial, as it is for the width. 

An important question when using Bayesian methods 
in practice is the sensitivity of the results with respect to 
changes in the prior. For comparison, we repeat the sam-
pling, this time using flat priors on all parameters. Note 
again that a flat prior is not uninformative. Figure 8 com-
pares the posterior distributions that result from using ei-
ther flat priors (on log-contrast) or the priors as specified 
above. It reveals that the choice of prior matters for the 
lapse parameter and the width, but in this case not so much 
for the threshold. Figure 9a shows the data and three point 
estimates of the psychometric function for the sine condi-
tion.  

The second condition in the experiment was a pulse 
train instead of a sine wave discrimination task. The fun-

damental frequency of the pulse train was identical to the 
frequency of the sine wave. Because the pulse train has ad-
ditional higher frequency components, one may expect that 
these facilitate discrimination. For the second condition, 
the data consist of 11 blocks with 50 trials each. The stim-
uli varied between 10% and 1% contrast. We used the 
same priors that we used for the first condition. The data 
can be seen in Figure 9b along with various estimates. The 
psychometric functions for the pulse and the sine condi-
tion look similar. Figure 10 compares the posteriors of both 
conditions, confirming that the approximated posterior 
distributions over the parameters are highly overlapping. In 
particular, the posterior distributions of the thresholds 
overlap. When comparing the psychometric functions, one 
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Figure 9. Point estimates for both conditions. (a) shows data from the sine condition and three estimates of the psychometric function
(MAP, ML,  and MEAN). Each data point represents 50 trials. In (b) we show the same for the pulse condition. For both conditions the
three estimates are very similar. 
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Figure 10. A comparison of the sine and the pulse condition. (a) shows the posterior distributions for the lapse parameter. In (b) the
posteriors for the thresholds are similar. The uncertainty is a bit larger in the pulse condition (c). It cannot be concluded that the psy-
chometric functions have a different width. The respective posteriors are not different enough. Usually, the lapse parameter and the
width show a negative correlation. Hence, they need to be compared carefully. The smaller width of the sine condition goes along with
a higher lapse rate. 

might suspect a difference in the width. The posteriors over 
the width parameters are shown in the right panel of  
Figure 10. It has to be stressed that the lapse parameter and 
the width cannot be interpreted independently of each 
other, because a negative correlation between the two pa-
rameters can be seen in the MCMC samples. Intuitively,  a 
higher lapse rate squeezes Ψ down, which is compensated 
by a smaller width. 

In conclusion, based on the data, we do not find evi-
dence that pulse trains lead to a discrimination perform-
ance different from sine waves. The observation that there 
is no substantial difference between the conditions agrees 
with the conclusion that Henning et al. (2002) reached 
based on bootstrapping. As always, more data may unearth 
a small difference between the conditions, which, in the 
context of the study by Henning et al. (2002), would not 

affect the conclusions drawn. Note that this is true despite 
the substantial amount of data (>550 trials per psychomet-
ric function) collected. In addition, inspection of the poste-
rior distributions gives an indication about how large dif-
ferences between conditions would have to be to allow 
them to be statistically distinguished.  

Conclusions 
We presented a Bayesian approach to inference about 

the parameters of psychometric functions. Because comput-
ing the density of the posterior distribution is analytically 
intractable, we described how Markov chain Monte Carlo 
techniques can be used instead to generate samples from 
the posterior.  
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We illustrated that the proposed Bayesian method can 
produce more accurate point estimates and confidence in-
tervals than the popular frequentist bootstrap technique. 
Although we cannot prove that this observation generalizes 
to all possible data situations, there is no reason to believe 
that the Bayesian approach should do worse on other data-
sets. Furthermore, the Bayesian approach exhibits several 
conceptual advantages. Yet another advantage is that by 
inspecting the MCMC samples and observing correlations 
and dependencies, we gain a deeper understanding of the 
process at hand. 

We discussed the role of prior distributions in the 
analysis of experimental data and the difficulties of avoid-
ing informative priors. We observed that the prior on the 
lapse parameter can be highly influential. For θ we found 
that even relatively small data sets are often informative 
enough to overrule the prior. However, a Bayesian analysis 
should always report prior and posterior distributions, and 
the latter should always be interpreted relative to the prior 
given the model.  

A difficulty of the proposed method is that using 
Markov chain Monte Carlo methods is nontrivial and re-
quires the Markov chains to be inspected and parameters to 
be set by the user. In practice, the parameters are found in 
a trial-and-error procedure. In a nutshell, the step-size pa-
rameter of the hybrid sampling scheme is adapted such that 
the acceptance rate is between 60% and 90% and the auto-
correlation between samples is small. We usually fix the 
number of leapfrog-steps to 100. As a companion to this 
study, we released a software implementation package 
named PsychoFun for the (free) R environment for sta-
tistical computing. The PsychoFun package can be ob-
tained from the authors’ websites together with a technical 
report (Kuss, Jäkel, & Wichmann, 2005) describing details 
of the implementation and usage. The report also contains 
more guidance for setting the parameters of the hybrid 
Markov chain Monte Carlo sampling scheme and infor-
mally describes how to inspect the simulated chains. In ad-
dition, it contains the code for reproducing the experi-
ments presented in this article.  
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