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Efficient and Unbiased Modifications of 
the QUEST Threshold Method: Theory, 
Simulati~ns~ Experimental Evaluatiun and 
Practical Implementation 

QUEST fwatson artd Pelli, Percept;icur s;m8 Pqwhup~y.&q I3,113-120 (1983)l is an tdkht method 
of ~~~~ beds whbzb is based on three &es: (3) Section of @or kaowkdge and 
a~~~o~ ~~~n~ an in&al ~ro~~~ density f&&on (p&f.) of ~ (Le. relative 
probabiiity of d&rent thresholds in the population). (2) A method for chstoshg the t&imhs intensity 
of any trial. (3) A method for choucriing the final threshold estimate. QUEST introduced a Bayesian 
framework for combjaiag prior knowledge with tbe rrssults of previous trials to calculate a current 
p,d,f.; tbis is then used to implement Steps 2 and 3, Whiie maintain@ this Bayesiau approach, this 
paper evaluates w&k ~~~~~ of the QEXST method ~~~1~ Step 2, but also Steps I 
and 3) can kad to greater preeisioR and redoced bias* F@r v&at&w3 of 
ia Step 2) were evahmted by computer simulations. Xa addition to tbo s 
stimulus intensity to the mode of the current p.d.f. af threshold, the alternatives of using the mean 
and the me&n were evaluated, In the fourth variatian-the Minimum Variance M&h&-the next 
stimulus intensity is chosen to minimize tbe expected variance at ti ielrd of tbe next trial. An exact 
~Urn~~~ tecbsigue w&b up to 20 trials was used fur both yes-no am3 tw*dtmtiYe forced-eboice 
(2AFC) ~~ xn rtfi 6z%es$l&ig the mean (here called ZEST) pro&led better precision tbmi 
using the median wttich in turn wus better than t&ug the mode. The Minimum Varbmce Method 
provided slightly bet&r precision thara ZEST. Tbe ustml threshold criterion-based on the “ideal sweat 
factor”-may not provide optimum precision; efficisney can generally be improved by optimiing the 
thresbold criterion, We tberefore rwammend either u&g ZEST wit& the optimmn thmsboid criterion 
or tbe more complex ~~~ Vari’rsnre Met&L A tI&tincti is mado between ‘%n~ement b&s”, 
which is derived f!rom the mean of repeated aid estimates for a single real thr&&dY aod 
~~~e~~ta~on bias”, which is derived from the memo of real ~1~ ~~~ a si@e threshold 
estimate. If the& assumptions are wrrect, the current methods have no interpretation bias, but they 
do have measuremeat bias. Interpretation bias cam& by errors in tk assumptions wed by ZEST is 
evaluated. The pro&ions and merits of yes-no erti 2AFC techtiques are compared. Practical 
implementation of the ZEST meth& is described in the Appendix, w&b emphasis an the fiexiitity 
of tbe eorrent ~~ in ~~v~~ experimental prctbfems, and oa nts to a&@w for 
va&&ions in the stope of the ~~~e~~ fu~o~ drifts in ~~~ and ~~~ation between 
thre&oHs for sli&mmt stimuli. 

Thtwhold methods Forced-choice method Yes-no method Efficiency Bias 

~~~~~U~ provide important information about visual function in 

Visual threshold measurements have provided much of infants and patients. Typically, time limitations restrict 

our knowledp about normal visual function and also infant and clinical measurements to fewer trials than 
would be used in a study of normal visual processes. For 
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(King-Smith, Grigsby, Vingrys, Benes & Supowit, 1991). 
In addition, implementation and experimental evalu- 
ation of an efficient threshold technique are described. 

This paper is mainly concerned with threshold 
measurements which are independent in the sense that the 
testing strategy and threshold calculations for any one 
stimulus (e.g. one spatial frequency of a contrast sensi- 
tivity function) are independent of the results for any 
other stimulus in the same experiment. Greater efficiency 
can be obtained in special circumstances where there is 
a known correlation between thresholds for different 
stimuli-e.g. in automated perimetry (Johnson & 
Shapiro, 1990; see also Appendix). This paper is also 
limited to threshold methods based on a series of discrete 
responses to stimulus presentations; for a more general 
discussion of psychophysical methods, see Pelli and 
Fare11 (1994). 

Adaptive threshold methods 

Threshold methods may be “adaptive” or “non- 
adaptive”. In adaptive threshold methods, the intensity 
used on any trial depends on the subject’s responses to 
previous trials whereas in non-adaptive methods, the 
stimulus intensities are predetermined and independent 
of the subject’s responses (the most common example 
being the “method of constant stimuli”-McKee, Klein 
& Teller, 1985). When there is considerable initial uncer- 
tainty about the threshold value, adaptive methods are 
thought to be more efficient than non-adaptive methods, 
for the following reason. Test intensities which are close 
to threshold are generally more informative than those 
which are far from threshold (Taylor, 1971). For 
example, in a “yes-no” experiment, a measured response 
probability of 100% indicates only that threshold is 
considerably below the stimulus intensity (but not, say, 
whether it is 1 rather than 2 log units lower); however, 
a measured response probability of say, 50%, indicates 
that threshold is relatively close to the stimulus intensity. 
Adaptive methods are designed to present most stimulus 
intensities close to threshold, and so they are typically 
more efficient than non-adaptive methods (Watson & 
Fitzhugh, 1990). 

Many different adaptive threshold methods have been 
developed. In a simple “staircase” method (Cornsweet, 
1962), the stimulus intensity is reduced or increased by 
a (typically) fixed step after correct or incorrect re- 
sponses respectively. Modified decision rules (e.g. step 
changes of intensity after two correct responses or one 
incorrect response) have been developed by Wetherill 
and Levitt (1965) and Levitt (1971); additionally, the 
step size can be reduced systematically as a function of 
the trial number, i,--e.g. as c/i (where c is a constant, 
Robbins & Munro, 1951) or as c/2’ (MOBS, Modified 
Binary Search, Tyrrell & Owens, 1988; Johnson & 
Shapiro, 1989). 

Other adaptive methods are based on blocks of trials. 
In PEST (Parameter Estimation by Sequential Testing- 
Taylor & Creelman, 1967; Findlay, 1978; Hall, 1981) a 
block of trials is presented at a fixed intensity; the block 
is terminated when the number of correct responses 

deviates significantly from that expected from the 
threshold-criterion probability. A new block is then 
presented at a lower or higher intensity, depending on 
whether the observed probability was, respectively, 
above or below the criterion. In APE (Adaptive Probit 
Estimation, Watt & Andrews, 1981), each block has a 
fixed number of trials and uses four intensities; after each 
block (except the first), a new set of four intensities is 
derived from previous responses. 

An adaptive threshold method which offers the poten- 
tial of high efficiency is the “maximum likelihood” 
method (Hall, 1968; Pentland, 1980; Klein 1981; Watson 
& Pelli, 1983; Green, 1993). After each trial, the cur- 
rently most likely value of threshold is determined, and 
this intensity is used for the next stimulus intensity; the 
final threshold estimate is the most likely value of 
threshold after the last trial. 

The QUEST method 

The most popular maximum likelihood method is 
probably the QUEST method of Watson and Pelli 
(1983). QUEST is based on the following assumptions: 

(1) The psychometric function has the same shape 
under all conditions, when expressed as a function of log 
intensity. 

(2) The subject’s threshold does not vary from trial to 
trial. 

(3) Individual trials are statistically independent. 

The first trial of this method for a yes-no experiment 
is illustrated in Fig. 1. The experimenter’s prior knowl- 
edge about the probability of different threshold values 
is represented in Fig. l(A). This is known as the initial 
probability density function (p.d.f.) and denoted qO(T), 
where T is threshold in log units; qO(T)6T is the prob- 
ability that the log threshold is in a small range 6T at T. 
Watson and Pelli (1983) assumed a Gaussian initial 
p.d.f., but the p.d.f. assumed here (a modified hyperbolic 
secant) is skewed and is based on a histogram of 
thresholds measured in our laboratory (see below). In 
Fig. l(A), this p.d.f. has been normalized so that the 
total area under the curve is unity, i.e. 

q~(~)dT = 1 (1) 

although this is not necessary for normal application of 
the QUEST method, it is useful for computer simu- 
lations. 

In the standard QUEST method, the first stimutus 
intensity is chosen to correspond to the mode (maximum 
likelihood), x,, of this initial p.d.f.-the vertical line in 
Fig. l(A). If the subject responds “yes” to the first trial, 
it indicates that the threshold is probably below the 
stimulus intensity and so the new p.d.f. of threshold 
should be shifted towards lower intensities; similarly, 
a “no” response should shift the p.d.f. to higher 
intensities. 

Watson and Pelli (1983) have shown how Bayes’ 
theorem may be applied to calculate the new p.d.f. of 
threshold. Suppose that p (r, x, T) is the probability of 
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FIGURE 1. An illustration of the calculations associated with the first 
trial of the QUEST method using a yes-no method. (A) The assumed 
initial probability density function (p.d.f.), q,(T), of log threshold, T. 
The vertical line is drawn at the maximum-likelihood value of log 
threshold-i.e. the mode of the p.d.f.; this would be used as the log 
intensity, x, , of the first stimulus in the standard QUEST method. (B) 
Likelihood functions for “yes” and “no” responses; for example, the 
“yes” likelihood function, p (1, x, , T) is the probability that the subject 
will respond “yes” to the log stimulus intensity, x,, as a function of 
the subject’s log threshold, T. This likelihood function is a left-to-right 
mirror image of the psychometric function (probability of seeing 
curve). (C) P.d.fs., q,(T), of log threshold after “yes” or “no” 
responses to the first trial. By Bayes’s Theorem, these p.d.fs. are the 
product of the initial p.d.f. (A) with the corresponding likelihood 

function (B) [equation (2)]. 

a response, r (r = 1 for “yes”, r = 0 for “no”) for a 
subject with log threshold, T, to a stimulus of log 
intensity, x; the functional form of p (r, x, T) is dis- 
cussed later [equation (9)]. For r = 1, this is simply the 
psychometric function (probability of seeing as a func- 
tion of log intensity, x) for a subject with log threshold, 
T. Consider the first trial of a threshold measurement 
[log intensity X, , Fig. l(A)]. Then the probability that the 
log threshold is T and that the subject will give response 
rl is simply the product of the probabilities of these two 
events, i.e. 

q1 (T) = P (r19 x1 9 TMT). (2) 

Thus q,(T) is a measure of the probability that the log 
threshold is T, given both the prior knowledge, qo(T), 
and the subject’s response, r, . 

The multiplication in equation (2) is represented in 
Fig. 1. For the stimulus intensity, x,, the solid and 
dashed curves in Fig. l(B) give the probability 

p (rl, x1, T) of yes (rl = 1) and no (rl = 0) responses 
respectively; these are functions of T and are called 
“likelihood functions” (cf. the psychometric function is 
a function of x). Corresponding solid and dashed curves 
in Fig. l(C) give the product of the functions in Fig. l(A) 
and (B) and hence [from equation (211 the two possible 
p.d.fs. of threshold, q,(T), after the first trial. For a 
relatively broad p.d.f., such as that in Fig. l(A), this 
multiplication effectively “cuts off” part of the p.d.f.; 
e.g. for a “yes” response, the high threshold end of the 
p.d.f. is cut off [Fig. l(C)]. 

In theory, q, (T) could be normalized by multiplying 
by a constant so that the area under this function is unity 
as in equation (1); q,(T)GT would then be the prob- 
ability that log threshold now lies in a range 6T at T. In 
practice it is not necessary to do this normalization to 
implement the QUEST method. For the simulations of 
this paper, it is actually advantageous to use equation (2) 
without normalization; given the assumptions made by 
the QUEST method, the probability that the subject’s 
first response is r, can then be calculated as follows. 
q, (T)6T is the probability that the log threshold is in a 
small range 6T at T and that the first response is r, . The 
overall probability, P(r,), of response r, is then simply 
obtained by integration i.e. 

P(r,) = s ql(T)dT. (3) 

It should be noted that this probability, which depends 
on the distribution of thresholds in the population and 
the intensity of the first trial, is not equivalent to the 
probability of seeing which is defined as threshold. 

The function p (r, x, T) is potentially complicated 
(being a function of two continuous variables, x and T, 
and one binary variable, r) but two simplifications can be 
made. First, for any x and T, the sum of the probabilities 
of “yes” and “no” responses must be unity so that 

PC&X, T)= 1 -pU,x, 0 (4) 

This inverse relationship between “no” and “yes” prob- 
abilities is seen in Fig. l(B). 

The second simplification is that, from assumption 1 
(see above), the shape of a psychometric function, when 
plotted as a function of log intensity, x, is independent 
of log threshold; log threshold determines the position 
of the psychometric function along the log intensity axis, 
but does not affect its shape. This is known as Crozier’s 
law (Crozier, 1936; Blackwell, 1963; le Grand, 1968; 
Nachmias, 1981). Thus, for any value of log threshold, 
T’, the psychometric function is given by the equation 

p(l,x, T’)= Y(x - T’) (5) 

where Y(X) is a canonical (standard) form of the 
psychometric function [e.g. equation (9)] and 
X = (x - T’) is the difference between log stimulus 
intensity and log threshold. 

A similar equation applies to likelihood functions 
(probability vs log threshold, T); for any log intensity, 
x 0 the “yes” likelihood function will be given by 

p(l,x’, T)= Y(x’- T) @a) 
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and from equation (4), the “no” likelihood function will 
be 

p (0, x ‘, T) = 1 - Y (x ’ - T). (6b) 

Thus likelihood functions for different values of log 
intensity, x ‘, all have the same shape and may be derived 
from a standard shape by sliding them along the log 
threshold axis by a distance x ‘. By comparing equation 
(6a) (function of 2”) with equation (5) (function of x), 
it is seen that the shape of the “yes” likelihood function 
[equation (6a)] is simply a left-to-right mirror image of 
the psychometric function [equation (5)]; the “yes” 
likelihood function in Fig. l(B) illustrates this mirror 
reversal of a typical psychometric function. From 
equations (6a) and (6b), the “yes” and “no” likelihood 
functions for any log intensity, x ‘, are readily derived 
from the standard form of the psychometric function, 
Y(X), which need be calculated only once and then can 
be stored as a table in computer memory (Watson & 
Pelli, 1983). 

The process of Fig. 1 can now be repeated as many 
times as required. For example, in the standard QUEST 
method, if the subject responded “yes” to the first trial, 
the next intensity, x2, would be set to the mode of the 
“yes” p.d.f. in Fig. l(C); after the second response, r,, 
a new p.d.f. would be derived by a multiplication like 
that in equation (2). In general, the p.d.f. after trial i is 
given by 

4iCT) =P (ri9 xi9 T)qi- lCT). (7) 

The preceding analysis applies equally well to forced- 
choice experiments; in that case, r, = 1 and ri = 0 would 
correspond to correct and incorrect responses respect- 
ively. 

In Watson and Pelli’s (1983) implementation, calcu- 
lations were performed on the logarithms of probabilities 
and likelihoods [so that the multiplication of equation 
(7) became an addition which was considerably faster to 
calculate with the slow laboratory computers then avail- 
able]. We prefer to use unmodzfied probabilities because 
this facilitates calculation of the mean and median of the 
current p.d.f. of threshold. It also facilitates calculation 
of the variance and range of this p.d.f.; this is valuable 
for estimating the precision of the final threshold esti- 
mate, and also may be used for a termination rule [i.e. 
the experiment may be terminated when the variance or 
range of the p.d.f. falls below a predetermined value- 
this method of termination makes fewer assumptions 
than the x * method of Watson and Pelli (1983) and the 
variance estimator of Laming and Marsh (1988)]. 

The initial probability density function (p.d.f.1 

Watson and Pelli (1983) assumed that the initial p.d.f. 
was a Gaussian function of threshold whose mean and 
standard deviation could be estimated from the exper- 
imenter’s experience. However, when equipment is being 
used in a fairly consistent manner, it is possible to 
fine tune the QUEST method by analyzing threshold 
data collected in these conditions over a certain time 
period. 

Figure 2(A) shows a histogram of 18,944 thresholds 
measured on an oscilloscope display system using a 
yes-no method; the number of thresholds in 0.05 log unit 
ranges of contrast threshold are plotted as a function of 
the logarithm of contrast threshold (in %). Data are 
from both normal subjects and patients, and include 
measurements of both contrast sensitivity functions and 
flicker modulation sensitivity (de Lange curves); con- 
ditions were similar to those used by Grigsby, Vingrys, 
Benes and King-Smith (1991). It may be noted that some 
contrast threshold values were estimated to be over 
100% (log threshold greater than 2) and so are greater 
than contrasts that are physically possible. This ability 
of the QUEST method to estimate thresholds beyond the 
physical range of the equipment is discussed in the 
Appendix. 

The dashed line in Fig. 2(A) is a least squares fit to the 
histogram using a modified hyperbolic secant of the 
form 

q,(T) = A/[Be-C(7’-‘) + CeB(T-‘J] (8) 

where T is log threshold, A determines the overall height 
of the fitted curve, B and C determine the slopes of the 
fall-off at high and low thresholds respectively, and t 
corresponds the most probable log threshold value. 
Values of B and C were 1.22 and 5.07 respectively 
indicating a much shallower fall-off in probability at 
high thresholds than at low. This function (shifted, for 
convenience, to have a peak at T = t = 2) is the one 
illustrated in Fig. l(A) and is used in most of the current 
simulations. 

False positive rate for the experiments of Fig. 2(A) 
was 942 in 29,940 blank trials, i.e. 3.15%. The histogram 
of Fig. 2(A) was determined using only those threshold 
measurements in which the subject responded at least 
once; the subject did not respond to any of the stimuli 
on 3.87% of attempted threshold measurements, and 
these very high thresholds can be considered to corre- 
spond to the high-threshold “tail” of the dashed curve 
in Fig. 2(A). 

The generality of equation (8) is supported by a 
similar analysis, in Fig. 2(B), of 70,247 color-mixture 
thresholds measured on a color video display. A yes-no 
technique was again used, both normal subjects and 
patients were included, and conditions were similar to 
those of Grigsby et al. (1991). [Unlike the sinusoidal 
stimuli used in Fig. 2(A) for which the maximum 
possible physical contrast was lOO%, these stimuli were 
circular test spots whose contrast or Weber fraction 
could be greater than 100% for incremental test spots; 
thus, the histogram extends to higher threshold contrasts 
than those of Fig. 2(A).] In this case, the slope par- 
ameters, B and C, are 1.80 and 5.10, and thus the slope 
at high thresholds is somewhat steeper than in Fig. 2(A). 
False positive rate was 1305 in 58,778 blank trials, i.e. 
2.22%. As in Fig. 2(A), the histogram does not include 
attempted threshold measurements where the subject did 
not respond to any stimulus-these accounted for 1.85% 
of the total threshold measurements. 
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The initial p.d.f. used for most of the current simu- (Taylor, 1971); thus if t = cid, and intensity is set to a 
lations is based on Fig. 2(A) (oscilloscope display), and fixed value very close to threshold, this should yield the 
would thus be suitable for measuring, say, contrast minimum variance in the threshold estimate from such 
sensitivity functions. It should be emphasized that this a sequence of trials. It was for this reason that Watson 
initial p.d.f. is not necessarily suitable for all types of and Pelli (1983) advocated using the ideal sweat factor; 
visual threshold measurements+.g. a broader initial however, it is not clear that cid is the optimum value of 
p.d.f. would be more suitable if very high or low 6 for adaptive methods based on a limited number of 
threshold values were more probable. trials and this is investigated in the present study. 

The psychometric function 

The psychometric function (and hence the likelihood 
function) used here is a Weibull (1951) distribution 
similar to that used by Watson and Pelli (1983). It is 
given by 

p (1, x, T) = Y(x - T) 

For a yes-no experiment [/I = 3.5, y = 0.03 and 
6 = 0.01 in equation (9)], tid = 0.052 log units and the 
corresponding probability of seeing at threshold is 0.780; 
for a 2AFC experiment (y = 0.5), cid = 0.063 log units 
and the probability of a correct response at threshold is 
0.897. Slight differences from the values of Watson and 
Pelli (1983) are due to the slight difference in the current 
psychometric function [equation (9)]. 

=l-6 -(l -*r’-G)exp[-lo@‘“-r+‘)] (9) 
Variations on the QUEST method 

where y is the false positive rate (e.g. 0.5 for two 
alternative forced choice, 2AFC), 6 is the false negative 
rate (e.g. caused by blinks or mental lapses), B deter- 
mines the slope of the psychometric function and 6 
determines the threshold criterion-i.e. the probability 
of seeing which is defined as threshold. 

For yes-no simulations, the false positive rate, y was 
set to 0.03 which is similar to experimental values 
determined above. For both yes-no and 2AFC simu- 
lations, we used the same value of false negative rate, 
6 = 0.01, as Watson and Pelli (1983); however, our 
method of incorporating false negatives is slightly differ- 
ent from theirs, as it allows for the possibility of false 
negatives occurring for all stimulus strengths (rather 
than just for strong stimuli), but the difference between 
the two psychometric functions is small (less than 0.01 
change in probability). In our experiments, and in most 
of our simulations, the slope factor, /I was 3.5, the same 
as Watson and Pelli’s. In our yes-no experiments 
(Appendix), the threshold criterion, t was set to zero, 
corresponding to a threshold probability of 0.637; this 
and other values of c were used in the current simu- 
lations. 

For asymmetrical p.d.fs. such as those in Fig. l(A, C), 
the mode, mean and median will generally differ from 
each other; for example, for the initial p.d.f. in Fig. l(A), 
the mode, mean and median are 2.0, 2.45 and 2.25 
respectively [when rounded to the step size of 0.05 log 
units used by Watson and Pelli (1983) and here]. Pre- 
vious studies (King-Smith, 1984; Emerson, 1986) have 
demonstrated that greater efficiency and less measure- 
ment bias may be obtained when the next log intensity, 
x,, is set to the mean of the current p.d.f. rather than the 
mode which is used in the standard QUEST method 
(Watson & Pelli, 1983). In the current simulations, 
further comparisons are made between all three 
measures; mode, mean and median. Methods based on 
these three strategies will be called “mode-QUEST”, 
“mean-QUEST” and “median-QUEST”. 

The minimum variance method and the ideal psychometric 
procedure 

The ideal sweat factor 

Watson and Pelli (1983) advocated a value of c in 
equation (9) corresponding to the “ideal” sweat factor 
(Taylor, 1971; Green, 1990). The “sweat factor” is a 
measure of the amount of effort required to obtain a 
certain accuracy of threshold estimate, for a sequence of 
trials at a jifixed intensity, and is given by 

The Minimum Variance Method (King-Smith, 1984) 
is another modification of the QUEST procedure. In this 
method, the log stimulus intensity, xi, for the next 
stimulus is chosen so as to minimize the expected 
variance, ?, at the end of the next trial, where expected 
variance is defined by 

K(X) = Y((x)[l - Y(X)]/[dY((X)/dX12 (10) 

where Y(X) is the standard form of the psychometric 
function [equation (9)] and X is the difference between 
log intensity and log threshold (i.e. x - T). The ideal 
sweat factor is the minimum value of K(X); it is possible 
to arrange that the ideal sweat factor occurs at threshold 
intensity (i.e. x = T or X = 0) by suitable choice of c in 
equation (9~this ideal value will be called &. The 
variance of a threshold estimate based on M trials 
(where A4 is large) at a fixed intensitv eauals K (X)/M 

~=P,vY++“v”. (11) 

P, and P, are the probabilities of “yes” and “no” 
responses, and V, and V,, are variances of the corre- 
sponding p.d.fs. For example, on the first trial, one 
possible stimulus intensity would be the mode of the 
initial p.d.f. which is illustrated in Fig. 1. In this case, P, 
and P, are given by equation (3) and V, and V, can be 
calculated from the corresponding p.d.fs. in Fig. l(C) 
using the standard statistical formula 

V = 
s 

(T-m)*q(T)dT 
i’s 

q(T)dT (12) 

where m is the mean of the p.d.f. q(T), i.e. 

m = [ Tq(T) dT/[q(Tf dT. (13) 
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Equation (11) is evaluated for a range of different stimu- 
lus intensities and the stimulus intensity is chosen which 
minimizes l? For the initial p.d.f, of Fig. l(A), [and for 
t: = 0 in equation (911, the rni~rn~ expected variance is 
for x , = 2.65, i.e. somewhat greater than the mode, mean 
and median of this p.d.f. which are given above. 

This method minimizes the expected variance at the 
end of the next trial and so “looks one trial ahead”. A 
variation of this method is to *‘look two trials ahead” by 
trying a range of log intensities, xi, for the next trial and, 
for each possible outcome (“yes” or “no”) a range of log 
intensities, x(+, , for the following trial; the value of xi is 
chosen which minimizes (together with the correspond- 
ing best choices for xi,, ) the expected variance at the 
end of the next two trials [i.e. from an equation like 
equation (11) but with four terms corresponding to the 
four possible response pairs to two trials-“yes-yes”, 
“yes-no , ” “no-yes” and “no-no”]. The log intensity for 
the following trial, xi+, , is not determined from these 
calculations made before trial i, but is determined by 
repeating the whole calculation process after trial i. For 
the final trial, there is no reason to try to minimize the 
expected variance after the next two trials, so the simpler 
“one-trial look-ahead” method is used. 

In the Ideal Psychometric Procedure (Pelli, 1987), the 
method is extended to many steps ahead-e.g. to the end 
of the experiment. The computation time for a look- 
ahead of M trials grows as about LM where L is the 
number of expected variances [equation (11)) computed 
per look-ahead trial. For this reason, the current simula- 
tions have been limited to one and two trial look-ahead. 

The anon threshold estimate 

In our simulations, each experimental run was termi- 
nated after a predetermined number of trials, N. For 
such an experiment, there are 2N possible sequences of 
responses, because the subject may respond “yes” or 
“no” to any of the trials. Any sequence may be uniquely 
specified by a “sequence number”, j, (1 <j < ZN) defined 

by 

j = rI 2Nc’ + r22N-2. , . fr,2”-‘ .. . +rN -i- 1. (14) 

Our method of calculating the final threshold estimate 
differs in two ways from that of Watson and Pelli (1983). 
First, Watson and Pelli derived a likelihood function of 
log threshold, 1,(T), by dividing the final p.d.f. for 
sequence j, qN,(T), by the initial p.d.f., qO(T); they used 
this likelihood function to calculate threshold [from the 
mode of I,(T)]. In this way, they eliminated ail assump- 
tions about the initial p.d.f. from their final estimate of 
threshold. At large positive and negative values of log 
threshold, T, the likelihood function tends to constant, 
non-zero, values, which are typically small and different 
for positive and negative extremes; this means that, 
although the mode (peak) can be calculated, the mean, 
median and variance are not calculable, at least in the 
case where the whole function -co < T < co, is con- 
sidered. It is, of course, possible to calculate the mean, 
median and variance if the range of the likelihood 
function is restricted e.g. T, < T < T,; however, these 

values will then depend on the rather arbitrary choice of 
T, and T2. 

These problems can be avoided if the final p.d.f., 
qNj(T), is used instead of the likeliho~ function, be- 
cause this p.d.f. tends rapidly (exponentially) to zero for 
large positive and negative values of T and so it has 
calculable mean, median and variance (even when an 
infinite range of T is considered). In our experiments, 
where the initial p.d.f. has been determined from a 
histogram of log thresholds (Fig. 2) it is reasonable to 
include this information in the final threshold estimate- 
i.e. to use the final p.d.f., rather than to divide it by the 
initial p.d.f. to derive a likelihood function. Our simu- 
lations will show that estimated thresholds are typically 
little affected by any reasonable choice of initial p.d.f. 

A second difference from Watson and Pelh (1983) is 
that the final threshold estimate, Ej, was taken as the 
mean, rather than the mode, of the final p.d.f.; thus 

4 = I%#‘) dT/[&T) d7-e (1s) 

The mean was used for two reasons. The first advantage 
of using the mean is that it minimizes the variance (mean 
square error) of the final threshold estimate; for example, 
in equation (12), the minimum value of variance, V, is 
given by setting m equal to the mean of the p.d.f. q (T) 
[equation (13); Hays, 1988, p. 1771. Because we evaluated 
different threshold methods by calculating an overall 
weighted variance for the threshold estimates (see 
Methods), this provides the optimum performance for 
all techniques and so provides a fair comparison. If the 
mode of the final p.d.f. had been used (cf. Watson & 
Pelli, 1983), the overall variance would have been higher. 
A second reason for using the mean, rather than the 
mode, of the final p.d.f. is to eliminate bias-see below. 

An illustrative example 

To help the reader envisage the threshold methods and 
simulations of this paper, Fig. 3 is a perspective plot 
which represents the final p.d.fs., qNi(T), which can be 
obtained after N = 3 trials of the QUEST method, Each 
final p.d.f. has been plotted at its corresponding value of 
log estimated threshold, Ej, and corresponds to one of 
the 8 (= 23) possible response sequences in three trials; 
for example, the leftmost p.d.f., which has the highest 
estimated threshold, corresponds to a sequence of three 
“no” responses. The final threshold estimate, Ej, equals 
the mean of the final p.d.f., given by each thick solid 
vertical line; this is emphasized by the diagonal line, 
(E, = T), which passes through the means of the p,d.fs. 
For comparison, each dashed vertical line gives the mode 
of the p.d.f.; if Fig. 3 is now considered to represent an 
intermediate stage of a longer threshold determination 
(N > 3), it is seen that setting the next intensity equal to 
the mode (the standard QUEST procedure) would differ 
considerably from setting it to the mean. The thin lines 
at T = 2 and T = 4 are discussed below. 

In addition to the mean, two other parameters of the 
final p.d.fs. are important for the current simulations. 
First, if the assumptions of the method are correct, the 
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FIGURE 3. A perspective plot of final p.d.fs., q,,(T), for a simulation of the yes-no QUEST procedure [i.e. next intensity 
set to the mode of the current p.d.f. and using the “ideal sweat factor”, i.e. 6 = t,,, = 0.052 log units in equation (911, with N = 3 
trials. There are eight final p.d.fs. corresponding to the 23 possible sequences of responses. Final p.d.fs. are plotted at the 
corresponding values of log estimated threshold, E,, which for our simulations are the means of the final p.d.fs.-thick solid 
vertical lines; this derivation of estimated threshold from the mean of the final p.d.f. is illustrated by the diagonal line (E, = 7’). 
The dashed vertical lines give the modes of the final p.d.fs.-for a longer threshold run (N > 3), these would be used for the 
next intensity in the standard QUEST method. Thin lines at T = 2 and T = 4 and circle at T = 4 help to illustrate measurement 
bias (see text for details). For best perspective view, hold vertically and view from above. In this and subsequent figures, the 
following conditions are used unless otherwise indicated. The initial p.d.f. is that shown in Fig. l(A), and is the same shape 
as the curve fitted to the histogram of oscilloscope thresholds in Fig. 2(A). The psychometric function is given by equation 

(9) with p = 3.5, y = 0.03 for yes-no and 0.5 for 2AFC simulations, and 6 = 0.01. 

area under each p.d.f. gives the probability of the 
corresponding response sequence [cf. equation (3)]. 
Second, the variance of a final p.d.f. gives the variance 
of the threshold estimate. 

Measurement and interpretation bias 

An advantage of using the mean, rather than the 
mode, of the final p.d.f., qNj(T), as the threshold esti- 
mate is that the mean is an unbiased estimate of 
threshold, in the sense that, if all assumptions are 
correct, this estimate will be correct “on average”. For 
a given sequence of “yes” and “no” responses which 
yields a log threshold estimate, Ej, the final p.d.f. gives 
the relative probabilities of different values of log real 
threshold, T, i.e. 

P (TIE,) = qw(T) 
is 

q,(T) dT (16) 

where p (T IEj) means the probability of T given Ej. [The 
denominator in equation (16) ensures that jp (T (Ej) dT 
is unity]. The expected value of log real threshold (i.e. the 
weighted average of all possible values of log real 
threshold) is thus given by 

c= Tp(T(E,)dT 
s 

= [Tq,(T) dT/{q,(T) dT = E, (17) 

[cf. Hays, 1988, p. 164 and equation (15)]. Thus the log 
threshold estimate, Ej, equals the expected threshold 
associated with the observed sequence of yes and no 
responses. For example, in Fig. 3, the expected values of 
log threshold, $, are given by the thick solid vertical 
lines; these values lie on the diagonal line E, = T and are 
thus equal to the log threshold estimate, Ej. 

To understand the meaning of this lack of bias, it is 
important to distinguish between two types of bias which 
we call “measurement bias” and “interpretation bias” 
and which the following diagram helps to explain: 

Measurement 

Real threshold _ Estimated threshold. 
interpretation 

The term “measurement” is used here to include both 
the collection of data (e.g. “yes” or “no” responses at 
certain intensities) and the calculation of an estimated 
threshold from these data. “Measurement bias” could be 
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demonstrated by performing (or simulating) many re- 
peat threshold measurements of a single real threshold; 
this bias would then be the difference between the mean 
of these log threshold estimates and the log real 
threshold. This type of bias has been evaluated in many 
threshold simulations and experiments (Emerson, 1986; 
Green, 1990, 1993; Green, Richards 8z Forrest, 1989; 
Hall, 1981; Kollmeier, Gilkey & Sieben, 1988; Laming & 
Marsh, 1988; Leek, Hanna & Marshall, 1992; McKee ef 
al., 1985; O’Regan & Humbert, 1989; Schlauch & Rose, 
1990; Shelton, Picardi & Green, 1982; Swanson & Birch, 
1992). 

The term “interpretation” is used here as the inverse 
of “measurement’‘-i.e. given a single estimated value of 
threshold (corresponding, say, to a particular sequence 
of “yes” and “no” responses), one may ask what values 
of real threshold could have given rise to this threshold 
estimate. More specifically, what are the relative proba- 
bilities of different real thresholds which could have 
given rise to this threshold estimate, and what is the 
weighted average of these real thresholds? As noted 
above, these relative probabilities are given by the final 
p.d.f. [equation (16)] in our versions of the QUEST 
procedure. Thus the average value of log real threshold 
which could have caused this threshold estimate is equal 
to the mean of the final p.d.f., which is, in fact, the log 
threshold estimate [equation (17)]; our measurements are 
therefore free of interpretation bias. 

Perhaps surprisingly, a method which is free of in- 
terpretation bias is typically not free of measurement 
bias; in other words, if many measurements are per- 
formed on a subject with log real threshold, T, the 
expected value of log estimated threshold, 2, generally 
differs from T, i.e. 

&#T (18) 

[cf. equation (17)]. Figure 3 helps to illustrate this 
inequality. & is a weighted mean of the eight possible log 
threshold estimates, i.e. 

(19) 

Bayes’s theorem may be used to evaluate P&IT) 
yielding 

P&IT) = q&‘%&T). (20) 

In Fig. 3, P(E,IT) is therefore proportional to the 
heights of the p.d.f.s at T, e.g. the thin vertical lines 
which are shown for T = 2. i? is then the center of 
gravity or weighted mean of the eight possible log 
threshold estimates, where the weights are given by the 
heights of the vertical lines. For T = 2, the calculated 
value [from equations (19) and (2011 of ,!? is 2.01 and so 
is close to the log real threshold. It can readily be shown 
that measurement bias is inevitable for some values of T, 
e.g. T = 4, represented by a thin line in Fig. 3. The 
highest log threshold estimate (leftmost p.d.f.) is 3.37, 
and & cannot be greater than this, implying a large 
measurement bias. In fact, the weighted mean of log 
threshold estimates is 6 = 3.30, (circle, Fig. 3) implying 

a measurement bias, ,!? - T, of -0.70; this bias is the 
distance (along the line T = 4) of the circle from the 
diagonal line, Ej = T. 

It may be concluded that the current methods have 
measurement bias [equation (IS)] even though they have 
no interpretation bias [equation (17)]. An example of 
measurement bias is given in Fig. 11, whereas interpret- 
ation bias caused by wrong assumptions is illustrated in 
Figs 14 and 15. 

An alternative way of thinking about measurement 
bias (Pelli, personal communication) is that it is due to 
violation of an assumption of the QUEST and related 
methods. The procedure for assessing measurement bias 
fixes threshold to a particular value, violating the as- 
sumption that the successive threshold measurements are 
for random samples from the initial p.d.f. Pelli notes that 
the evaluation of measurement bias in the numerous 
papers quoted above may be inappropriate for methods 
such as the current ones, which are free from interpret- 
ation (but not measurement) bias. 

METHODS 

Simulations were performed using Fortran on a Cray 
YMP supercomputer. Experiments of up to 20 trials 
were simulated, using yes-no and two alternative forced 
choice (2AFC) conditions. (Although 20 trials is fewer 
than is typically used in a 2AFC experiment, even for 
infant and clinical studies, the results are valuable in 
demonstrating the performance of different methods in 
the early trials, where there is the greatest difference 
between different techniques; also, trends in the data 
may indicate performance differences for a greater num- 
ber of trials.) The intensity of the next stimulus was 
determined by using the mode, mean or median of the 
current p.d.f., or by using the Minimum Variance 
Method. The effects of changing the threshold criterion 
[c in equation (9)], the slope of the psychometric function 
[B in equation (9)] and the initial p.d.f. were also studied. 

An exact enumeration technique was used (McKee 
et al., 1985) as follows. For any of the 2”’ sequences, i 
[equation (14)1, the probability, pi, of that sequence can 
be calculated, as well as the variance, I$:., of the final log 
threshold estimate. For example, Fig. I illustrates the 
two possible sequences (“yes” and “no”) for the very 
simple case of an experiment with only one trial (N = 1); 
the probability, Pi, of say, the “yes” sequence is given by 
equation (3) the area under the “yes” p.d.f. in Fig. l(C). 
In general 

pi= q,(T)dT 
s 

(21) 

where q,(T) is the final p.d.f. [cf. equation (3)J. The 
variance of the log threshold estimate will be the vari- 
ante of this p.d.f., i.e. 

q = (T - I$)2q&‘) dT 
s is 

q&T) dT (22) 

where Ej is the threshold estimate for sequence i 
[equation (15)]. These calculations can be performed for 
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all 2’ sequences in an experimental run of N trials (e.g. 
Fig. 3). An overall weighted variance is then given by 

v,= 5 Pjv,. 
j=l 

(23) 

An overall standard deviation is the square root of this 
variance; for a given condition, this was calculated as a 
function of N, the number of trials per run. For com- 
pleteness, our plots show the standard deviation for 
N = 0, which is simply the standard deviation of the 
initial p.d.f. [0.745 log units for the p.d.f. of Fig. l(A)]. 
Calculations were performed over a range of 5 log units 
of threshold (as in Fig. l), using a step size of 0.05 log 
units as in Watson and Pelli (1983). For calculating the 
next intensity, the mean, mode or median of the current 
p.d.f. was rounded to the nearest 0.05 log unit step; how- 
ever, the final estimate of threshold [mean of the final 
p.d.f., equation (15)] was not rounded in this way. 

For the Minimum Variance Method (with one-trial 
look-ahead), the stimulus intensity is chosen which 
minimizes the expected variance at the end of the next 
trial [equation (1 l)]. In practice, the mean (rounded to 
the nearest 0.05 log units) of the current p.d.f. was used 
as a starting point and the expected variance from 
equation (11) was calculated for this intensity and for the 
two neighboring intensities (i.e. at +0.05 log units). If 
the central intensity value provided the minimum ex- 
pected variance, this was the intensity used for the next 
trial; otherwise, the sequence of intensities was extended 
by 0.05 log units from the intensity which yielded the 
lowest expected variance, and this was repeated, as 
necessary, until a (local) minimum of expected variance 
was obtained. This local-minimum method was also used 
for two-trial look ahead. In some simulations, a more 
exhaustive search for a (global) minimum was performed 
(by considering all intensities within + 1 log unit from 
the mean of the current p.d.f.); the two methods typically 
agreed to within 0.2% of overall standard deviation, so 
the results reported here are for the first (local minimum) 
method, which requires considerably less computation. 

Practical implementation of mean-QUEST (ZEST) is 
described in the Appendix. 

RESULTS 

Simulations using the “ideal sweat factor” 

For the first simulations, the threshold criterion par- 
ameter, t in equation (9), was set to cid corresponding to 
the “ideal sweat factor” (see Introduction; Taylor, 1971; 
Watson & Pelli, 1983). Figure 4(A) is a plot of overall 
standard deviation [from equation (23)] as a function of 
number of trials for simulated yes-no experiments; to 
improve the separation of data for different conditions, 
the logarithm of the standard deviation has been plotted. 
As noted earlier, the standard deviation for zero trials 
is simply the standard deviation of the initial p.d.f. 
[Fig. l(A)] and so is the same for all methods. 

It is seen that the standard deviations for mean- 
QUEST (stimulus intensity set to the mean of the current 
p.d.f.) are lower than for median-QUEST, which in turn 
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FIGURE 4. Overall standard deviation [the square root of the overall 
weighted variance from equation (23)] plotted as a function of the 
number of trials. The simulations were performed using the ideal sweat 
factor. Diamond, squares and triangles correspond to variations of the 
QUEST method where the next log intensity is set respectively to the 
mean, mode and median of the current p.d.f. of log threshold (mean-, 
mode- and median-QUEST). Using the mode corresponds to the 
standard version of the QUEST method, whereas the name ZEST is 
proposed for using the mean. The crosses correspond to the Minimum 
Variance Method (see text). The values plotted for zero trials corre- 
spond to the standard deviation of the initial p.d.f. (A) Yes-no 
method, tid = 0.052 log units. (B) 2AFC method, eid = 0.063 log units. 

See caption of Fig. 3 for other details. 
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are lower than for mode-QUEST. For example, after 
eight trials the overall standard deviations are 0.1101, 
0.1136 and 0.1522 log units for mean-, median- and 
mode-QUEST respectively. {For the standard QUEST 
procedure (Watson & Pelli, 1983) of using the mode for 
the next stimulus intensity and setting the final threshold 
estimate equal to the mode of a likelihood function 
derived by dividing the final p.d.f. by the initial p.d.f., the 
overall error [derived by replacing Ej in equation (22) 
with this final threshold estimate] would have been 
0.2481-i.e. over twice the value for mean-QUEST.} On 
account of the greater rapidity of achieving a certain 
accuracy when setting the stimulus intensity to the mean 
of the current p.d.f., we propose that this variation of the 
QUEST method be named ZEST-Zippy Estimation by 
Sequential Testing. 

Corresponding results for 2AFC simulations are given 
in Fig. 4(B). The same ordering of accuracies is seen, 
with mean-QUEST (ZEST) giving the lowest overall 
standard deviation, followed by median-QUEST and 
mode-QUEST. In this case, the advantage of using the 
mean rather than the mode is considerably greater; 
accuracy from 20 trials using the mode is poorer than 
that from only 11 trials using the mean, so the standard 
condition uses over nine extra trials at this stage. Judging 
from the trends of the data in Fig. 4(B), this deficit would 
probably be greater for longer experiments. 

The optimum value of threshold-criterion 

The ideal sweat factor provides the greatest threshold 
accuracy, for a number of trials at a jixed intensity; 
however, in QUEST and other threshold methods where 
a considerable range of intensities are used, it is not clear 
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that the “ideal” sweat factor is optimum. Therefore, 
threshold simulations were performed, each with a 
different value of c, and typical results for yes-no 
simulations with eight trials are given in Fig. 5. Overall 
weighted standard deviation (left scale) has been plotted 
as a function of 6 (epsilon), for mean-, mode- and 
median-QUEST; the corresponding probability of seeing 
at threshold is given by the crosses (right scale). The 
value of tid (0.052 log units) is shown by the vertical 
dashed line. It is seen that, for this limited number of 
trials, did does not give the lowest standard deviation; for 
the mode, minimum standard deviation is given by a 
larger value of E, whereas for the mean, a smaller c yields 
the best performance. 

In Fig. 6(A), the overall standard deviation of yes-no 
simulations is plotted against number of trials when the 
optimum L (to the nearest 0.005 log units, plotted in lower 
panel) is used for each condition and for each number 
of trials; the horizontal line in the lower panel corre- 
sponds to did. Standard deviations are generally slightly 
lower than for the ideal sweat factor (Fig. 4), but the 
ordering of accuracies is the same; the mean (ZEST) does 
better than the median which, in turn, does better than 
the mode. It should be noted that the optimum 6 using 
the mean is close to zero from about 8 to 16 trials; this 
is the value of c which we use in practice (Appendix). 
Results for 2AFC simulations are shown in Fig. 6(B); 
again, using the mean (ZEST) gives the lowest error, fol- 
lowed by the median and then the mode. For increasing 
number of trials, the optimum value of 6 tends towards 
$d, for both yes-no [Fig. 6(A)] and 2AFC [Fig. 6(B)] 
simulations, but there is still a considerable discrepancy 
between the optimum L and Eid for a run of 16 trials. 
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FIGURE 5. Overall standard deviation (left scale) for yes-no simulations using eight trials, plotted as a function of the 
threshold criterion factor, L [equation (9)], for mean- (diamonds), mode- (squares) and median-QUEST (triangles). The crosses 
give the probability of seeing at threshold (right scale) and the vertical dashed line corresponds to the ideal sweat factor, 

6 = cid = 0.052 log units. See caption of Fig. 3 for details. 
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FIGURE 6. Overall standard deviation plotted as a function of the 
number of trials. The simulations were performed using the value of 
the threshold-criterion factor L in equation (9) which yields the lowest 
standard deviation (cf. Fig. S), for each condition (mean-, mode- or 
median-QUEST) and for each number of trials; this optimum 6 is 
plotted in the lower panels. See caption of Fig. 3 for details. (A) Yes-no 

method. (B) 2AFC method. 

Comparison with the Minimum Variance Method 

As might be expected, the Minimum Variance Method 
(using one-trial look-ahead) is the most accurate of the 
four methods in Fig. 4. For the yes-no simulations of 

Fig. 4(A), the accuracy for 20 trials using ZEST may be 
obtained by only about 18 trials using the Minimum 
Variance Method; for 2AFC simulations [Fig. 4(B)], the 
advantage of the Minimum Variance Method compared 
to ZEST is relatively small-less than one trial after 20 
trials. 

The results shown in Fig. 4 for the Minimum Variance 
Method were for one-trial look-ahead. Our simulations 
indicate that two-trial look-ahead (as described in the 
Introduction) yields a relatively small advantage com- 
pared to one-trial look-ahead-O.03 trials after 16 trials 
for yes-no simulations and 0.4 trials for 2AFC. The 
Minimum Variance Method is theoretically independent 
oft (because it should always choose the intensity which 
minimizes variance, regardless of the value of E) and this 
was confirmed by simulations. 

A summary comparison of some of the preceding data 
is shown in Fig. 7(A) (yes-no) and (B) (2AFC). Dia- 
monds and circles correspond to using ZEST with the 
ideal sweat factor and optimum t respectively; crosses 
are for the Minimum Variance Method with two-trial 
look-ahead. It is seen that, for yes-no experiments 
[Fig. 7(A)], there is some advantage (about two trials in 
16) to using the optimum 6 rather than the ideal sweat 
factor; the advantage is smaller for 2AFC [Fig. 7(B)]. 
For yes-no simulations [Fig. 7(A)], the Minimum Vari- 
ance Method is slightly better (about one trial in 16) than 
using ZEST with the optimum c. For 2AFC simulations 
[Fig. 7(B)], the advantage of the Minimum Variance 
Method is less; to our surprise, for about eight trials, it 
was actually slightly less accurate than ZEST using 
optimum c-this is presumably because the Minimum 
Variance Method, which is optimal in the short term 
(two trials ahead), is not always the better strategy in the 
medium term. 

Comparison of yes-no and 2AFC simulations 

Comparison of the yes-no simulations in Figs 4(A) 
and 7(A) with the 2AFC simulations in Figs 4(B) and 
7(B) illustrates the considerably higher accuracy of 
yes-no experiments [note the difference in vertical scales 
between Fig. 4(A) and (B)]. For example, after 20 trials 
using the Minimum Variance Method (one trial look- 
ahead), the overall weighted standard deviations for 
yes-no and 2AFC simulations are 0.0445 and 0.1428 log 
units respectively [cf. Fig. 4(A, B)]; the standard devi- 
ation for 2AFC simulations is therefore 3.21 times 
higher. The accuracy obtained from 20 trials for 2AFC 
is poorer than that from six trials for the yes-no 
simulation (Fig. 4). 

Selection of stimulus intensity 

The threshold methods described in this paper differ 
only in the selection of the stimulus intensity used for 
any trial. Figure 8 illustrates some differences between 
the selection of stimulus intensity for mode-QUEST (A), 
mean-QUEST (ZEST, B) and the Minimum Variance 
Method (C). For each of the three methods, the initial 
p.d.f., q,,(T), is shown at the top and the corresponding 
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FIGURE 7. Summary of overall standard deviation plotted as a 
function of the number of trials. Two versions of ZEST (mean- 
QUEST) are shown; diamonds correspond to using the ideal sweat 
factor and circles correspond to using the optimum value of L for a 
given number of trials (cf. Figs 5 and 6). Crosses correspond to the 
Minimum Variance Method with two-trial look ahead. See caption of 

Fig. 3 for other details. (A) Yes-no method. (B) 2AFC method. 

initial stimulus intensity, x 1, is given by a vertical line. 
Assuming that the subject responds “no” to both the 
first and second trials (r, = r2 = 0), the lower two plots 
for each method show q1 (T) and q2 (T), and correspond- 
ing stimulus intensities, x2 and x3 [see Fig. 1 and equation 
(7) for the derivation of these p.d.fs.1. 

It is seen that, after a “no” response, the stimulus 
intensity increases rather little for mode-QUEST (A) 
whereas it increases more for ZEST (B) and even more 
for the Minimum Variance Method (C). The relatively 
small increase in intensity for mode-QUEST (A) is 
because the stimulus intensity chosen is close to the steep 
end of the skewed p.d.f.; therefore the QUEST multipli- 
cation [equation (7)] does not “cut off” much of the 
p.d.f. By comparison, the intensities selected by ZEST 
(B) and the Minimum Variance Method (C) are further 
from the steep end of the p.d.f. and therefore the 
QUEST multiplication cuts off more of the p.d.f. Results 
for median-QUEST (not shown) were intermediate 
between mode-QUEST (A) and ZEST (B). 

Figure 9 further illustrates the selection of stimulus 
intensity by mode-QUEST in comparison to the Mini- 
mum Variance Method. Log stimulus intensity is plotted 
as a function of trial number for the first five trials. “No” 
responses cause upward “steps” (i.e. increases of stimu- 
lus intensity at the next trial, cf. Fig. 8) whereas “yes” 
responses cause downward steps; circles and crosses are 
for response sequences with initial “no” and “yes” 
responses respectively. Results for mean- and median- 
QUEST are not shown but were intermediate between 
the two plots of Fig. 9. 

0 1 2 3 4 5 

Log real threshold (7’) 

FIGURE 8. P.d.fs, q&“), q,(T) and q2(T), before first three trials for 
mode-QUEST (A), ZEST (B) and the Minimum Variance Method (C); 
p.d.fs. have been scaled to a maximum of unity and shifted vertically 
for clarity. The subject responded “no” to the first two trials. Vertical 
lines give choice of stimulus intensities for the first three trials. A 
yes-no procedure was simulated, with e = 0.09 for mode-QUEST, 
6 = -0.01 for ZEST (these values give the lowest error in an eight trial 
experiment) and t = 0 for the Minimum Variance Method (one-trial 

look-ahead). Other details are in caption to Fig. 3. 
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(3 (B) 

1- 

Mode Minimum variance 

0 2 4 6 0 2 4 6 

Trial number Trial number 

FIGURE 9. Stimulus intensities for the first five trials using mode-QUEST (left) and the Minimum Variance Method (right). 
Connecting lines of positive and negative slope correspond to “yes” and “no” responses, respectively; crosses and circles 
represent sequences of responses beginning with a “yes” or a “no” response respectively. Other details are in caption to 

Fig. 8. 

As in Fig. 8, the initial steps in stimulus intensity for 
the Minimum Variance Method are much greater than 
for mode-QUEST. This should enable the Minimum 
Variance Method to obtain better threshold estimates 
when the real threshold is relatively high or low. The 
Minimum Variance Method also seems quicker in cor- 
recting for possible errors; for example, when an initial 
“yes” response is followed by three “no” responses, the 
intensity on the fifth trial (uppermost cross) is relatively 
high compared to that in mode-QUEST, as if the 
Minimum Variance Method had taken more account of 
the possibility that the initial “yes” response was a false 
positive. 

Error as a function of estimated threshold 

In a yes-no experiment with eight trials, there are 
2 = 256 possible sequences of responses and hence 256 
possible threshold estimates. In Fig. 10, the standard 
deviation [from equation (22)] of each of these estimates 
is plotted as a function to the estimated threshold 
[equation (lS)J, for both mode-QUEST and the 
Minimum Variance Method. The area of each circle 
is proportional to the probability of the threshold 
estimate [equation (2111. The leftmost and rightmost 
points for each method in Fig. 10 correspond respect- 
ively to sequences of eight “yes” and eight “no” 
responses. The grouping of points for mode-QUEST 
corresponds to different numbers of “yes” responses 
in the sequences; for example, the three near-vertical 
columns at about 4, 3.2 and 2.5 log units correspond 
respectively to 1, 2 and 3 “yes” responses in the eight 
trials. 

The overall standard errors [equation (2311 are 0.1413 
and 0.0965 log units for mode-QUEST and the Mini- 
mum Variance Method respectively. Corresponding 
plots for mean- and median-QUEST are intermediate in 
appearance between the extremes shown in Fig. 10. 

Two major differences between mode-QUEST and 
the Minimum Variance Method can be seen. First, 
sequences yielding high standard deviations (e.g. over 
0.4 log units) are more common for mode-QUEST than 
for the Minimum Variance Method; (these are often 
sequences which may contain false positive or false 
negative responses, such as one “yes” response followed 
by seven “no” responses). Secondly, the Minimum 
Variance Method gives a broader range of threshold 
estimates (about 4.2 log units compared to 3.3 log units 
for mode-QUEST); therefore more accurate estimates of 
high and low thresholds can be made. 

As noted in the Introduction, if the assumptions made 
are correct, these methods are free of “interpretation 
bias”, i.e. the threshold estimate equals the expected 
mean of the possible real thresholds which could have 
given rise to that sequence of responses. 

Error as a function of real threshold 

When error is considered as a function of real, rather 
than estimated threshold, two differences should be 
noted. First, real threshold is a continuous variable 
whereas, for a measurement with N trials, there are only 
2N discrete values of estimated threshold (e.g. Fig. 3). 
Second, in addition to random measurement error, bias 
must also be considered (see discussion of measurement 
bias in the Introduction). 
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Log real threshold 

FIGURE 1 I. Errors in the log threshold plotted as a function of log real threshold; a yes-no, Minimum Variance Method 
was simulated using eight trials. The thick solid line gives “measurement bias”; the short-dashed line gives random measurement 
error (standard deviation of the threshold estimates about their mean value); the long-dashed line gives total error (r.m.s. 
deviation of threshold estimates about the log real threshold). The initial p.d.f. is given by the thin solid curve. See text for 

details. 

For any log real threshold, T, measurement bias, b is 

given by 

b=k-T (24) 

where & the expected value of the log threshold esti- 
mate, is given by equation (19). This bias is plotted as 
the thick solid line in Fig. 11, which shows various types 
of error associated with the Minimum Variance Method 
(conditions as in Figs 9 and 10). The short-dashed line 
corresponds to random measurement error--the stan- 
dard deviation, 0, of the log estimated thresholds about 
their expected value, 8, given by 

r~‘= g (E,-~)2P(EjIT). (25) 
j=l 

P (E,I T) can be derived from equation (20). The long- 
dashed line gives the total r.m.s. error, s, of the threshold 
estimates relative to the real threshold value, T, given by 

s2= 5 (Ej-T)*P(EjlT)=a2+b2. 
j= I 

(26) 

The thin solid curve is the initial p.d.f. of log real 
threshold [from Fig. l(A)]. 

It is seen that there is a broad range of log real 
threshold where measurement bias (thick solid line) is 
relatively small compared to overall error (long dashed 
line). Estimated thresholds tend to be too high when the 
real threshold is improbably low, and too low when the 
real threshold is improbably high. Measurement bias is 
relatively severe (0.76 log units) for the lowest log real 
threshold, T = 0, but it may be noted that this value of 
real threshold is very improbable (thin solid curve). 

Figure 12 gives a comparison of total error, s 

[equation (26)], as a function of real threshold for 
mode-QUEST (solid line), median-QUEST (short 
dashes), ZEST (medium dashes) and the Minimum 
Variance Method (long dashes); a yes-no procedure with 
eight trials was again simulated and optimum values of 
c were used, as in Fig. 6(A). For the middle of the range 
of log real thresholds (about 1.5-3.5) all four methods 
give similar errors. However, for relatively high and low 
thresholds, the Minimum Variance Method gives the 
least total error, followed by ZEST, median- and mode- 
QUEST. This superiority of the Minimum Variance 
Method compared to mode-QUEST is consistent with 
the results of Figs 9 and 10. 

Eflect of initial p.d$ 

The preceding simulations were based on the initial 
p.d.f. of threshold shown in Fig. l(A) which was derived 
from Fig. 2(A), the threshold histogram for an oscillo- 
scope display. Figure 13 shows the effect of changing the 
initial p.d.f. to one derived from the threshold histogram 
for a color video display [Fig. 2(B)]; yes-no ZEST 
simulations were used with 6 = 0. It is seen that the 
results are not greatly affected by the choice of initial 
p.d.f.; the standard deviation of the initial p.d.f. for the 
color video display is somewhat lower than for the 
oscilloscope display, and this leads to a slight advantage 
(less than one trial) throughout the range of trials 
studied (up to 20 trials). The similarity of the two 
sets of results in Fig. 13 indicate that similar data 
would probably be obtained from any reasonable 
initial p.d.f. 
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Log real threshold 

FIGURE 12. Total error (cf. the long dashes in Fig. 11) plotted as a function of log real th~ho~d for yes-no ~mula~ons 
using eight trials. The Minimmu Variance Method, mean-QUEST (ZEST), median-QUEST and mode-QUEST are represented 
by the long-dashed, medium-dashed, short-dashed and solid lines respeetive~y. Optimnm values of c [from Fig. 6(A)] were used 

for mean-, median- and mode-QUEST. Other details are in caption to Fig. 8. 

Figure 14(A) shows the effect of an error in the lateral 
position of the initial p.d.f. Simulations were performed 
in which the assumed initial p,d.f. was the same as in 

0 Oscilloscope 

n Colcur video 

1.41’ ’ ’ ’ ’ ’ ’ ’ ’ 1 1 
0 2 4 6 8 10 12 14 16 I8 20 

Number of trials 

FIGURE 13. Effect of the initial p.d.f. on overall standard deviation. 
A yes-no, ZEST method was used with L = 0. Diamonds correspond 
to the initiai p.d.f. of Fig. i(A), which is based on the threshold 
histogram for an oscilloscope display in Fig. 2(A); this is the initial 
p.d.f. used in Figs 3-12. Squares correspond to an initial p.d.f. based 
on the threshold histogram for a color video display in Fig. 2(B). Other 

details are in caption to Fig. 3. 

Figs 3-12 [i.e. that in Fig. l(A)] but the real initial p.d.f. 
was shifted by I log unit to higher thresholds [i.e. the 
peak was now at 3 log units, rather than 2 log units as 
in Fig. I (A}]; in the simulations, separate “assumed”’ and 
“real” p.d.fs. were calculated based on the corresponding 
initial p.d.fs. The caused p.d.fs. were used for deriving 
stimulus intensities and for the final estimate of log thres- 
hold, Ej; however, to calculate the overall weighted error 
from equation (23), the mean square error was calcu- 
lated by using the real final p.d.f., qw(T), in equation 
(22). It is seen from Fig. 14(A), that this rather severe 
error in the lateral position of the initial p.d.f. causes a 
rather small degradation of performance----a given level 
of accuracy typically requires less than one extra trial. 

The error plotted as the circles in Fig. 14(A) includes 
two components; random error corresponds to the vari- 
ance of the real final p.d.f. whereas interpretation bias, 
as defined in the introduction, is the difference between 
the mean of the “real” final p.d.f., fj, (an unbiased 
estimate of threshold) and the actual estimate of log 
threshold, E,, (mean of the “assumed” final p.d.f.). This 
interpretation bias is plotted as a function of the actual 
log threshold estimate in Fig. 14(B) which illustrates the 
256 different sequences of responses in an experiment 
with eight trials; the probability of each sequence 
[equation (21) using the real final p.d.f.1 is indicated by 
the area of the corresponding circle (as in Fig. 10). For 
most sequences, there is little interpretation bias; the few 
sequences with relatively large biases of over 0.1 log 
units are represented by relatively small circles and so 
have relatively low probability (about 0. I % or less). 

The weighted average of the ~nte~~~tion bias for 
eight trials [Fig. 14(B)] is 0.012Olog units which is 
relatively small compared with the overall weighted error 
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FIGURE 14. Effects of an error in the initial p.d.f. (A) Overall r.m.s. (root mean square) error plotted as a function of the 
number of trials for a yes-no ZEST method (6 = 0). Diamonds correspond to the standard initial p.d.f. [Fig. l(A)]. Circles 
correspond to a real initial p.d.f. which is shifted to higher thresholds by 1 log unit; however, the assumed initial p.d.f. is the 
standard function in Fig. l(A). In this case, the r.m.s. error is determined from the mean-square error using the real final p.d.f. 
and the estimated threshold is calculated from the assumed initial p.d.f. (see text). Other details are in caption to Fig. 3. (B) 
A scatter plot of “interpretation” bias as a function of log estimated threshold for all 256 possible sequences of responses using 
eight trials. Interpretation bias is the difference between the mean of the “real” final p.d.f. (an unbiased estimate of log 
threshold) and the actual estimate of log threshold (mean of the “assumed” p.d.f.). The relative probability of each sequence 
is given by the area of the corresponding circle (as in Fig. 10). (C) Diamonds are the overall r.m.s. error replotted from the 

circles in (A) on a linear (rather than log) scale. Circles give the average interpretation bias [cf. (B)]. 

[circles, Fig. 14(A)] of 0.1157 log units. Figure 14(C) whereas the r.m.s. deviation of real thresholds about the 
shows how this average bias varies as a function of estimated threshold values was 0.116 log units. 
number of trials and compares this with the overall 
error. The bias is relatively small after the fist few trials. Eflect of slope of the psychometric function 

The estimated standard deviation of threshold is also Figure 15(A) indicates the effect of halving the real 
relatively unaffected by this error in the initial p.d.f.; for slope of the psychometric function from the standard 
example, after eight trials, the calculated overall value, fl = 3.5, used in all previous simulations, to 
weighted standard deviation was 0.113 log units, fi = 1.75 (yes-no ZEST method, 6 = 0). Diamonds show 
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FIGURE 15. Effects of an error in the slope of the psychometric function. (A) Overall r.m.s. error plotted as a function of 
number of trials for a yes-no ZEST method (t = 0). For both diamonds and circles, the real slope of the psychometric function 
was g = 1.75--i.e. half that of previous simulations. For the diamonds, the assumed slope was equal to the real slope, whereas 
for the circles, the assumed slope was twice the real slope (and so equal to the values in previous simulations, )Y = 3.5). In the 
latter case, the r.m.s. error is determined from the mean-square error using the real final p.d.f. and the value of threshold 
calculated from the assumed slope (see text). Other details are in caption to Fig. 3. (B) A scatter plot of interpretation bias 
as a function of log estimated threshold for all 256 possible sequences of responses using eight trials. The relative probability 
of each sequence is given by the area of the corresponding circle (as in Fig. 10). (C) Diamonds are the overall r.m.s. error 

replotted from the circles in (A) on a linear (rather than log) scale. Circles give the average interpretation bias [cf. (B)]. 

the “ideal” performance when the assumed slope is equal 
to the real slope, 1.75, and the overall weighted standard 
deviation is calculated by the standard technique de- 
scribed in the Methods section. Circles show the per- 
formance when the assumed slope is the standard value, 
B = 3.5, and so is twice the real slope; in these simu- 
lations, separate p.d.fs for “real” and “assumed” slopes 
were calculated (see previous section). The error in 
assumed slope causes a modest reduction in perform- 

ante; after 20 trials with the wrong slope, the overall 
weighted error is about equal to that after 17 trials with 
the correct slope. 

Figure 15(B) gives a scatter plot of interpretation bias 
(due to this error in assumed slope) as a function of log 
estimated threshold [as in Fig. 14(B)]. Each point rep- 
resents one of the 256 possible sequences in an exper- 
iment with eight trials; as in Fig. 14(B), the probability 
of any sequence is represented by the area of the 
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corresponding circle. For most sequences, the magnitude 
of the bias is less than 0.1 log unit. The average bias is 

0.0146 log units; this is relatively small compared to the 
overall r.m.s. error of 0.1642 log units, In Fig. 15(C), 
overall error and average bias are plotted as a function 
of the number of trials; average bias is always relatively 
small compared to the overall error of the threshold 
estimate. 

It should be noted that this error in the assumed slope 
of the psychometric function causes a considerable error 
in the calculated standard deviation of the log threshold 
estimate; for example, the calculated overall standard 
deviation after eight trials was 0.116 log units, whereas 
the r.m.s. deviation of real thresholds about the esti- 
mated threshold values was 0.164 log units [Fig. 15(A) 
circles]. 

Precision and ejiciency 

The efficiency of a threshold measurement may be 
determined by comparing its variance to a prediction 
based on the ideal sweat factor [equation (IO)]. More 
specifically, if Kmin is the ideal sweat factor [minimum 
value of K(X) in equation (IO)], then efficiency is given 

by 

? = (KminIN)(lIVN-l/vO/,) (27) 

where V,,, is the overall weighted variance at the end of 
N trials [equation (23)] and V, is the variance of the 
initial p.d.f. (Taylor, 1971). [It should be noted that 
“efficiency” has a different meaning in automated 
perimetry (e.g. Johnson & Shapiro, 1989). Also, one 
authority, (Pelli, personal communication) proposes 
that, for the brief threshold runs considered here, the 
above definition of efficiency should be replaced by one 
based on comparison with the Ideal Psychometric 
Procedure; in our opinion, both Taylor’s and Pelli’s 
definitions of efficiency are of value, and a new name, 
e.g. “relative efficiency”, should be used for Pelli’s 
measure.] Using equations (9) and (lo), the values of &in 
for yes-no and 2AFC experiments are 0.0259 and 0.0596 
respectively; thus, for our assumptions and for ideal 
conditions (all stimulus intensities very close to the 
intensity which gives the ideal sweat factor) a yes-no 
experiment would need only 0.0259/0.0596 = 43.5% of 
the number of trials needed by a 2AFC experiment to 
achieve a given accuracy. 

It is convenient to define “precision”, R, as the 
reciprocal of variance, (Taylor, 1971), so that equation 
(27) may be rewritten 

q = Gin (RN - &)lN (28) 

where R, and & are the final and initial precisions; thus, 
efficiency is proportional to the precision added to the 
threshold estimate by the threshold method, divided by 
the number of trials. Equation (28) may be rearranged 
to yield 

RN = % + qNI&i”. (29) 

Thus, for an efficiency of lOO%, a plot of RN vs N would 
be a straight line of slope l/Km,. In typical threshold 

measurements, the efficiency is considerably less than 
100% and the slope of such a plot will be reduced in 
proportion to the efficiency. 

Figure 16(A) is a plot of precision [reciprocal of 
overall weighted variance, l/V,, from equation (23)] as 
a function of number of trials for yes-no experiments 
using the Minimum Variance Method (one-trial Iook- 
ahead). Line AB corresponds to 100% efficiency [cf. 
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FIGURE 16. (A) Precision (reciprocal of variance) plotted as a 
function of number of trials for yes-no simulations using the Minimum 
Variance Method (one-trial look-ahead, +). The slope of line AB 
corresponds to 100% efficiency (see text); thus the ratio of the slope 
of AD to that of AB gives the efficiency using 20 trials and the ratio 
of the slope of CD to that of A3 gives the differential efficiency (see 
text). See caption of Fig. 3 for details. (B) Efficiency as a function of 
number of trials. (C) Differential efficiency as a function of number of 

trials. 
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equation (29)]. Thus, it can be seen from the slope of the 

simulated data, that efficiency is relatively low for the 
first few trials, but improves with increasing number of 
trials; for example, after 20 trials, efficiency is the ratio 
of the slope of the dashed line, AD, to the “ideal” slope 
of AB. Efficiency may be derived in this way, or by using 
equation (28), and it is plotted as a function of number 
of trials in Fig. 16(B); it reaches about 34% after eight 
trials and 65% after 20. 

“Differential efficiency”, q ‘, is a measure of efficiency 
for any given trial in an experiment and is given by an 
equation similar to equation (28), i.e. 

rl ’ = &,i,&,+, - &I. (30) 

It may be shown that this corresponds to the slope of the 
line segment connecting two data points in Fig. 16(A) 
(e.g. CD), divided by the slope for 100% efficiency (AB). 
Differential efficiency is plotted as a function of number 
of trials in Fig. 16(C). Differential efficiency reaches over 
90% after 20 trials, corresponding to the fact that in Fig. 
16(A), the slope of CD is nearly as great as the ideal 
slope of AB. 

Corresponding plots for 2AFC simulations are shown 
in Fig. 17 (note the differences in vertical scales from 
the corresponding yes-no simulations-Fig. 16). In 
Fig. 17(A), it is seen that the precision obtained from 
2AFC simulations is much smaller than that from 
yes-no simulations [Fig. 16(A)]; the added precision, 
(R, - &), from 20 trials using 2AFC is 47.2 which is 
only 9.4% of the added precision (503) from 20 trials 
using yes-no [Fig. 16(A)]. In Fig. 17(A), the slope of the 
plot of precision vs number of trials is always much less 
than the slope for 100% efficiency (AB); for example, the 
slope AD is much less than that of AB [cf. Fig. 16(A)], 
implying a relatively low efficiency. Figure 17(B) gives a 
plot of efficiency as a function of number of trials; 
efficiency rises to only about 14% after 20 trials com- 
pared to about 65% for yes-no simulations [Fig. 16(B)]. 
Differential efficiency is also relatively small; thus, in 
Fig. 17(A), the slope of CD is considerably less than that 
of the ideal, AB [cf. Fig. 16(A)]. A plot of differential 
efficiency vs number of trials is given in Fig. 17(C); it 
reaches only about 30% after 20 trials, which is again 
much less than the corresponding value of over 90% for 
yes-no simulations [Fig. 16(C)]. 

An evaluation of the accuracy of the ZEST method 

In many of our color-mixture threshold measurements 
(cf. Grigsby et al., 1991), two independent threshold 
determinations were made for a certain color-mixture. 
The “observed” standard deviation of these measure- 
ments can be estimated from the formula 

0 = J[X(E, - E2)‘/2n ] (31) 

where E, and Ez are such a corresponding pair of 
threshold estimates and the summation is over n pairs of 
measurements. This observed standard deviation can be 
compared with the corresponding “calculated” standard 
deviations, sI and s2 from equation (22); an overall 
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FIGURE 17. Precision (A), efficiency (B) and differential efficiency (C) 
plotted as a function of number of trials for a 2AFC method using the 
Minimum Variance Method (one trial look-ahead). See captions of 

Figs 3 and 16 for details. 

estimate of calculated standard deviation was derived 
from 

s =J[z(s:+s:)/h] (32) 

where, again, the summation is over all n pairs of 
threshold measurements. Methods were those described 
in the Appendix with eight trials per threshold measure- 
ment. We excluded from equations (31) and (32) any pair 
of thresholds in which the subject never responded 
during one or both measurements. 

For 967 pairs of threshold measurements, the ob- 
served standard deviation [equation (3111 was 0.112 log 
units, whereas the calculated standard deviation 



[equation (32)] was 0.098 log units; thus the observed 
standard deviation was 14% higher than the calculated 
value. A more detailed comparison is given in Fig. 18(A), 
where the data have been divided into different ranges of 
mean threshold, (El + &)/2. Ranges were usually 0.1 log 
units except for very high and low thresholds where 
ranges were enlarged so as to include at least 10 pairs; 
the number of data pairs in each range is plotted against 
the mean threshold for that range in Fig. 18(B). 

Et is seen from Fig. 18(A) that there is reasonable 
agreement between observed and calculated standard 
deviations far intermediate intensities (log threshold 
from 0.5 to 1.75); random variation in the relative values 
of these observed and calculated standard deviations 
may be largely due to the small samples used to derive 
the observed standard errors [Fig. 18(B)]. However, the 
observed standard deviation is higher than the calculated 
value for high (and perhaps for low) thresholds. 

The accuracy obtained with the ZEST method de- 
pends on the slope of the psychometric function and on 
the assumption that the threshold does not vary from 
trial to trial; if the real slope of the psychometric 
function is less than the assumed value and/or if the 
threshold is time-varying (which would have a similar 
effect to reducing the slope---Leek, Hanna & Marshall, 
1991), the observed standard deviation of the measure- 
ments will be greater than the calculated value. The 
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FIGURE 18. A comparison betww?n the standard deviation of the 
threshold estimate calculated from the ZEST method (diamonds) and 
the observed standard deviation of measurements determined from 
duplicate threshold measurements {sqmires); data were averaged over 
ranges of e&mated #resWd of @,I or more fog units and are @&ted 
as a function of log threshofd. The xmmber of pairs of threshold 
measurements for each threshold range is given in the lower panel. A 
color television display system was used, whose initial p,d.f. is given 
in Fig. Z(B). Thresholds were determined in eight trials using a yes-no 
method with t = 0. See text and caption to Fig. 3 for other details. 

reasonable agreement between observed and calculated 
standard deviations at intermediate threshold values 
indicates that the assumed slope, fi = 3.5, is about 
correct for these m~asur~ents. However, the fact that 
observed standard deviations are higher than the calcu- 
lated values at high thresholds, indicates either that the 
real slope of the psychometric function tends to be less 
than the assumed slope (Weber & Rau, 1992) and/or that 
the threshold varies from trial to trial in these cases 

(Leek ef af., 1991). A possible explanation for the 
observed discrepancy is that these l&b thresholds corre- 
spond to subjects with severely impaired vision, whose 
thresholds may vary from trial to trial due to temporal 
fluctuations of visual sensitivity and/or spatial variations 
of sensitivity (coupled with unsteady fixation). If opti- 
mum conditions are required for the study of subjects 
with impaired vision, it would probably be advantageous 
to use a lower value of slope than our value of /? s 3.5. 

Two general recommendations can be derived from 
these simulations for optimizing the precision of the 
QUEST method: 

1. Using the ZEST mod&z&on---i.e. setting the 
stimulus intensity to the mean of the current p.d.f. 
provides greater precision than using the mode or 
median; this is true for both yes-no [Figs 4(A), 5, 6(A) 
and 7(A)] and 2AFC [Figs 4@), 6(B) and 7(B)] simu- 
lations. This is in agreement with previous analyses by 
King-Smith (1984) and Emerson (1986). 

2. For the refatively short experiments which are 
simulated here (up to 20 trials), optimum perfomance 
is not given by the “ideal sweat factor” but by a rather 
different, optimized, threshold criterion (Figs 5,6 and 7). 
Harvey (1986) has come to a similar conclusiun. 

Thus, relatively good performance can be obtained 
from the QUEST method by setting the next intensity to 
the mean of the current p.d.f. and using the optimum 
threshold criterion. A slightly better precision can gener- 
ally be obtained by the ~i~urn Variance Method 
(King-Smith, 1984; Pelli, 1987) for both yes-no and 
2AFC simulations (Fig. 7). In deciding whether to use 
the Minimum Variance Method, the extra programming 
complexity and the additional computational time 
should be kept in mind. For these reasons, we have not, 
as yet, implements the ~~nirn~ Variance Method 
experimentally. 

Pelli (1987) describes an “Ideal Psychometric Pro- 
cedure” which provides optimum performance under the 
assumptions made by the QUEST method. It is essen- 
tially the same as the Minimum Variance Method dis- 
cussed here, but, instead of looking only om! or two trials 
ahead, the computation is performed for many trials 
ahead-until the end of the experiment; in fact, the 
optimum strategy (e.g. stimulus intensity to use at any 
stage of the experiment, after any sequence of “yes” and 
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“no” responses) could be determined before the first 
trial. Although theoretically ideal, the method is particu- 
larly complex and tim~cons~ing; each additional stage 
of “look-ahead” would increase the compu~tion time 
by at least a factor of three. For this reason, look-ahead 
was limited to one or two trials in our simulations. It 
may be noted that two-trial look-ahead provided negli- 
gible advantage over one-trial look-ahead for yes-no 
simula~ons; it seems probable that extending the look- 
ahead to many trials would provide little further advan- 
tage. However, for 2AFC simulations, there was a rather 
greater advantage of using two-trial look-ahead relative 
to one-trial, so it is possible that multiple-trial look- 
ahead and the Ideal Psychometric Procedure would 
provide a worthwhile improvement in performance. 

Comparison with other threshold methods 

Simulations by Watson and Pelli (1983) indicated that, 
using a forced choice method, QUEST is more efficient 
than both the original version of PEST (Taylor & 
Creelman, 1967) and Hall’s (1981) modified version of 
PEST; however, Watson and Pelli note that the con- 
ditions of the simulations were not identical. In a more 
direct comparison using both yes-no and 2AFC 
threshold methods by Madigan and Williams (1987), 
QUEST was again found to be more efficient than the 
standard version of PEST. Computer simulations by 
Pentland (1980) showed that, for yes-no experiments, a 
maximum-likelihood method was more efficient than a 
standard staircase method and two versions of PEST- 
the original version (Taylor & Creelman, 1967) and 
Findlay’s (1978) modification; similarly, Lieberman and 
Pentland (1982) showed that the same maximum likeli- 
hood technique is more efficient than a modified stair- 
case method (Wetherill & Levitt, 1965; Corwin, Kintz & 
Beaty, 1979). This maximum-likelihood method differed 
from QUEST in that it did not take advantage of 
info~ation about the initial p.d.f. of thresholds; thus 
one would expect QUEST to be even more efficient than 
the maximum-likelihood method and so it would also be 
more efficient than both variations of PEST and both 
staircases. As shown in Figs 4 and 6, ZEST should, in 
turn, be more efficient than QUEST. 

Shelton et al. (1982) used experimental dete~inations 
of thresholds to compare a standard staircase, PEST and 
a maximum-likelihood method; they found little differ- 
ence in efficiency between the three threshold methods. 
The difference between this conclusion based on exper- 
imental data and the above conclusions based on simu- 
lations may be due to the more extensive data available 
by simulation; for example, it is relatively easy to 
simulate 500 or more experimental runs using a Monte- 

Carlo method (Findlay, 1978; Green, 1993; McKee et al., 
1985; Pentland, 1980) whereas, in their experimental 
study, Shelton et af. (1982) used, say, 48 runs of 80 trials 
for each threshold method. It may be noted again that 

QUEST, which takes advantage of knowledge of the 
initial p.d.f. should be more efficient than the maximum- 
likelihood method used by Shelton ef al. (1982) and 
ZEST should be more efficient than QUEST. 

In earlier yes-no simulations, King-Smith (1984) 
found similar results to those reported here, namely that 
ZEST yielded a higher efficiency than the QUEST 
method. Emerson (1986) simulated a method which is 
similar to the ZEST method (i.e. used the mean of the 
p.d.f. rather than the mode), but did not take into 
account an initial p.d.f.; for 2AFC, he found this 
technique to be more efficient than a maximum likeli- 
hood method (i.e. using the mode), as well as having less 
measurement bias. 

In conclusion, the available evidence suggests that, 
given the assumptions made by the QUEST (and ZEST) 
methods (see Introduction), ZEST is more efficient than 
QUEST which is more efficient than PEST and standard 
staircases. We do not know of any studies which would 
rate the efficiency of either APE or MOBS relative to this 
sequence; both methods (APE-Watt & Andrews, 1981; 
MOBS-Tyrrell & Owens, 1988) appear to be superior 
to the method of constant stimuli, but the latter, being 
a non-adaptive method, is probably less efficient than 
most adaptive methods (Wagon & Fitzhugh, 1990). The 
current simulations indicate that the Minimum Variance 
Method (King-Smith, 1984; Pelli, 1987) is typically 
slightly more efficient than ZEST and one would expect 
that the Ideal Psychometric Procedure (i.e. the Minimum 
Variance Method with look-ahead to the end of the 
experiment-Pelli, 1987) would have the highest 
efficiency of all. Taking account of the complexity of the 
calculations involved, this last procedure might be called 
BEST (Behemothic Estimation by Sequential Testing). 

As a final point, it should be noted that [apart from 
the experimental studies of Shelton et al. (1982) which 
were rather indecisive] these conclusions have been 
derived from simulations on the assumptions that indi- 
vidual trials are statistically independent and that 
threshold does not vary from trial to trial. Taylor, 
Forbes and Creelman (1983) show that the assumption 
of statistical inde~ndence is not strictly true for real 
subjects (see Appendix; Leek et al., 1991). They empha- 
size that, for certain types of measurement (e.g. deter- 
mining the best possible detection performance of a 
subject), one technique, such as PEST, may have 
advantages compared to the others. 

Measurement and interpretation bias 

In this simulations, the final estimate of threshold is 
taken to be the mean of the final p.d.f. As argued 
previously, if the assumptions made are correct, this 
estimate of threshold should be free from interpretation 
bias, i.e. the log threshold estimate should equal the 
mean of the possible values of log real threshold which 
could give rise to the observed sequence of yes and no 
responses. This lack of interpretation bias in the 
threshold estimate is a major advantage of the tech- 
niques which are simulated in this paper. It may be noted 
that using the mode of the final p.d.f., as in the standard 
version of the QUEST method (Watson & Pelli, 1983) 
would cause interpretation bias if the final p.d.f. is 
skewed; likewise, the Probit method for estimating 
thresholds from a measured psychometric function, is 
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based on a maximum likelihood calculation (i.e. the 
mode of a p.d.f. of threshold) and may also be subject 
to a similar bias (Finney, 1971; McKee et al., 1985; 
O’Regan & Humbert, 1989). 

While the current techniques are free from interpret- 
ation bias, they do suffer from measurement bias (see 
Introduction and Fig. 11). We know of no way of 
eliminating measurement bias, in techniques like 
QUEST and ZEST which are based on a finite number 
of binary responses; however, this bias is typically small 
(Fig. 11) and becomes increasingly unimportant with 
increasing number of trials per threshold. 

Measurement and interpretation bias are important in 
different situations. When a single threshold measure- 
ment is made, interpretation bias indicates whether the 
estimated value deviates from the mean of the possible 
log real thresholds. When an average of many threshold 
estimates is taken, measurement bias indicates how this 
average differs from the observer’s real threshold. In this 
situation, the current methods could suffer from a 
serious measurement bias (one which is not small com- 
pared to the random measurement error). Rather than 
simply averaging the log threshold estimates, a better 
method might be to record the intensity and response for 
all trials in the series of runs; a threshold estimate could 
then be made by performing the calculations [e.g. 
equation (7)] as if all these trials had been collected in a 
single run (in this way, M runs each of N trials are 
treated like one run with MN trials, which would have 
no interpretation bias and relatively little measurement 
bias). However, it should be noted (Pelli, personal 
communication) that thresholds often change signifi- 
cantly between runs; therefore the above analysis, while 
theoretically correct, may be based on an incorrect 
assumption (see Introduction) that the threshold does 
not vary from trial to trial. 

Precision of yes-no and forced choice simulations 

Our simulations are consistent with previous simu- 
lations (McKee et al., 1985; Madigan & Williams, 1987) 
and with experimental data (Get-r & Letz, 1988; Hesse, 
1986; Pierce & King-Smith, 1992) which show that, for 
a given number of trials, yes-no experiments provide a 
considerably higher precision than 2AFC. For example, 
Pierce and King-Smith (1992) found that measurement 
error for yes-no experiments, derived from simul- 
taneous, independent visual threshold estimates (ZEST 
method, 30 trials/run) was only 37% of that for 2AFC. 
This is reasonably consistent with the current simu- 
lations (e.g. Fig. 7) given that these are for a smaller 
number of trials. Our simulations illustrate two reasons 
for the higher precision of yes-no measurements: 

1. The ideal sweat factor for our yes-no simulations 
is less than that for 2AFC by a factor of about 2.3. 

2. The efficiency of yes-no experiments is higher than 
for 2AFC [compare Fig. 16(B) and 17(B)]. For example, 
after 20 trials using the Minimum Variance Method and 
one-trial look-ahead, the efficiency of yes-no simulations 
is about 4.8 times higher than for 2AFC. 

The added precision, R, - R,, of yes-no experiments 
is greater than for 2AFC due to both of the above factors 
[cf. equation (28)]; for the example given above, the 
added precision of yes-no simulations is 2.3 x 4.8 i.e. 
about 11 times greater-this can be confirmed by com- 
paring Fig. 16(A) and 17(A). With increasing number of 
trials, the efficiency of 2AFC experiments would improve 
relatively more than that for yes-no experiments; for 
very large numbers of trials, where both efficiencies 
should approach loo%, the precision of yes-no exper- 
iments would still be greater than that of 2AFC by a 
factor of 2.3, due to the difference in ideal sweat factors. 

The precision of forced-choice experiments may be 
improved (for a given number of trials) by increasing the 
number of alternatives (Green et al., 1989; Kollmeier 
et al., 1988; Pelli, Robson & Wilkins, 1988; Schlauch & 
Rose, 1990; Shelton & Scarrow, 1984). However, in- 
creasing the number of alternative intervals in a forced- 
choice experiment will also increase the duration of the 
experiment; consequently, Schlauch and Rose (1990) 
estimated that, for their conditions and for a given 
experimental duration, the highest precision for forced 
choice experiments would be given by three alternative 
intervals. 

The efects of criterion in yes-no experiments 

A disadvantage of yes-no experiments is that 
threshold may be affected by the subject’s criterion (i.e. 
his willingness to respond “yes” when he is doubtful 
about the occurrence of a stimulus). The importance 
of the subject’s criterion was emphasized by Higgins, 
Jaffe, Coletta, Caruso and de Monasterio (1984) who 
measured contrast sensitivity functions for 20 normals 
on two occasions, using both 2AFC and subject-setting; 
the latter thresholds depend on the subject’s criterion, as 
do results for yes-no experiments. For subject-setting, 
there were changes in average threshold, on retest, of up 
to 0.4 log units, while the shape of the contrast sensitivity 
function was relatively unchanged; for 2AFC exper- 
iments, similar large changes in average threshold did 
not occur. 

However, results for subject-setting are not necessarily 
applicable to yes-no measurements. Pierce and King- 
Smith (1992) measured thresholds for test spots in 19 
normals in three sessions at weekly intervals; in each 
session, eight threshold runs of 30 trials were performed 
for both yes-no and 2AFC methods. Test-retest re- 
liability (derived from session means) for yes-no 
measurements was not significantly worse than for 
2AFC [standard deviations between sessions, within 
subjects: yes-no, 0.0506 log units: 2AFC, 0.0496 log 
units: F(38,38) = 1.04, P > 0.11. The apparent dis- 
crepancy with the results of Higgins et al. (1984), may 
indicate that subject-setting has poor test-retest re- 
liability for naive subjects, while yes-no measurements 
may have better reliability which is comparable to 
2AFC. However, additional analysis of the Pierce and 
King-Smith (1992) data has demonstrated that the ratio 
of yes-no to 2AFC thresholds is negatively correlated 
with false positive rate (Spearman R = -0.557, v = 17, 
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P < 0.02) indicating that the subject’s criterion does 
have a significant effect on yes-no thresholds. 

In concluding the comparison of yes-no and 2AFC 
methods the following points can be made: 

1. If the major information required is the relative 
threshold for different stimuli (e.g. high vs low spatial 
frequency, chromatic vs achromatic thresholds), the 
higher precision of yes-no measurements makes it the 
method of choice. 

2. When an approximate absolute (rather than rela- 
tive) value of threshold is required (e.g. standard error 
of 0.1 log units or more), the greater speed of the yes-no 
method makes it preferable to 2AFC. 

3. When a more accurate absolute value of threshold 
is required (e.g. for comparing thresholds on different 
occasions or from different populations), 2AFC 
thresholds are preferable because of their freedom from 
the subject’s criterion. However, it should be noted that 
two-interval forced choice judgments can be difficult for 
some subjects (even when they see the stimulus clearly, 
they may have difficulty remembering the interval). Also 
2AFC measurements are typically quite time-consuming. 
Higgins et al. (1984) used 50 trials for each spatial 
frequency and the total time taken for nine spatial 
frequencies ranged from 18 to 40 min; for comparison, 
for yes-no measurements using eight trials at each of 11 
spatial frequencies, we measure a contrast sensitivity 
function in under 5 min (including 16 blank trials). 

Conclusions 

1. Stimulus intensity selection. Setting the next inten- 
sity equal to the mean of the current p.d.f. (ZEST) gives 
higher efficiency than the standard QUEST method of 
using the mode (Watson & Pelli, 1983). Choice of the 
optimal threshold criterion can also improve efficiency 
relative to the criterion which gives the “ideal sweat 
factor”. The Minimum Variance Method can provide 
even higher efficiency than ZEST. 

2. Initial pd.5 A modified hyperbolic secant can be 
used to fit a histogram of thresholds; using this initial 
p.d.f. increases efficiency and reduces bias. 

3. Final threshold estimate. This is derived from the 
mean of the final p.d.f. (rather than the mode of a 
likelihood function used in the standard QUEST pro- 
cedure). Again, this increases efficiency and reduces bias. 

4. Bias. A distinction is made between measurement 
bias, derived from repeated measurements (or simu- 
lations) on one subject, and interpretation bias, derived 
from all possible thresholds which could give rise to one 
threshold estimate. Our final threshold estimates are free 
of interpretation bias (but not measurement bias). 

5. Yes-no us ZAFC. The considerably higher precision 
of yes-no measurements, compared to 2AFC, is due to 
both a lower “ideal sweat factor” and a higher efficiency. 

6. Practical implementation. ZEST is a flexible pro- 
cedure in that it can be readily modified to circumvent 
certain experimental problems; it can also be enhanced 
to estimate such factors as the slope of the psychometric 
function. This flexibility is discussed in the Appendix. 
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APPENDIX 

Practical Implementation of the ZEST Method 

For several years, we have used a variation of the ZEST method to 
measure normal and clinical visual thresholds. A yes-no method is 
used, and (as implied by the definition of the ZEST method), the next 
intensity is set to the mean (rounded to the nearest 0.05 log units) of 
the current p.d.f. P.d.fs. are calculated directly (i.e. linear probability 
rather than the logarithm of probability used by Watson & Pelli, 1983); 
this makes it easier to calculate the mean and standard deviation of any 
p.d.f. The final estimate of log threshold is taken to be the (unrounded) 
mean of the final p.d.f. [equation (1 S)] and the standard error in log 
threshold is estimated to be the standard deviation of this p.d.f. 
[derived from the square root of variance, given by equation (22)]. By 
integrating the final p.d.f., it should bc possible to derive a 95% 
confidence range for the final threshold estimate (we have not yet 
implemented this idea). 

P.d.fs. are calculated over a 5 log unit range of threshold with a step 
size of 0.05 log units. An 8 bit (North Star Horizon) microcomputer 
provides adequate speed when used in conjunction with a floating 
point processor and machine code subroutines for calculating a p.d.f. 
[equation (7)] and its mean; with a more modern microcomputer, it 
should be possible to achieve adequate speed using a high level 
language such as BASIC, C or Fortran. 

The threshold criterion factor, c in equation (9), is set to 0; this is 
close to the value yielding optimum performance for thresholds based 
on 8-16 trials [Fig. 6(A)]. The slope of the psychometric function, fi 
in equation (9), has been assumed to be 3.5 (as in Watson & Pelli, 1983) 
and the reasonableness of this assumption is considered in the discus- 
sion of Fig. 18. As in the current simulations, false positive and false 
negative rates are assumed to be 0.03 and 0.01 respectively. 

Choice of the initial p.d.f. is, in the first instance, a matter of 
experience and intuition. Watson and Pelli used a Gaussian function 
of log threshold, but a more satisfactory alternative may be a modified 
hyperbolic secant [equation (8)-see also, Harvey, 19863; we have 
found that a hyperbolic secant provides better performance than a 
Gaussian when a threshold is relatively far from the peak of the initial 
p.d.f. (e.g. for a subject with very elevated thresholds). It may be noted 
that an error in the initial p.d.f. has a relatively small effect on 
estimated thresholds after eight or more trials of a yes-no method (Fig. 
14). After some representative threshold data have been obtained, it is 
possible to derive a better initial p.d.f. by fitting a curve [e.g. equation 
(S)] to a histogram of thresholds, as in Fig. 2. It should be possible to 
increase the precision of the ZEST method by using a different initial 
p.d.f. for each stimulus (e.g. for each spatial frequency of a contrast 
sensitivity function) but we have not tried this idea; it should be 
particularly advantageous for experiments where the thresholds for 
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different stimuli vary over many log units (e.g. for spectral sensitivity 
measurements over a wide range of wavelengths). 

Our experiments are terminated after a 6xed number of trials for 
each threshold measurement. We have found 8 trials per threshold 
measurement to be satisfactory for many studies, yielding a standard 
deviation of about 0.1 log units [Figs 6(A) and 181; if higher precision 
is required, the number of trials can be increased. Different stimuli are 
interleaved; for example, for a contrast sensitivity function using 11 
spatial frequencies, all 11 frequencies, plus two blank trials, are first 
presented in random order and then this cycle of 13 trials is repeated 
a further seven times in different random orders (thus making a total 
of eight trials for each frequency plus 16 blank trials). The subject is 
asked to repeat the experiment if the false positive rate is over 15% (i.e. 
three or more out of 16). Alternative termination rules would be to end 
each threshold measurement when the estimated standard deviation of 
threshold falls below a certain value or when the 95% confidence range 
(calculated directly by integrating the final p.d.f.) falls below some 
criterion; these are roughly equivalent to Watson and Pelli’s (1983) 
proposal based on a chi-square calculation, and make no assumptions 
about the form of the final p.d.f. 

Circumventing problems 

A major advantage of QUEST and its variations (e.g. ZEST), is that 
the choice of stimulus intensity can readily be altered under special 
circumstances; the final p.d.f. of log threshold provides an unbiased 
estimate of log threshold and its standard deviation even if the 
intensities used are not all derived in the standard way (e.g. as the mean 
of the current p.d.f.). For example, suppose that the threshold is close 
to or above the maximum intensity which can be generated by the 
equipment; the mean of the current p.d.f. can then exceed this 
maximum intensity. In this circumstance, the log intensity [x, in 
equation (7)] can be set to maximum (rounded down to the nearest 
0.05 log unit step); after the subject responds, a new p.d.f. can be 
calculated using this value of xi in equation (7). In this way, thresholds 
can be estimated even when they are somewhat above the maximum 
intensity available from the apparatus; we consider any threshold 
estimate to be “valid” if the subject responded at least once, but the 
threshold estimate will, of course, be relatively inaccurate if the subject 
responded only once, and this will be reflected in the estimated 
standard error. 

A second example of this flexibility of ZEST occurs during the first 
“cycle” of an experiment-e.g. during the first presentations of all 11 
frequencies for the contrast sensitivity measurements discussed above. 
In the standard ZEST method, all these stimuli would be presented at 
a fixed contrast-the mean of the initial p.d.f.; a normal subject may 
see all or most of these initial presentations, whereas a subject with 
high thresholds may see none or few. This is both inefficient and 
disturbing to the subject who may begin to wonder if the apparatus is 
working correctly. A more satisfactory alternative is to vary the 
contrast during this first cycle, so that, for example, contrast is 
increased if the subject responds infrequently. This can be done by 
running an independent “pseudo” ZEST method where all the trials 
in the first cycle are treated as if they were the same stimulus. A 
corresponding “pseudo” p.d.f., 4 k(T), is calculated from an equation 
analogous to equation (7) (after k trials in this first cycle); the next 
intensity is set to the mean of this p.d.f. At the same time, p.d.fs. for 
each frequency are calculated in the standard way [equation (Z)] and 
these p.d.fs. are used for the second and subsequent cycles. 

Taylor, Forbes and Creelman (1983) have criticized the QUEST 
method because it assumes that the subject’s threshold is stationary 
(i.e. it does not vary during the experiment) whereas they show that 
this is typically not strictly true (cf. Leek et al., 1991). Variation in 
threshold during the experiment would effectively reduce the slope of 
the psychometric function. A more serious problem may be that a lapse 
in the subject’s performance could produce a relatively long sequence 
of unseen stimuli, particularly in the later stages of a long run, when 
the stimulus intensity is close to threshold and it increases in relatively 
small steps after a “no” or incorrect response; such a sequence of 
unseen stimuli would be exacerbated by the lack of a clearly detected 
stimulus, to remind the subject of the characteristics which are to be 
detected. Again, the flexibility of the QUEST and related methods can 
be used to counteract this problem. For example, Watson and Pelli 

(1983) suggest adding a random “jitter” to the stimulus intensities of 
up to plus or minus 0.1 log unit; an alternative method might be that, 
after a sequence of responses indicating that the subject is not 
responding above chance level, one rather stronger stimulus could be 
used to remind the subject of the stimulus characteristics; in either case, 
the response to these “nonstandard” intensities can be incorporated 
into the p.d.fs. in the normal way, using equation (7). 

Enhancements IO ZEST and the minimum variance method 

A limitation of the current methods is that assumptions must be 
made about the psychometric function-eg. in most of our simu- 
lations and in our experiments, we assume that the slope, B = 3.5 
[equation (9)]. However, if the variation of /l in the population is 
known (or a reasonable guess can be made), the current methods can 
take this into account by working with p.d.fs. which are a function of 
both log threshold, T, and slope 8, i.e. by replacing q(T) by q (1, T). 
For example, after trial i, the Bayesian multiplication of equation (7) 
becomes 

40. 7’) =P(~,,G A T)qi-,(B, T). (33) 

Integration over both slope and log threshold is required for determin- 
ing such things as the next intensity, the final threshold estimate and 
its variance; for example, the final threshold estimate of equation (15) 
becomes 

E, = 
UJ 

Tq,.+(B, T) dB dT IYW qNj(B* T) dS dT 1 (34) 

An estimate of slope, PI, can be derived from a similar equation: 

8;= 
[sj- 

kNj(B, T) dB dT 1iu.f qNj(B, T) dB dT 1 . (35) 

If the assumed form of the initial p.d.f., q&B, T), is correct, this gives 
an estimate of slope which is free of interpretation bias, for the same 
reasons that equations (15) and (34) give unbiased estimates of log 
threshold (see discussion of interpretation bias in the Introduction). It 
may be noted that the initial p.d.f., q&?, T), can take into account the 
possibility that the slope of the psychometric function might be less 
when the threshold is high (see discussion of Fig. 18; Weber & Rau, 
1992). In theory, false positive and false negative rates, y and 6 in 
equation (9). can also be incorporated as extra dimensions in the p.d.fs. 
in the way discussed above for the slope, B; however, the time taken 
for calculations using such three or four dimensional p.d.fs. may be 
prohibitive, even with current microprocessors. 

Similar considerations may be applied to corrections for drift in 
thresholds during an experimental run (cf. Leek er al., 1991). For 
example, suppose that it is suspected that the subject’s log threshold, 
T, drifts in a linear way during a run so that at trial i 

T= T,,+ri (36) 

where TO is the log threshold at the start of the run and r gives the rate 
of drift. If the population variation of T can be estimated (or guessed) 
then it can be incorporated in an initial p.d.f. qo(r, TO) and the 
Bayesian multiplication of equation (7) becomes 

q,(r, T,) = P (rir x,, TO + zi)qi- ,(T, T,). (37) 

The final estimate of TO is given by 

E, = 
[JJ 

T,q,,-(7, T,) dr dT, IYU q,&, T,) dz dT, 1 . 
An estimate of drift is given by 

(38) 

7; = 

D-J 

Tq&, T,) dT dT, l/W q&, ToI dr dT, 1 . (39) 

The significance of this drift can be estimated by generating a 
(one-dimensional) final p.d.f. of drift from 

P(T) = qM(7, T,) dTo. (40) 

By integrating P(T), one may cheek whether zero drift, T = 0, lies 
within, say, the 95% confidence range of r. 
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The current methods may also be modified to take advantage of 
correlations between the thresholds of two or more stimuli which are 
being measured simultaneously (e.g. at two locations, A and B). Let 
T, and Z’s be log thresholds for two such stimuli, and let qo(TA, TB) 
be their joint initial p.d.f. (which takes account of any correlation 
between these thresholds in the population). Suppose that r, is the 
response to the first trial of log intensity x,, which is, say, for stimulus 
A. Then the joint p.d.f. after this trial becomes 

ql(TA, Ts)=P(rlrX,, T.hoVA, TB). (41) 

The advantage of this strategy is that, if there is correlation between 
T, and 7’s, this multipli~tion shifts the center of gravity of the new 

p.d.f., q,, along not only the TA axis but also the TB axis, so that the 
first intensity chosen for stimulus B takes advantage of information 
from the response to stimulus A; similar considerations apply at any 
later stage of the experiment. 

in principle, this technique can be extended to measuring many 
thresholds simultaneously (as in automated perimetry), but evidently, 
with more than two or three stimuli, the calculations become very 
time-consuming, even for modern microprocessors. It remains a 
challenge for the future to develop more efficient, practical algorithms 
for measuring many thresholds simultaneously, but the flexibility of 
the ZEST and Minimum Variance Methods, illustrated in the above 
examples, indicate that they should form a good basis for further 
developments in this area. 


