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Abstract

Monocular cues to depth derive their informativeness from a combination of perspective projection and prior constraints on the

way scenes in the world are structured. For many cues, the appropriate priors are best described as mixture models, each of which

characterizes a different category of objects, surfaces, or scenes. This paper provides a Bayesian analysis of the resulting model

selection problem, showing how the mixed structure of priors creates the potential for non-linear, cooperative interactions between

cues and how the information provided by a single cue can effectively determine the appropriate constraint to apply to a given

image. The analysis also leads to a number of psychophysically testable predictions. We test these predictions by applying the

framework to the problem of perceiving planar surface orientation from texture. A number of psychophysical experiments are

described that show that the visual system is biased to interpret textures as isotropic, but that when sufficient image data is available,

the system effectively turns off the isotropy constraint and interprets texture information using only a homogeneity assumption.

Human performance is qualitatively similar to an optimal estimator that assumes a mixed prior on surface textures––some pro-

portion being isotropic and homogeneous and some proportion being anisotropic and homogeneous.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Prior knowledge of statistical regularities in the en-

vironment allows the visual system to accurately esti-

mate the three-dimensional layout of surfaces in a scene

even in images with seemingly impoverished informa-

tion. Specific models of this type of knowledge, in the

form of ‘‘apriori’’ constraints, play a major role in
computational theories of how the visual system esti-

mates three-dimensional surface shape from a variety of

cues. Examples include motion (rigidity (Ullman,

1979)), surface contours (isotropy (Brady & Yuille,

1984), symmetry (Kanade, 1981), lines of curvature

(Stevens, 1981), geodesics (Knill, 1992)), shape from

shading (lambertian reflectance, point light source

(Ikeuchi & Horn, 1981)) and texture (homogeneity
(Garding, 1992; Malik & Rosenholtz, 1995), isotropy

(Blake & Marinos, 1989; Garding, 1995; Witkin, 1981)).

Computational theories typically build on a single prior

constraint; however, most cues admit multiple plausible

prior models, each one of which accurately describes a

limited class of objects, scenes or physical processes.

This gives rise to a problem of ‘‘model selection’’––

which prior constraint should be used to interpret a vi-

sual cue?

Yuille and Bulthoff introduced the problem of model

selection in perception with their notion of competitive

priors (Yuille & Bulthoff, 1996); however, since then it

has remained an under-appreciated problem in under-

standing human three-dimensional perception. In some
instances, specific categorical modes may lead to easily

detected, diagnostic features in the image (Jepson,

Richards, & Knill, 1996; Richards, Jepson, & Feldman,

1996) (e.g., parallelness); however, perspective distortion

and noise in the image often renders independent de-

tection of the features difficult. Reliable performance

often requires that the visual system select prior models

and estimate 3D surface layout cooperatively and si-
multaneously.

The current paper describes a Bayesian framework

for cooperative model selection and estimation and

analyzes the qualitative features of the problem that

generate meaningful and psychophysically tractable

questions about human perceptual performance. The

first part of the paper develops the framework and an-

alyzes its implications for perceptual performance.
The analysis results in specific predictions relating theE-mail address: knill@cvs.rochester.edu (D.C. Knill).
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uncertainty in image information to human ability to

selectively apply prior scene constraints. The second

part of the paper demonstrates the usefulness of the

framework by testing some of these predictions applied

to a particular problem, perceiving planar surface ori-

entation from texture.

2. Computational theory

In a Bayesian framework, the information provided

by a set of image data about a scene is represented by a

conditional probability density function, pð~SSj~IIÞ, where ~SS
represents the scene parameters being estimated and ~II
represents the available image data. The current analysis

looks at how the modal (categorical) properties of the

environment structure the posterior density function

and how this impacts the problem of estimating scene

properties from image data. The first subsection char-

acterizes the estimation problem and briefly reviews

different approaches to estimation in the presence of
multi-modal structure. The third subsection describes

the computational principles, based on a Bayesian form

of Occam�s razor, that allow the visual system to reliably

solve the model selection problem when only one cue is

available. The second subsection analyzes in more detail

the implications of multi-modal cue structure for cue

integration and shows how optimal estimation naturally

leads to a number of non-linear cue integration strate-
gies such as cue vetoing (Landy, Maloney, Johnston, &

Young, 1995). The final subsection summarizes the im-

plications of the analysis for psychophysical models of

human perceptual performance.

2.1. Estimation with mixture models––basics

The posterior conditional density function, pð~SSj~IIÞ,
may be computed from a model of the image formation

process and a model of the structure of the environment

using Bayes� rule,

pð~SSj~IIÞ ¼ pð~II j~SSÞpð~SSÞ
pð~IIÞ

; ð1Þ

where ~SS is a vector of parameters describing those as-

pects of a scene being estimated and ~II is a set of image
data. Assuming a flat prior on ~SS, the likelihood function

fully characterizes the information content of the image

data. For a number of reasons, the true likelihood

function for a problem is often a mixture of model

likelihood functions for the different generative pro-

cesses that could have given rise to the image data,

pð~II j~SSÞ ¼
Xn

i¼1

/ipið~II j~SSÞ; ð2Þ

where /i is the prior probability of model i and pið~II j~SSÞ is

the corresponding likelihood function. We will refer to

likelihood functions of this type as mixed likelihood

functions. An example of such a problem is shape-from-

shading. Shading patterns depend on both the shapes of

surfaces and their material properties. Since different

materials reflect light in qualitatively different ways, a

complete likelihood function for shape-from-shading
should include component models for different classes of

materials (metallic, plastic, matte, etc.).

Mixed likelihood functions have a characteristic,

multi-modal structure, as illustrated in Fig. 1. Fig. 1(b)

shows a likelihood function that presents a somewhat
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Fig. 1. Two examples of mixed likelihood functions. In (a) two models are consistent with overlapping interpretations of a scene, while in (b) they are

mutually inconsistent. An estimator that minimizes a local mass cost function (Freeman, 1996) (a function that is quadratic for small errors, but

remains constant for errors above a threshold value) selects the global mean when the model likelihood functions are close to one another, but selects

the mean of the most likely model when they are far apart. Another approach would be to first select the most likely model and then apply an

estimator of choice to that likelihood function (Mackay, 1992).
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intractable problem to an estimator. Clearly, such a

likelihood function does not support reliable scene es-

timates and would give rise to a significant number of

gross errors, or bistable percepts. The rarity of such

errors or of bistable perceptual modes in natural vision

suggests that visual information typically suffices to

disambiguate the model selection problem; that is, to

squash one or another of the modes present in the
likelihood function. The next two sections describe

features of visual information that serve this function.

The first involves the inherent selectivity within a single

cue that results from an Occam�s razor type effect.

Mixed likelihood functions are inherently biased toward

interpretations that are consistent with simpler models.

The image data associated with a cue often leads to a

mixed likelihood function with one mode substantially
dominating others. When this is not true, other cues in

the image data can enhance one mode while suppressing

the other, effectively disambiguating the information

from the first cue.

2.2. Hidden priors, nested models and Occam’s razor

2.2.1. Basic principles

The categorical structure of the environment creates

the problem that most image cues can be interpreted

according to one of many different prior constraints.

This is a principle source of the multi-modality discussed
in the previous section. Yet, the visual system seems to

reliably determine which prior constraints to use for cue

interpretation even when no other cues are available in

an image to disambiguate the choice. How is it possible

for the image data associated with a single cue to dis-

ambiguate which prior constraints to use for interpret-

ing the cue? A particular problem is posed by the fact

that many plausible constraints are nested within one
another; that is, one constraint is simply a more limiting

form of another. Examples include matte surfaces being

a more constrained subclass of specular surfaces (with

the specular coefficient set to 0), rigid motion being a

subclass of elastic motion and isotropic textures being a

subclass of homogeneous textures. In these cases, the

most general of a set of nested constraints will neces-

sarily appear to fit the image data better, in the sense
that fitting all free parameters of the general model will

give a higher absolute likelihood than the free parame-

ters of a more constrained model. How, then, does vi-

sual information allow one to select one model over

another. Clearly, some form of Occam�s razor needs to

be applied––one would like to give preferential weight-

ing to simpler models. The analysis in this section builds

on prior work by Mackay (1992) showing how an Oc-
cam�s razor type of effect falls naturally out of the

probability calculus. In the current context, the effect

derives from a process known as marginalization (see

also Freeman (1996) for an application of this technique

to generalize the notion of generic views).

The first step in our chain of logic is to note that not

all scene variables are equally important to an observer.

When estimating surface shape from shading, for ex-

ample, observers may be interested in the shape of a

surface, but not in its reflectance or in the lighting

conditions, though all of these contribute to the shading
pattern in an image. Thus, one can decompose a scene

(or surface) parameterization into two sub-vectors,
~SS ¼ ½~SSp;~SSs�, the first representing the primary variables

that an observer estimates, and the second representing

secondary variables, which the observer does not care

about. The posterior density function that characterizes

the estimation problem posed to an observer is the

marginal posterior only on the primary variables,
pð~SSpj~IIÞ. In order to derive this from the full posterior on

all scene parameters, one must marginalize, or integrate,

over the secondary variables (a process that statisticians

use to deal with nuisance parameters (Ripley, 1996)).

This is equivalent to marginalizing the likelihood func-

tion over the secondary variables, giving (assuming that

the primary and secondary variables are independent)

pð~SSpj~IIÞ ¼
pð~II j~SSpÞpð~SSÞ

pð~IIÞ
ð3Þ

¼

R
~SSs
pð~II j~SSp;~SSsÞpð~SSsÞd~SSs

h i
pð~SSpÞ

pð~IIÞ
: ð4Þ

The prior constraints that make image cues to 3D

surface geometry informative are often on secondary

scene variables. Because they appear within the integral,

we will refer to them as ‘‘hidden’’ priors. Table 1 lists
some examples. The modal structure of cues derives

from the existence of multiple, distinct priors on the

secondary variables (what Yuille and Clark refer to as

competitive priors (Yuille & Clark, 1993)). In particular,

the likelihood function becomes

pð~II j~SSpÞ ¼
Z
~SSs

pð~II j~SSp;~SSsÞpð~SSsÞd~SSs ð5Þ

¼
Xn

i¼1

/i

Z
~SSs

pð~II j~SSp;~SSsÞpið~SSsÞd~SSs; ð6Þ

where pið~SSsÞ is the prior on the secondary variables for
model i. The integrals inside the summation are the

marginalized likelihood functions for each of the prior

models on the secondary variables. Integrating over

different priors gives model likelihood functions with

different spreads and heights. For a given model, the

integral is computed only over those model parameters

that are free to vary within the model. Thus, the likeli-

hood function for a model with a large number of free
parameters is computed by integrating over a larger

number of free variables than a more constrained model

(e.g., specular vs. matte reflectance models). This gives
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rise to an implicit Occam�s razor effect that favors sim-

pler models over more complex ones (Mackay, 1992).

To illustrate the Occam�s razor effect, we consider a

simple example in which both the primary and second-

ary variables are scalar quantities. Returning to the

earlier shape-from-shading example, we will assume the

primary variable, Sp, is surface curvature and the sec-

ondary variable, Ss, is a parameter specifying the shini-
ness of the surface, which we will let vary between )1

and 1, with 0 indicative of a matte surface. Matte sur-

faces are thus a special case of metallic surfaces. Suppose

that the world consists of two types of surfaces, matte

and metallic, with some non-zero proportion of surfaces

belonging to each class. The likelihood function for

curvature under the constrained, matte model is equal to

the joint likelihood function on curvature and specu-
larity with the specular parameter fixed at 0. The like-

lihood function for curvature under the metallic model,

on the other hand, is the integral of the joint likelihood

function over the full range of possible values for the

specular parameter.

Fig. 2 illustrates the difference in how the two likeli-

hood functions are calculated. The integral used to

compute the likelihood function for the metallic model
computes the average of the joint likelihood function for

each value of the specular parameter (assuming a flat

prior on the parameter). Because the likelihood is low

for most values of the specular parameter, this tends to

shrink the marginal likelihood. The likelihood function

for the matte model, on the other hand, is simply a slice

through the joint likelihood function and is not penal-

ized by this averaging process.
In Fig. 2, the joint likelihood function on Sp and Ss

has a peak near Ss ¼ 0, which matches the matte con-

straint. Accordingly, the matte model has a much higher

peak likelihood. Fig. 3 illustrates a case in which the

peak of the joint likelihood function is at a very different

value of ~SSs. In this case, the Ss ¼ 0 line intersects the

joint likelihood function in a low probability region of

the parameter space, making the metallic model the

more likely of the two models.

The implication of the analysis is that optimal esti-

mators will exhibit natural biases toward more con-
strained prior models. Consider, for example, an

estimator that selects the mean of the posterior distri-

bution as its estimate of a set of scene properties. Such

an estimator selects as its estimate a weighted average of

the means of the likelihood functions associated with the

component models,

~̂SS~SSp ¼
Xn

i¼1

wi
~̂SS~SSpi ; ð7Þ

where ~̂SS~SSpi is the mean of the likelihood function for the

ith model. The weights, wi are given by

wi ¼
piIiPn
i¼1 piIi

; ð8Þ

where pi is the prior probability on model i and Ii is the

integral of the likelihood function for model i (the

likelihood that model i is true given the data)

Ii ¼
Z
~SSp

piðI j~SSpÞpð~SSpÞd~SSp: ð9Þ

A comparison of Figs. 2 and 3 reveals that the

weights in the average are not constant, but vary as the

peak of the likelihood function shifts away from an in-

terpretation consistent with the constrained model.
Since, on average, the peak of the likelihood function

will be near the true value of the scene parameters, this

implies that, on average, as a scene deviates more and

Table 1

Examples of 3D cues to surface shape and pose with associated secondary variables and a few of the constraints on those secondary variables that

have been proposed in the computational literature for interpreting the cues

Image cue Secondary variables Hidden constraints

Motion Object and observer motion Rigid motion (Ullman, 1979)

Affine motion (Koederink & van Doorn, 1991)

Elastic motion (Aggarwal, Cai, Liao, & Sabata, 1998)

Shading Reflectance and lighting Lambertian reflectance (Ikeuchi & Horn, 1981)

Linear reflectance (Pentland, 1990)

General reflectance function (Bakshi & Yang, 1997)

Point light source (Ikeuchi & Horn, 1981)

Hemispheric light source (Langer & Zucker, 1994)

Contour Shapes of surface curves Symmetric curves (Kanade, 1981)

Lines of curvature (Stevens, 1981)

Geodesics (Knill, 1992; Stevens, 1981)

Planar cuts (Horaud & Brady, 1988)

Isotropic curves (Brady & Yuille, 1984; Weiss, 1988)

Texture Surface texture properties Homogeneous textures (Garding, 1992; Malik & Rosenholtz, 1995)

Isotropic textures (Blake & Marinos, 1989; Garding, 1995; Witkin, 1981)

Follows lines of curvature (Li & Zaidi, 2000) (for texture flow)
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more from a constrained model, the weight given to the

constrained model will shrink. In particular, for nested
Gaussian models, the problematic case illustrated by

Fig. 1(b), in which the likelihood functions for uncon-

strained and constrained models lead to a strongly bi-

modal distribution, often will not arise. When a scene

deviates from a constrained model by enough to cause

potentially fatal ambiguities, the image data effectively

turns down the gain on the influence of the constrained

model on an estimator�s interpretation. An optimal es-
timator will be biased by the constrained model only for

images of scenes that deviate from the constrained

model by small amounts. As scenes deviate more from

the model, the bias will shrink to nothing.

2.2.2. Effects of image uncertainty

The level of uncertainty in the image data should

clearly effect the strength of biases toward constrained

interpretation. Appendix A derives the relationship be-

tween uncertainty and bias for Gaussian likelihood
functions. The result supports what would be our nat-

ural intuition. First, the proportional bias toward con-

strained interpretations (the weights in Eq. (7)) for

scenes that deviate by a fixed amount from a constrained

model increases with the uncertainty in the image data.
Second, the range of scenes for which the constrained

model will dominate interpretations increases with im-

age uncertainty. This result forms the basis of several of

the psychophysical predictions outlined in Section 2.4.

2.3. Cue integration: cooperative model selection

While many scenes will support reliable model selec-

tion from individual cues, a range of conditions always

exists in which the appropriate model to use is ambig-
uous. In these conditions, other cues to a scene�s three-

dimensional layout that are normally available in natural

images can serve to disambiguate the appropriate model

to use for interpreting the cue. Within a Bayesian con-

text, the logic of this process is straightforward. The

likelihood function for a pair of cues, when the cues are

conditionally independent (e.g., the noise on the cues is

independent), is simply the product of the likelihood
functions for the individual cues; thus, the likelihood

function for one cue can selectively amplify one mode of

the likelihood function for another cue while depressing
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Fig. 2. (a) Sp and Ss are highly correlated. Marginalizing over Ss amounts to calculating for each value of Sp the average likelihood over all possible

values of Ss (shown in bottom left panel). (b) The matte surface model has a built-in assumption that Ss ¼ 0; thus, the likelihood on Sp for this model

is simply the slice through the joint likelihood function at Ss ¼ 0. Since this slices the joint likelihood function near the peak, the model likelihood

function has a much higher peak than the likelihood function for the unconstrained metallic surface model shown in (a). It also has significantly lower

variance, a common property of more constrained models.
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the other. Fig. 4 illustrates the effect, here showing how

a relatively weak cue can strongly impact a perceptual

estimate by effectively selecting which of two models

appropriately fits the data from another cue. This is a

form of ‘‘cooperative model selection.’’

A special case of cooperative model selection pro-

vides a rational account for the cue vetoing strategy

proposed by Landy and Malony as a form of robust cue

integration (Landy et al., 1995). Cue vetoing occurs

when one of the models corresponding to a cue is
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Fig. 3. When the image data is most consistent with a value of~SSs very different from 0, the unconstrained model has a higher peak likelihood. In this

illustration, the likelihood function for the unconstrained model has not changed, whereas the likelihood function for the constrained model has

shifted, reflecting the bias induced by the incorrect assumption that~SSs ¼ 0, and scaled down, because the model�s slice of the joint likelihood function

is more distant from the peak. Note that the scale of the coordinate axis is different from that shown in Fig. 2, to match the lower peak likelihoods
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is simply the product of the individual likelihood functions. The red line indicates the estimate derived by minimizing the local mass cost function

applied to the joint likelihood function.
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degenerate; that is, has an extremely broad likelihood

function. Such models exist for most monocular cues

(e.g., non-rigid motion for structure-from-motion, ran-

dom curves on a surface for shape-from-contour, etc.).

Fig. 5 shows an illustrative example. The likelihood

function for cue A is a mixture of likelihood functions

derived from an uninformative model (the flat model

likelihood function) and from an informative model (the
Gaussian likelihood function). When cue B suggests an

interpretation that is close to the interpretation sug-

gested by the informative model for cue A, that model is

effectively selected for the interpretation of cue A, and

the integrated estimate is well approximated by a

weighted linear combination of the two interpretations.

When the interpretation suggested by cue B moves far

away from the constrained interpretation suggested by
the informative model for cue A, the integrated estimate

is equivalent to the estimate derived from cue B alone;

that is, cue A is effectively turned off.

Fig. 6 shows the predicted pattern of estimates of Sp
as the interpretation suggested by the constrained ver-

sion of cue A moves away from that suggested by cue B.

This is exactly the cue vetoing pattern predicted by

Landy and Maloney. The Bayesian interpretation of the

behavior, however, is very different. Rather than viewing
the behavior as ‘‘turning off’’ a cue, the mixture model

formulation treats it as selecting an uninformative hid-

den prior over an informative one. Li et al., for example,

described a case in which large conflicts between stereo

and motion lead to a down-weighting of motion infor-

mation (Li, Maloney, & Landy, 1997). The Bayesian

interpretation of their result is not that the motion cue

was turned off, but rather that in the face of the conflict,
subjects reinterpreted the motion to be non-rigid in 3D.
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Fig. 5. Apparent cue vetoing can occur when the hidden prior contains both informative and uninformative sub-models (e.g., rigid vs. non-rigid

motion). (a) The individual model likelihoods and the full mixture likelihood for cue A. (b) The results of integrating cue A with a cue that suggests

an interpretation close to that of cue A under the informative model (model 1)––a joint likelihood function centered on a point that is approximately

the weighted average of the means of the component likelihood function for cue A corresponding to model 1, and the likelihood function for cue B.

(c) When cue B suggests a much different interpretation, its mode is far away from that of cue A under the informative model, and multiplying the

likelihoods results in a joint likelihood function that is approximately equivalent to the likelihood function for cue B alone.
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2.4. Implications for psychophysics

Our analysis of mixture models has several important

consequences for understanding human visual percep-

tion. It points to a change in research emphasis from

determining which one of several competing models of

prior environmental constraints the visual system uses to
interpret a 3D cue to determining the collection of con-

straints that the visual system employs. More deeply it

points to a new aspect of visual processing that needs to

be studied––how the visual system chooses from among

several models to interpret the information provided by a

cue. Researchers have recently begun to study how cue

uncertainty determines relative cue weights in linear ap-

proximations of human cue integration strategies (Ernst
& Banks, 2002; Gharamani, Wolpert, & Jordan, 1997;

Jacobs, 2002). The multi-modality of cues suggests more

complex, non-linear relationships between cue uncer-

tainty and visual processing:

• Perceptual estimates of scene properties should be bi-

ased toward those consistent with strong constraints

when images are projected from scenes that are close
to matching those constraints.

• Perceptual biases toward constrained interpretations

of a cue should disappear as scenes deviate more from

the assumptions of constrained models.

• An otherwise unreliable cue can serve to coopera-

tively select the appropriate model to use when inter-

preting a more reliable cue, even while being given

little apparent weight when fitting a linear model to
the cue combination.

• Proportional biases toward more constrained inter-

pretations of a cue should decrease predictably as im-

age information is improved (see Appendix A).

• The space of scenes for which perceptual estimates

show these biases should shrink as image informa-

tion improves; that is, the visual system should be

better able to choose a less constrained model (see

Appendix A).

The following section described a series of experi-

ments that apply the framework developed here to the

problem of perceiving surface orientation from texture.

The experiments serve as an example of how the mixture

model framework can be effectively applied to psycho-

physics to develop a deeper understanding of human

perceptual performance. The results show that human
observers automatically switch between different models

of surface textures to interpret image texture informa-

tion and that they do so in a qualitatively optimal way;

namely, they show partial biases consistent with a con-

strained model for surface textures, but these biases

disappear for images projected from surface textures

that deviate markedly from the model. Moreover, as the

reliability of the image information increases, they are
better able to reject the constrained model when it is not

appropriate.

3. Estimating surface orientation from texture

That texture information provides a strong source of

information about surface orientation and shape has

been known for some time (Gibson, 1950). A large

number of psychophysical studies have explored the
cues that human observers use to estimate surface ge-

ometry from texture and to determine their relative

importance to perceptual performance (Blake, Bulthoff,

& Sheinberg, 1993; Buckley, Frisby, & Blake, 1996;

Cutting & Millard, 1984; Knill, 1998a, 1998b; Li et al.,

1997; Todd & Akerstrom, 1987). Less work has been

done on what prior constraints on surface textures un-

derlie human observers� use of the cue (Knill, 1998b;
Rosenholtz & Malik, 1997). Since multiple, different

constraints might apply, mixture models should play an

important role in estimating surface geometry from

texture. This section applies the framework of mixture

models to the problem of estimating planar surface

orientation from texture and describes a series of psy-

chophysical experiments designed to test predictions

that result from the theoretical analysis.

3.1. The structure of texture information

Perspective projection distorts a texture pattern in

two distinct ways: by scaling and compressing the pat-
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tern. When surface textures have certain statistical

properties, these distortions reflect themselves in spe-

cific patterns of optical texture that provide cues to the

shape and orientation of a surface. The two statistical

properties that can imbue optical texture patterns with

reliable information about surface geometry are homo-

geneity and isotropy.

Homogeneous surface textures are ones whose sta-
tistical properties are invariant to position on a surface.

Texture elements in images of homogeneous surface

textures shrink, on average, as they recede from the

viewer. This gives rise to a scaling cue in the image.

Texture elements are also foreshortened by an amount

determined by the local orientation of a surface relative

to the line of sight. Since the viewpoint-relative orien-

tation of a surface varies as a function of position on a
surface, the pattern of local texture element shape and

orientation in an image covaries systematically with the

orientation and curvature of the surface in space. Thus,

homogeneous textures also support a foreshortening cue

in the form of texture shape gradients in an image.

Isotropic surface textures are ones whose statistical

properties are invariant to orientation on a surface (they

have no global orientation). Because isotropic textures
have a specific average shape (circular), images of iso-

tropic textures support much stronger inferences about

surface geometry from the foreshortening cue than do

images of anisotropic, homogeneous textures. In effect,

when using an isotropic constraint, observers can use

the local statistics of texture element shape (texture

shape statistics) to make inferences about local surface

orientation.
Previous studies have shown that foreshortening in-

formation is a dominant cue for judgments of surface

orientation and shape (Buckley et al., 1996; Knill,

1998a, 1998b). Since this cue relies on prior assumptions

about the shape statistics of surface textures, knowing

what assumptions human observers use is central to

understanding how humans estimate surface orientation

from texture. On one hand, prior knowledge that a
surface texture is isotropic renders a shape-from-texture

estimator significantly more informative. Such knowl-

edge can reduce the variance of an ideal estimator by

one to two orders of magnitude (Knill, 1998c). On the

other hand, mistakenly applying an isotropy constraint

can lead to large biases in one�s estimate of surface

orientation. For a given stimulus, how can an observer

determine whether or not to apply isotropy as a con-
straint on surface textures? The answer will fall out of a

mixture-model formulation of texture information.

3.2. A mixture model for surface orientation from texture

This section describes an optimal model for estimat-

ing surface orientation from texture foreshortening that

assumes that textures come in two classes––homoge-

neous or isotropic (a subclass of textures with homo-

geneous shape statistics). The model is limited to the

shape properties of textures; thus, the definitions used

here strictly apply only to those properties of textures;

thus, for purposes of this discussion, isotropic textures

that have inhomogeneous size statistics are considered

to be homogeneous, since their shape statistics are

trivially homogeneous. Without a general model for
inhomogeneous textures, we cannot include them as a

third class; however, intuition suggests that for any

given image, the likelihood function for an inhomoge-

neous texture model will be a much broader version of

that for a homogeneous model. For simplicity, we as-

sume that were an inhomogeneous class included in the

formulation, it would simply add a flat component to

the mixed likelihood model. 1

We model arbitrary homogeneous textures as result-

ing from a process that globally stretches a homoge-

neous, isotropic texture. This process can stretch

textures by random amounts at random orientations.

Thus, the global shape statistics of any given homoge-

neous surface texture are characterized by two free pa-

rameters––a stretch factor, a, and the angle in the plane,

h in which the texture is stretched. Within the frame-
work of this paper, a and h are secondary scene vari-

ables. The primary variables are the slant (angle away

from the fronto-parallel) and tilt (direction of slant) of a

surface.

Assuming that a non-zero proportion of textures are

homogeneous (with arbitrary stretch factors) and that

another non-zero proportion are isotropic, we can write

the likelihood function for a given set of image texture
measurements, ~TT , as a mixture of likelihoods for the two

classes of texture

pð~TT jr; sÞ ¼ /ipið~TT jr; sÞ þ ð1 � /iÞphð~TT jr; sÞ; ð10Þ

where /i is the probability that a surface texture is iso-

tropic and 1 � /i is the probability that it is homoge-

neous (but not necessarily isotropic). Knill (1998a)

derived the likelihood function for the slant and tilt of a

surface based on the pattern of texture element shapes in

an image for a generic class of homogeneous surface
textures. The general form of the likelihood function is

given as a function of slant, tilt and the stretch param-

eters of a homogeneous texture (pð~TT jr; s; a; hÞ), since

these determine the shape statistics of the texture pattern

in the image. In order to derive the likelihood function

for slant and tilt, we have to marginalize the full likeli-

hood function over the stretch parameters a and h,

1 Special subsets of homogeneous surface textures undoubtedly

exist that would support estimating surface orientation from texture.

Consideration of such texture ensembles is beyond the scope of this

paper.
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pð~TTI jr; sÞ ¼ /i

Z p=2

0

pð~TTI jr; s; a ¼ 1ÞpðhÞdh

þ ð1 � /iÞ
Z p=2

0

Z 1

0

pð~TTI jr; s; a; hÞpðhÞ


 pðaÞdadh; ð11Þ

where a and h are assumed to be independent. 2 As-

suming a uniform prior on h gives

pð~TTI jr; sÞ ¼ /ipð~TTI jr; s; a ¼ 1Þ

þ ð1 � /iÞ
2

p

Z p=2

0

Z 1

0

pð~TTI jr; s; a; hÞ


 pðaÞdadh: ð12Þ

Since stretching by a factor a in a direction h þ p=2 is
equivalent to stretching by a factor 1=a in the direction

h, the prior on a must satisfy the constraint that

P ða1 < a < a2Þ ¼ P ð1=a2 < a < 1=a1Þ. Assuming that

the prior on a is flat for a6 1, this constraint gives as the

prior on a,

pðaÞ ¼ 1=2; 0 < a6 1;
1=2a2; a > 1:

�
ð13Þ

3.3. Texture information for or against isotropy

As described in Section 2.3, marginalization over the

stretch parameters imbues texture information with the
power to discriminate between isotropic and anisotropic

categories of surface texture. Fig. 7 illustrates the appli-

cation of the mixture model to a specific texture image,

using the likelihood function derived in Knill (1998c).

Since all of the model likelihood functions are integrated

over texture orientation, h, the figure shows the likeli-

hood expressed as a function of surface slant, r and the

texture stretch factor, a (for illustrative purposes, the
tilt is assumed to be vertical). The averaging effect of

marginalization shrinks the peak likelihood for the

homogeneous model, which in this case is much lower

than for the isotropic model. The likelihood function

for the homogeneous model also has a larger spread,

reflecting the greater uncertainty built into the model.

While the isotropic model dominates the mixture for

an image created using an isotropic texture, Fig. 8 shows
what happens for an image of a similar texture that has

been stretched in the direction perpendicular to surface

tilt prior to projection into the image (equivalently,

compressed in the direction of tilt). The peak of the

isotropic likelihood function shifts away from the true

slant. This reflects the bias induced by assuming iso-

tropy for an anisotropic texture. On the other hand, the

peak likelihood derived from the isotropic model

shrinks as the stretch factor of a surface pulls it away

from isotropy. The result is that the homogeneous

model begins to dominate the mixture for images of

textures generated using stretch factors that differ sig-

nificantly from 1.0. This leads to the characteristic pat-

tern of mixture models built from nested sets of

constraints that was described in Section 2.3, here
shown in Fig. 9. The plot shows the average biases of a

set of ideal slant estimators for the class of textures used

in Experiment 1 (with a field of view of 13�). The esti-

mators differ in their assumptions about what propor-

tion of textures are isotropic (the /i parameter). When

stimuli are generated from textures stretched by factors

near 1.0, the estimators track the isotropy model, but as

the stretch factor moves away from 1.0 and the homo-
geneous model begins to dominate the mixture, the bias

levels off and eventually goes to zero.

3.4. Predictions and previous results

Section 2.4 listed a number of predictions that derive

from optimal estimators using mixtures of priors. We

can apply some of these to the problem of estimating

planar surface orientation from texture. In particular,

such estimators make specific predictions about subjec-

tive biases in the interpretation of images of planar

surface textures that have been stretched by varying

amounts:

1. For stretch factors near 1.0, subjects should show bi-

ased percepts of surface orientation, in accordance

with the behavior of the isotropy model.

2. Making texture information more reliable should re-

duce the proportional biases for images of slightly

stretched textures.

3. Subjective biases should weaken as surface textures
are stretched by larger amounts away from isotropy.

The pattern of absolute biases should curve back to-

ward zero as the stretch factor increasingly deviates

from 1.0 (see Fig. 9).

4. Making texture information more reliable should

shift the transition zone of the bias function back to-

ward a stretch factor of 1.0; that is, the range of

stretch factors that lead to perceptual biases should
decrease.

Two previous studies have reported conflicting results

on the strength of subjective biases toward isotropic

interpretations of surface textures. Using large field of

view stimuli (36�) similar to those shown in Fig. 10,

Rosenholtz and Malik (1997) found significant but weak

biases toward isotropic interpretations for images of
stretched surface textures. They used a direct orientation

matching task in which subjects set a gauge figure to

indicate the perceived orientation of stimulus surfaces.

2 Independence of a and / follows from an assumption that a

texture may have any global orientation within the plane of a surface

relative to the viewer.
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Using similar texture patterns, but a different task (a

discrimination task in which subjects made relative slant

judgments between images of texture patterns stretched

by random amounts), Knill (1998b) found significantly

larger biases for small field of view (13�) images of sur-

faces. The difference in results between the two studies is

consistent with the prediction that increasing the reli-

ability of the texture information (by increasing the field
of view 3) should decrease the magnitude of the pro-

portional bias toward the more constrained, isotropic

model. However, differences in subjects� task and ex-

perimental conditions (e.g., Knill used a larger slant than

in any of those used in the Rosenholtz and Malik study)

could as easily have led to the difference in results.

The experiments reported here more directly test the

predictions of the mixture model. The four main exper-

iments (1, 2, 4 and 5––3 is a control experiment) measure

subjective biases in perceived surface slant for images of

surface textures created using a range of stretch factors.

Experiments 1, 2 and 3 test predictions 1 and 2 listed
above. Experiment 1 provides a more direct comparison

to the earlier Knill data by using similar stimuli and the

same discrimination task to measure subjective biases for

large field of view stimuli. Because of a few remaining

methodological differences with the earlier study, we use

the current methods to replicate the earlier results for

small field of view stimuli in Experiment 2. Experiment 3

is a control experiment to insure that the differences that
we find between large and small field of view stimuli are

not an artifact of subjects giving more weight in the large
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Fig. 7. (a) An isotropic texture projected from a slant of 65� with a simulated vertical field of view of 13�. (b) A contour plot of the joint likelihood

function for slant and texture stretch factor, computed for the texture in (a). (c) The marginalized likelihood functions for slant for the homogeneous

and isotropic models. The mixed likelihood function assumes an equal prior probability is assumed for each model.

3 Pilot studies have shown that, as with many other cues, simply

adding more elements to a texture display, while keeping other

parameters like the field of view constant, does not significantly impact

human subjects� abilities to discriminate surface orientation from

texture. Changing the field of view on a surface does (Knill, 1998a).
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field of view stimuli to the texture scaling cue (which is

unbiased by stretching surface textures). Experiments 4

and 5 test predictions 3 and 4. These experiments mea-

sure subjective biases for a large range of texture stretch

factors for both small (Experiment 4) and large (Exper-

iment 5) field of view stimuli.

3.5. Experiment 1: isotropy biases for large field of view

stimuli

In the Knill (1998b) study, subjects were asked to

judge which of two texture images (as in Fig. 11) de-

picted a surface with greater slant. The surface textures

used to generate each of a pair of test stimuli were

stretched in random directions by small random factors

(stretch factors¼ 0.7–1.3). A psychometric model was fit

to the discrimination data that was based on a weighted

linear sum of the outputs of three ideal observers ap-

plied to the stimuli, one that used the foreshortening cue
with an assumption of isotropy, one that used the scal-

ing cue and one that used the density cue, and a putative

unbiased observer that knew the slant of each surface.

Using these weights, we derived a measure of each ob-

server�s isotropy bias as a proportion of the theoretical

bias induced by a pure assumption of isotropy. The bias

reflected a combination of the degree to which subjects

relied on the foreshortening cue and the degree to which
their interpretation of that cue was biased by an isotropy

assumption. Since subjects generally gave very little

weight to scaling and density cues, the measure was

dominated by the effect of the isotropy bias on subjects�
interpretations of foreshortening information. The re-

sults of the analysis showed that subjects� slant biases

were close to that predicted by a strong isotropy model––

with a proportional bias of 0.7 for Voronoi textures (left
image in Fig. 11) and 0.79 for elliptical textures (right

image in 11).

Experiment 1 was designed to measure subjects�
isotropy biases using similar stimuli and the same dis-

crimination task used in Knill (1998b), but for larger

field of view stimuli. Fig. 10 illustrates the logic of the
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Fig. 8. Model likelihood functions for surface slant for stimuli like the

one shown in Fig. 7(a), but using surface textures that have been

stretched before projecting them into the image (see Fig. 10 for ex-

amples). (a) Surface textures stretched by a factor of 0.8 (compressed in

the direction of surface tilt), (b) surface textures stretched by a factor

of 0.6. The peak of the isotropic likelihood function shifts with the

stretch factor because it is derived with the assumption that the stretch

factor¼ 1 (isotropic textures). As the surface texture projected into the

image becomes more compressed, the homogeneous likelihood func-

tion begins to dominate the mixture (as in (b)).
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Fig. 9. The pattern of slant biases for an estimator that assumes a

mixed prior on surface textures, expressed as a function of the stretch

factor used to create surface textures projected into an image. The

different curves reflect different priors on the relative frequencies of

isotropic and homogeneous (and anisotropic) textures. The specific

patterns shown here were derived from repeated simulations of the

ideal observer for textures like those used in Experiment 1 at different

levels of the stretch factor (see Fig. 11) (100 repetitions per stretch

factor). The predicted biases decrease if the quality of the texture in-

formation is improved.
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experiment (and of experiments 2, 3 and 5). Test

stimuli were generated by stretching a surface texture

by some factor, a, in the direction of surface tilt prior

to projecting it at a slant into the image. In each trial

subjects were asked to judge whether the slant of a

stretched test stimulus or the slant of an isotropic

comparison stimulus was greater (see 11). For each
value of the stretch factor, a, the point of subjective

equality (PSE) between test and comparison stimuli

was found and used as a measure of a subject�s slant

bias. An observer who assumed that surface textures

were isotropic would attribute all of the texture

stretching in the test image to perspective foreshorten-

ing and thus overestimate (for a < 1) or underestimate

(for a > 1) the slant of the surface. Slopes of regression
lines fitted to the PSEs against the stretch factor, a,

provided measures of the strength of the isotropy bias

for each subject.

3.5.1. Methods

3.5.1.1. Apparatus. Stimuli were presented on the dis-

play monitor of an SGI computer. The monitor was an

SGI model TFS6705, 17 in., color display with a res-

olution of 1280 
 1024 pixels. Stimuli were generated in

gray-scale on the display. Since the stimuli did not

contain smooth shading variations, we did not do
gamma correction. Subjects viewed the stimuli pre-

sented on the monitor monocularly through a reduction

screen, with their heads placed in a chin rest and resting

on a front head-rest. Subjects� non-viewing eyes were

covered with an eye-patch to eliminate any potential

for binocular rivalry. Subjects were tested in a room

painted matte black to minimize secondary reflections

back onto the monitor. Finally, a matte black occluder
was placed over the front of the monitor to obscure the

physical screen boundaries. The monitor was calibrated

using test patterns of dots viewed through a piece of

Fig. 10. Stimuli for the experiments were created in three stages. First, a random, isotropic texture pattern was generated. This was then stretched by

some amount in the vertical direction. The resulting texture was projected into the image at a slant of 65� and a vertical tilt. A subject that assumes

surface textures are isotropic would overestimate the slant of the top stimulus and underestimate the slant of the bottom one.
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metal with a square grid of holes to insure a square

geometry.

Subjects viewed the display from a distance of 28 cm,

giving a total angular extent of the display area on the

screen of approximately 48�
 40� of visual angle.

3.5.1.2. Stimuli. Fig. 11 shows stimuli similar to the ones

used for Experiment 1. Stimuli were created by per-

spective rendering of planar surface textures slanted
away from the fronto-parallel plane around the hori-

zontal axis (having a vertical tilt). One stimulus in a pair

was a test stimulus, created by globally stretching a

surface texture (as in Fig. 10) and projecting the texture

into the stimulus image at a fixed slant of 65� (measured

relative to the line of sight to the middle of the display).

The other stimulus was a comparison stimulus, gener-

ated by projecting an isotropic texture pattern at a slant
chosen by the adaptive procedure used in the experi-

ment. Stimulus pairs were presented side by side in the

experiment, with each stimulus image having its own

simulated window frame. The innermost vertical

boundaries of the two surface images were 70 pixels

from the vertical mid-line of the screen (including the

space taken up by the inner frames), which, for the

viewing conditions used, gave a 6� separation between
inner edges of the stimuli. For each condition in an

experiment, the vertical positions of a surface�s bound-

aries as they appeared in an image were the same for

both test and target stimuli, so that boundary height in

the image plane did not provide a cue to surface slant.

Stimulus images subtended a width of 500 pixels and

a height of 640 pixels (displayed side-by-side). At the

viewing distance used of 28 cm, the images of surfaces

subtended approximately 20�
 25:4� of visual angle.

Test stimuli were created from random elliptical element

surface textures. Each texture was generated by drawing
randomly shaped ellipses at the points of a pre-gener-

ated, isotropic, random lattice. Random lattices were

created using a constrained, stochastic reaction diffusion

process designed to impose enough regularity on texture

element spacing to insure that texture elements rarely

overlapped. Prior to stretching, the distribution of el-

lipse orientations was uniform, consistent with the tex-

tures being isotropic. Prior to projection into the
stimulus image, the elliptical textures were globally

stretched by factors of 1.2, 1.1, 1.0, 0.9, or 0.8 in a di-

rection aligned with the surface tilt. The density of the

lattices used to generate the textures was set so that on

average, 150 texels appeared in a stimulus image. Tex-

tures were scaled so that the average number of texels in

a stimulus was constant as a function of surface orien-

tation.
Comparison stimuli were created from constrained,

random Voronoi textures. Voronoi polygons were gen-

erated from the same set of random lattices used to

position elliptical texture elements on the surfaces used

for test stimuli (see Knill (1992) for details of the con-

struction). The polygons were then shrunk by a factor of

70% toward their centers of mass, creating the type of

tiled pattern illustrated in Fig. 11.
The elliptical element textures were designed to have

the same statistics as the Voronoi textures––we used the

statistics of the second order moments of inertia of the

polygons in the Voronoi textures (i.e., the distributions

of sizes, aspect ratios and orientations of the fitted el-

lipses) to parameterize the distributions from which

random ellipses were drawn on a surface. The ellipses

were drawn at the same positions on a surface as the
polygons in the Voronoi textures.

Test stimuli were projected under perspective pro-

jection from a fixed slant of 65� onto the computer

screen. All surfaces were rotated away from the fronto-

parallel around a horizontal axis, giving them a vertical

tilt in the image. Comparison stimuli were rendered

under perspective projection at whatever slant was se-

lected by the adaptive procedure described below.

3.5.1.3. Procedure. We used a two-alternative forced

choice procedure in which subjects judged which of two

simultaneously presented texture images appeared to be

more slanted. All conditions in an experiment were
randomly interleaved, including the side of the display

on which the correct stimulus appeared. The screen was

blanked between trials, a period which lasted anywhere

Fig. 11. Example stimuli from Experiment 2. These stimuli subtended

10�
 13� of visual angle. Stimuli for Experiment 1 were similar, but

were expanded (keeping the texture density fixed) to fill 20�
 25:4� of

visual angle.

844 D.C. Knill / Vision Research 43 (2003) 831–854



from 1/2 to 1 s, depending on the time it took to gen-

erate stimuli for the next trial. Subjects were given un-

limited time to view the displays on each trial, but were

explicitly instructed to make judgments based on their

immediate guess as to which surface was more slanted.

They were told that on some trials the choice would be

clear and on others it would be more ambiguous, but to

stick with their first guess regardless of how uncertain it
seemed. Feedback was given in the form of a summary

score every 20 trials. The feedback was used simply to

make the task more palatable for subjects, as pilot

studies showed subjects found the experiment with no

feedback extremely unpleasant and we suffered from

many drop-outs. No trial-by-trial feedback was given, in

order to minimize, as much as possible, the learning of

simple 2D strategies for doing the task.
Test stimuli were generated to simulate a slant of 65�.

Three non-parametric staircases (three-up/one-down,

one-up/one-down and one-up/three-down), in which the

slant of the comparison stimulus was increased or de-

creased, were interleaved for each condition. The stair-

cases were used as sampling procedures; points of

subjective equality (PSEs) and thresholds were estimated

off-line using maximum likelihood fits to a standard
psychometric function.

Before starting the main part of the experiment,

subjects were run in a brief demonstration version of the

experiment using textures generated from surfaces with

very large differences in slant (65� and 73� for test and

comparison stimuli respectively).

3.5.1.4. Data analysis. The raw data was organized into

arrays specifying the proportion of trials on which
subjects reported the comparison stimulus to be more

slanted than the test stimulus, as a function of the slant

of the comparison stimulus. In pilot experiments, we

found that naive subjects like those used in these ex-

periments have a high guessing rate (e.g., because of

attentional lapses). This was reflected in psychometric

functions that leveled off at points below 1.0 and above

0.0. In order to correct for guessing, we fit a modified
cumulative Gaussian psychometric function to each

subject�s data in which the probability of selecting a

comparison stimulus was assumed to be a mixture of an

underlying Gaussian discrimination process and a ran-

dom guessing process. Writing subjects� decision as

D ¼ 1; Comparison stimulus judged more slanted

0; Test stimulus judged more slanted

�
ð14Þ

the psychometric model was

pðD ¼ 1jDrÞ ¼ ð1 � pÞCðDr;m; sÞ þ pq; ð15Þ

where Dr is the difference in slant between comparison

and test stimuli, m is the mean of the cumulative

Gaussian, s is the standard deviation of the cumulative

Gaussian, p is the probability that a subject guessed on

any given trial and q is the probability that subject

guessed the comparison stimulus, given that he or she

guessed at all. The mean parameter, m, provides a

measure of the point of subjective equality between test

and comparison stimuli.

Guessing parameters for each subject were assumed
to be constant across conditions within an experiment.

Parameters for the psychometric model were computed

from maximum likelihood fits to the raw data. The in-

verse of the Hessian of the likelihood function derived

from the psychometric model provided estimates of std.

errors for the fitted parameters.

3.5.1.5. Subjects. Subjects were four undergraduates at

the University of Rochester. Subjects were paid for their

participation, had normal or corrected to normal vision
and were naive to vision science and to the goals of the

experiment.

3.5.2. Results

Fig. 12(a) shows the PSEs for each of the four

subjects in Experiment 1. The averages of the fitted

guessing parameters were p ¼ 0:18 and q ¼ 0:72. The

standard deviation parameters of the fitted cumulative

Gaussians provided a measure of subjects� abilities to
discriminate slant from texture, after correction for

guessing. Using these to estimate 75% thresholds for

subjects, we found an average discrimination threshold

of 1.9�. PSEs for a ¼ 1:0 showed that subjects judged

the Voronoi textures to be slightly more slanted

than equivalent elliptical element textures (average

bias¼ 1.7�). This is consistent with the small differences

found between the two types of textures in a previous
study (Knill, 1998a).

In order to determine the biases predicted by a model

in which subjects assume that surface textures are iso-

tropic, we ran an ideal observer for estimating slant

from texture for the stimuli used in the experiment. The

ideal observer incorrectly assumed that surface textures

were isotropic for all stimuli (it assumed a stretch factor

equal to 1.0), but in all other ways was the statistically
optimal estimator for the class of textures used (Knill,

1992). The dashed lines show the performance of the

isotropic ideal observer. The bias function for the iso-

tropic ideal observer is approximately linear in the range

of stretch factors used in the experiment. Slopes derived

from weighted linear regressions of PSE vs. the stretch

factor, therefore, provide a summary measure of the

proportion of isotropy bias shown by subjects. Fig. 13
(left panel) shows the fitted slopes for each of the sub-

jects along with the fitted slope for the isotropic ideal

observer. The average proportional bias, given by the

D.C. Knill / Vision Research 43 (2003) 831–854 845



ratio of subjects� regression slopes to the ideal observer�s
regression slope was 0.19.

3.6. Experiment 2: isotropy biases for small field of view

stimuli

While the task and stimuli used in Experiment 1 were

the same as the earlier experiment using small field of

view stimuli, the stimulus set was different (surfaces were
only stretched in the direction of surface tilt) and the

method for estimating the strength of subjects� isotropy

biases was different. A previously unreported experi-

ment using the same methodology as in Experiment 1,

but with a smaller field of view addresses this issue. The

experiment was equivalent to Experiment 1 with three

differences. First the field of view was approximately

half the size of the one used in Experiment 1 (10�
 13�),
but with equal density of texture elements. This resulted

in textures containing, on average, 60 texels per image.

Second, only three stretch factors were used to create

test stimuli (1.3, 1.0 and 0.7). Third, elliptical textures

served as test stimuli and Voronoi textures served as

comparison stimuli. All other methods were equivalent

to Experiment 1.
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images of isotropic textures, as a function of the stretch factor: (a) results from Experiment 1 (large FOV), (b) results of Experiment 2 (small FOV)

and (c) the averaged PSEs of subjects in the two experiments.
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Three undergraduate subjects at the University of

Pennsylvania served as subjects. All three subjects had

corrected to normal vision and were naive to the goals of

the experiment.

3.6.1. Results

Fig. 12(b) plots PSEs for each subject as a function of

the stretch factor. The averages of the fitted guessing

parameters were p ¼ 0:17 and q ¼ 0:53 and the average

75% threshold was 2.3�. For a ¼ 1:0, subjects showed a
small bias, as in Experiment 1, to judge the Voronoi

textures as slightly more slanted than the elliptical ele-

ment textures (average bias¼ 1.6�). Fig. 12(c) shows

average PSEs as a function of a for experiments 1 and 2.

The curves clearly show a significantly larger effect for

the small field of view stimuli than for the larger field of

view stimuli. This is reflected in the regression slopes

shown in Fig. 13. Subjects� average proportional bias in
Experiment 2 was 0.7, as compared to 0.19 in Experi-

ment 2. This difference was significant (T ð5Þ ¼ 3:58;

p < 0:01).

3.6.2. Discussion––experiments 1 and 2

The results of Experiment 2 replicate the findings of
the earlier study which served as the point of compari-

son with Experiment 1. The proportional isotropy biases

found for Vorononi textures in Experiment 2 (small field

of view stimuli) were equivalent to those measured in

that study (0.7, Voronoi textures). This supports com-

paring the results of Experiment 1, which measured the

strength of isotropy bias for stretched elliptical textures

in large fields of view to similar estimates for elliptical
textures in small fields of view derived from the earlier

study. While subjects in Experiment 1 showed some bias

(proportional bias¼ 0.19), it was significantly smaller

than the bias measured in the earlier study using small

field of view stimuli (proportional bias¼ 0.79, elliptical

element textures). It was also significantly smaller than

the bias found for the small field of view stimuli used in

Experiment 2. Strictly speaking, we cannot make a di-
rect comparison between the results of experiments 1

and 2, because different types of textures served as test

stimuli in the two. The equivalence of estimates derived

from Experiment 2 and the earlier study, however,

combined with the earlier results showing near equal

biasing effects for elliptical and Voronoi textures,

strongly argues that the large difference found here be-

tween experiments 1 and 2 is due to the change in field of
view size. The combined results of the current experi-

ment and previous experiments (Knill, 1998b; Rosen-

holtz & Malik, 1997) are consistent with a model

observer that employs a mixed model of surface tex-

tures, assuming that a fraction of surface textures are

isotropic and a fraction are anisotropic.
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Before drawing such a strong conclusion, we must

consider an alternative explanation for the decreased

isotropy bias found in Experiment 1––that texture cues

other than foreshortening are weighted more heavily in

large field of view images of textured surfaces than in

small field of view images. According to this hypothesis,

an observer could impose a hard assumption of isotropy

for the interpretation of foreshortening information, but
the biasing effects of that assumption would be miti-

gated by other texture cues, like scaling, that are not

biased by stretching surface textures. If subjects were to

give more weight to these cues in large field of view

stimuli, subjects would show the observed decrease in

the bias caused by texture stretching.

3.7. Experiment 3: measuring weights for foreshortening

and scaling cues

The third experiment tests the alternative hypothesis

by measuring the weights given by subjects to fore-

shortening and scaling cues when estimating surface

slant from texture. In a previously reported study using

stimuli similar to those in Experiment 2 (with the same,
small field of view, slant, etc.), subjects were found to

weight foreshortening and scaling information in ap-

proximately a 4:1 ratio (Knill, 1998b). This experiment,

therefore, was designed to measure cue weights for large

field of view texture stimuli. Since studies have consis-

tently shown that density information is ineffective for

human observers (Buckley et al., 1996; Knill, 1992), the

experiment focused only on the relative weighting of
foreshortening and scaling cues.

A standard perturbation technique was used to

measure the relative weights given to the foreshortening

and scaling cues. The technique prescribes creating

stimuli in which the cues suggest slightly different values

of slant, measuring subjects� estimates of slant and

correlating their estimates across different cue conflict

conditions with the values suggested by each cue. In this
experiment, test stimuli were created with five different

combinations of foreshortening and scaling cues: {62�,
65�}, {67�, 65�}, {65�, 65�}, {65�, 62�}, and {65�, 67�}.

Points of subjective equality between the test stimuli and

stimuli created with consistent foreshortening and scal-

ing cues provided a measure of subjects� slant percepts

for the test stimuli.

3.7.1. Methods

3.7.1.1. Stimuli. Test stimuli were created from surface

textures composed of random arrays of ellipses. For all

test stimuli, the positions of texels in the image were

computed by perspective projection of surface texel

positions on a surface slanted away from the fronto-
parallel at an angle of 65� around the horizontal. The

aspect ratios and orientations of the projected ellipses

were determined by perspective projection of the surface

texels at the slant specified for the foreshortening cue

(62�, 65�, 67�, 65� and 65� for the five test stimuli re-

spectively). The lengths of the projected ellipses were

determined by perspective projection of the surface

texels at the slant specified for the scaling cue (65�, 65�,
65�, 62� and 67� for the five test stimuli respectively).

Comparison stimuli for each trial were generated by

perspective projection of Voronoi textures at the slants
specified by the adaptive procedure for each trial, just as

they were for Experiment 1. Stimulus dimensions

(20�
 25:4�) and average texture density (150 texels per

stimulus) were the same as in Experiment 1.

3.7.1.2. Procedure and data analysis. The procedure and

method of data analysis used in experiments 1 and 2

were repeated in this experiment to find the point of

subjective equality between the cue conflict (test) stimuli

and cue consistent (comparison) stimuli.

3.7.1.3. Subjects. Three subjects for the experiment were

drawn from the student body at the University of

Pennsylvania. Subjects were paid for their participation,
had normal or corrected to normal vision and were

naive to vision science and to the goals of the experi-

ment.

3.7.2. Results

Fig. 14 plots each subject�s point of subjective

equality between cue-conflict test stimuli and the cue

consistent comparison stimuli for the five conditions in

the experiment. The solid curves show PSEs for test

stimuli with the foreshortening cue fixed at a 65� slant
and with a variable scaling cue. The dashed curves show

PSEs for test stimuli with the scaling cue fixed at a 65�
slant and with a variable foreshortening cue. The rela-

tive slopes of the two curves reflects the relative weights

given by subjects to the two cues. Fig. 15 plots the

weights computed from a linear regression of the PSEs

against the slants suggested by each cue, both as raw

weights and as relative weights. On average, subjects
weighted foreshortening over scaling information in a

ratio of 3.4:1.

3.7.3. Discussion

Subjects gave approximately the same relative

weights to foreshortening and scaling information in the

large field of view stimuli used here as was found for

small field of view stimuli of a similar type (average ratio

of 4:1) (Knill, 1992). The weights found in the current

experiment did not sum to one, however. In theory, this

could reflect an increased weight being given to density
information; however, given the large body of results in

the literature showing the inefficacy of the density cue,

this seems unlikely. More likely is the possibility that
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scaling and foreshortening information on a coarser

scale than individual texels contributed to subjects�
judgments. The arrays of texels used to generate surface

textures were semi-regular; therefore, the relative spac-
ing between texels provided both scaling and fore-

shortening information. Since texel positions were

projected from a fixed slant of 65� in all stimuli, the

coarser scale information provided by texel spacing

consistently specified a constant slant. Any weight given

by subjects to scaling and foreshortening information at

a larger scale than individual texels would diminish the

effects of perturbations in the scaling and foreshortening
information carried by the individual texels. Unfortu-

nately, independently perturbing the scaling and fore-

shortening cues on a large scale is mathematically

impossible, as it is impossible to isolate those cues in the

perspective mapping of texel positions from the surface

into the image. 4

The results of the experiment support the conclusion

that the differential biases found in experiments 1 and 2
resulted from differences in the way the visual system

interpreted the texture foreshortening cue, rather than

from changes in the relative weights given to fore-

shortening and scaling information. Thus, the initial

results appear to reflect the mixed nature of the visual

system�s model of texture isotropy.
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4 One can isolate them in the differential of the mapping, hence,

assuming that the differential is approximately constant at the scale of

individual texels, one can independently manipulate the scaling and

foreshortening information provided by the shapes and sizes of texels,

which is what we did.
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3.8. Experiments 4 and 5: turning off isotropy

The mixture model hypothesis predicts that the an-

isotropy model will begin to dominate subjects� esti-
mates of surface orientation when a surface texture

deviates markedly from being isotropic. More specifi-

cally, the model predicts that observers� isotropy bias

will decrease as a surface texture is stretched by larger

amounts. In experiments 4 and 5, we tested this pre-

diction by replicating experiments 1 and 2 using a larger

range of stretch factors. Fig. 16 shows examples of the
small field of view stimuli used in Experiment 4. Ex-

periment 5 repeated the procedure for stimuli with larger

fields of view.

Fig. 16. Example stimuli from Experiment 4. These stimuli subtended 10�
 13� of visual angle. Stimuli for Experiment 5 were similar, but were

expanded (keeping the texture density fixed) to fill 20�
 25:4� of visual angle.
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3.8.1. Methods

The methods were equivalent to those used in ex-

periments 1 and 2 with one exception: the stretch factors

used in experiments 4 and 5 were f1; 2; 4; 8; 16g. Stimuli

in Experiment 4 subtended 10�
 13� of visual angle.

Stimuli in Experiment 5 subtended 20�
 25:4� of visual

angle. The number of texels correspondingly averaged

60 in Experiment 4 and 150 in Experiment 5.

3.8.1.1. Subjects. Three subjects for the experiment were

drawn from the student body at the University of Ro-

chester. Subjects were paid for their participation, had

normal or corrected to normal vision and were naive to

vision science and to the goals of the experiment.

3.8.2. Results

Fig. 17 shows the results from both experiments. In

Experiment 4, subjects showed a large bias at a stretch

factor of 2.0, but the bias leveled off and even decreased

for the largest stretch factor used of 16. In Experiment 5,

subjects showed a smaller initial bias and the point at
which the bias curve leveled off and changed direction

was earlier than in Experiment 4.

3.8.3. Discussion

The results qualitatively follow the predictions of the

mixture model. Subjects show an isotropy bias for small

levels of surface texture stretching, but the bias decreases

at high levels of the texture stretch factor. Were texture

cues the only ones available in the experiment, the

mixture model would predict that the bias would dis-

appear completely for the highly stretched textures.

Subjects� estimates, however, remain biased even for
these highly anisotropic textures. In light of the presence

in the stimuli of cues suggesting that the surfaces were

fronto-parallel (e.g., accommodation and blur), this re-

sult is expected. The reliability of texture foreshortening

information is significantly lower when isotropy does

not apply than when it does. One would therefore expect

that subjects� estimates would be biased toward the

fronto-parallel for highly anisotropic textures, as the
weight given to non-texture cues would correspondingly

be increased in such cases. Moreover, the fronto-parallel

bias should be larger for small field of view stimuli, with

weaker texture information, than for large field of view

stimuli, as was found here.

4. General discussion

The experimental results support the hypothesis that

humans interpret surface orientation from texture using
a mixed model of textures. The visual system, at least

implicitly, assumes that a significant percentage of sur-

face textures are isotropic, but that some are not. The

mixed assumptions lead to strong, but incomplete biases

toward isotropy for surface textures that are close to

being isotropic. The visual system still uses foreshort-

ening information for texture images generated from

highly anisotropic surface textures, but without treating

them as isotropic. More concretely, the visual system

appears to smoothly transition between using local

foreshortening cues (deviations of local texture patterns
away from isotropy) and global foreshortening gradi-

ents, which do not rely on an assumption of isotropy.

4.1. Implications for cue weighting

One of the notable features of the results in experi-

ments 4 and 5 is that images of highly oriented textures

appeared less slanted than images of isotropic textures.

As noted above, this may have resulted from the relative

weakness of anisotropic texture cues as compared to
isotropic texture cues. This points to a complex inter-

action between cues when the interpretation of one of

the cues is built on a mixture model––the apparent

weight given to cues will depend on which component

model contributes most to the interpretation. Generally,

more constrained models will result in higher cue

weights than less constrained models. This provides a

further strong prediction of the mixture model. Further
studies can test whether or not the greater fronto-par-

allel bias shown for highly stretched textures results

from a decrease in the effective weight given by subjects

to texture information in those conditions.

4.2. Alternative approaches to model selection

We have formulated a rigorous Bayesian approach to

model selection, in which the structure of the informa-

tion in the cue and how it interacts with other cues
implicitly determines the model that dominates scene

interpretation. An alternative approach to model selec-

tion is to rely on key features in the image (Richards

et al., 1996) to disambiguate the appropriate model to

use when interpreting the cue. The texture images in Fig.

16 suggest such a feature for textures––image textures

that form a highly oriented ‘‘flow’’ in the image strongly

suggest that the underlying surface texture is oriented.
For planar surfaces, the highly oriented textures appear

to converge at a vanishing point. For curved, develop-

able surfaces, homogeneous, oriented textures project to

texture flows that have a generalized form of parallelism

in the image. Textures like these form what is akin to a

special subclass of textures. These flow-like textures are

conducive to qualitatively different interpretation strat-

egies than are images of isotropic textures. In particular,
they could efficiently be interpreted using a shape-from-

contour like mechanism rather than a texture gradient-

based method (Knill, 2001; Li & Zaidi, 2000). For
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curved surfaces, images of highly oriented texture flows

are often much more informative than images of iso-

tropic textures (Li & Zaidi, 2000).
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Appendix A

In this appendix, we derive the likelihood functions

for a nested pair of hidden prior models when the joint

likelihood function on primary and secondary scene

variables is Gaussian. For simplicity, we treat the case in

which both the primary and secondary scene variables

are scalar quantities (the n-dimensional case generalizes

easily from the bivariate case). The joint likelihood

function is a bivariate Gaussian,

pð~II jSp; SsÞ ¼ Lm exp

�
� 1

2
ð~SS �~llÞTR�1ð~SS �~llÞ

	
; ðA:1Þ

where Lm is the maximum value of the joint likelihood

function, ~SS is the vector containing both primary and

secondary scene variables, ~SS ¼ ½Sp; Ss�T, and ~llS is the

mean of ~SS, ~ll ¼ ½lp; ls�
T
. R is the covariance matrix of

the joint likelihood function, given by

R ¼ r2
p qrprs

qrprs r2
s

� 	
; ðA:2Þ
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where r2
p is the variance of Sp, r2

s is the variance of Ss and

q2 is the covariance between the two variables.

We are interested in the likelihood function for the

primary variable, Sp. This is given by marginalizing the

joint likelihood function over Ss,

pð~II jSpÞ ¼
Z

pð~II jSp; SsÞpðSsÞdSs: ðA:3Þ

If the prior on Ss is a mixture of two models, the

likelihood function becomes a mixture model,

pð~II jSpÞ ¼ /1p1ð~II jSpÞ þ /2p2ð~II jSpÞ ðA:4Þ

pð~II jSpÞ ¼ /1

Z
pð~II jSp; SsÞp1ðSsÞdSs

þ /2

Z
pð~II jSp; SsÞp2ðSsÞdSs; ðA:5Þ

where /i is the prior probability of model i and piðSsÞ is

the prior density function on Ss that is associated with

model i. When Ss is a scalar, a constrained model nested

within an unconstrained model has Ss fixed at a partic-

ular value. Without loss of generality, let Ss ¼ 0 for the

constrained model. The likelihood function then be-

comes

pð~II jSpÞ ¼ /1pð~II jSp; Ss ¼ 0Þ

þ /2

Z
pð~II jSp; SsÞpðSsÞdSs: ðA:6Þ

The likelihood function for the constrained model is

simply the slice through the joint likelihood function at

Ss ¼ 0, given by

p1ð~II jSpÞ ¼ pð~II jSp; Ss ¼ 0Þ ðA:7Þ

¼ Lme�l2
s =2r2

s exp
�ðSp � ðlp � qrpls=rsÞÞ

2ð1 � q2Þr2
sr

2
p

" #
:

ðA:8Þ

In order to compute the likelihood function for model

2 (the unconstrained model), we require a prior density

function for Ss. A uniform prior leads to the model

likelihood function

p2ð~II jSpÞ ¼
Z

pð~II jSp; SsÞp2ðSsÞdSs ðA:9Þ

¼ Lm
1

D

Z S0þD

S0

exp

�
� 1

2
ð~SS �~llSÞ

TR�1ð~SS �~llSÞ
	


 dSs; ðA:10Þ

where S0 is the lower bound on Ss. Assuming that the

joint likelihood function is well within the bounds,

½S0; S0 þ D� (i.e., D  rs), we can evaluate the integral as

p2ð~II jSpÞ � Lm
1

D

Z 1

�1
exp

�
� 1

2
ð~SS �~llSÞ

TR�1ð~SS �~llSÞ
	


 dSs ðA:11Þ

� Lm
1

D
rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1 � q2Þ

p
exp

"
�
ðSp � lpÞ

2

2r2
p

#
:

ðA:12Þ

Comparing Eqs. (A.8) and (A.12) clarifies a number

of relationships between the constrained and uncon-

strained models. First, the constrained model is biased

by an amount )qrpls=rs. The bias reflects the distance

between the peak of the joint likelihood function and the
assumed value of Ss under the constrained model

(Ss ¼ 0). Second, the constrained model is penalized by a

goodness of fit factor that decays exponentially from 1

as the joint likelihood function moves further away from

the model�s assumed value of Ss. Third, the likelihood

function for the unconstrained model is penalized by a

constant Occam�s factor that depends only on the spread

of the joint likelihood function and the prior uncertainty
(D) in Ss. Unlike the goodness of fit factor, the Occam�s
factor does not depend on the mean of the joint likeli-

hood function. Finally, the variance of the likelihood

function for the constrained model is smaller by a factor

of 1 � q2 than the likelihood function for the uncon-

strained model. This factor determines how much in-

formation is gained by accepting the more constrained

model.
The relative heights of the model likelihood functions

depend on the relative values of the goodness of fit

factor and the Occam�s factor. Writing the peak values

of the two likelihood functions as L1 and L2, we have

for the ratio of peak constrained likelihood vs. peak

unconstrained likelihood

L1

L2

¼ De�l2
s =2r2

s

rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1 � q2Þ

p : ðA:13Þ

An estimator that computes the mean of the mixed
likelihood function 5 computes a weighted average of

the means of the component model likelihood functions.

The ratio of the weights is proportional to the ratio

of the areas under the two likelihood functions (Eq.

(8)). The relative weights for the constrained and

unconstrained interpretations in the combination rule

are given by

w1

w2

¼ De�l2
s =2r2

sffiffiffiffiffiffi
2p

p ðA:14Þ

When the joint likelihood function peaks at a distance of

0.1rs away from the value of Ss assumed in the con-
strained model, the ratio of weights is 0.38D. When the

5 Alternative estimators will show similar qualitative properties to

the mean, when considered on average.
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peak deviates from the constrained value by a distance

of 4rs, the ratio shrinks to 0.05D.
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