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The problem of color constancy may be solved if we can recover the physical properties of illuminants and
surfaces from photosensor responses. We consider this problem within the framework of Bayesian decision
theory. First, we model the relation among illuminants, surfaces, and photosensor responses. Second, we
construct prior distributions that describe the probability that particular illuminants and surfaces exist in the
world. Given a set of photosensor responses, we can then use Bayes’s rule to compute the posterior distribu-
tion for the illuminants and the surfaces in the scene. There are two widely used methods for obtaining a
single best estimate from a posterior distribution. These are maximum a posteriori (MAP) and minimum
mean-squared-error (MMSE) estimation. We argue that neither is appropriate for perception problems. We
describe a new estimator, which we call the maximum local mass (MLM) estimate, that integrates local prob-
ability density. The new method uses an optimality criterion that is appropriate for perception tasks: It
finds the most probable approximately correct answer. For the case of low observation noise, we provide an
efficient approximation. We develop the MLM estimator for the color-constancy problem in which flat matte
surfaces are uniformly illuminated. In simulations we show that the MLM method performs better than the
MAP estimator and better than a number of standard color-constancy algorithms. We note conditions under
which even the optimal estimator produces poor estimates: when the spectral properties of the surfaces in the
scene are biased. © 1997 Optical Society of America [S0740-3232(97)01607-4]

1. INTRODUCTION
Vision tells about object properties. This is difficult be-
cause there is no simple mapping between an object’s in-
trinsic properties and the light that reaches the observer.
Extrinsic factors, such as where the object is located, how
it is oriented, and how it is illuminated, also influence the
image. To provide reliable information about objects, a
visual system must separate the contributions of intrinsic
and extrinsic factors. Often, however, there is no unique
factorization: Many combinations of intrinsic and ex-
trinsic factors can result in the same set of sensor mea-
surements. In spite of this ambiguity, our own percep-
tual systems perform remarkably well.

Bayesian decision theory1–3 provides a framework for
designing solutions to perceptual problems. Bayesian
methods combine the information contained in the image
with information given a priori about likely physical con-
figurations of the world. This prior information can re-
solve ambiguities in the image data.

In this paper we provide a Bayesian treatment of the
perceptual problem of determining object color.4 In the
case of object color, the light reflected from an object de-
pends not only on the object’s intrinsic surface reflectance
but also on the spatial and spectral power distribution of
the illumination and the orientation of the object relative
to sources of illumination and the viewer. The ability of
a visual system to maintain object color appearance
across variations in factors extrinsic to the object is called
color constancy. Human vision exhibits approximate
color constancy.10–15

A. Why Color Constancy is Difficult
1. Problem Statement
Consider the special case of a collection of N matte sur-
faces diffusely illuminated by a single illuminant, as illus-
trated in Fig. 1. For this viewing geometry, we may
characterize each surface by its spectral reflectance func-
tion. We represent the reflectance function of the jth
surface by a column vector sj . The entries of sj specify
the fraction of incident light reflected in Nl evenly spaced
wavelength bands throughout the visible spectrum.
Similarly, we specify the illuminant spectral power distri-
bution with the column vector e. The entries of e specify
the radiant power in each of the wavelength bands. The
spectral power distribution of the light reaching the im-
aging device is given by the vector cj ! e .* sj , where we
use the notation .* to denote entry-by-entry multiplica-
tion.

The imaging device samples each cj with Nr classes of
linear photosensors. Each photosensor is characterized
by a spectral sensitivity function. We specify the spec-
tral sensitivities with an (Nr " Nl)-dimensional matrix
R. The klth element of R specifies the sensitivity of the
kth sensor class to light in the lth wavelength band. We
let the Nr-dimensional column vector rj represent the re-
sponses from all Nr sensor classes to the spectrum cj . In
the absence of sensor noise, we have the rendering equa-
tion for a single surface:

rj ! Rcj ! R!e .* sj". (1)
This equation specifies the relation between the data
available to the visual system at an image location (pho-
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tosensor responses rj) and the scene parameters that it
must estimate (illuminant spectrum e and surface reflec-
tance spectra sj).

We cast color constancy as the problem of estimating e
and the sj from the ensemble of sensor responses rj .
Once the estimates are obtained, color-constant descrip-
tors for surfaces can be constructed by using any fixed
function of the surface reflectance estimates or the reflec-
tance estimates themselves.

Forsyth16 and Brainard et al.17 (see also McCann
et al.,11 Land and McCann,18 and Land19,20) have noted
that constancy may be achieved even when the estimates
of the physical parameters are not correct: All that is re-
quired is that the estimates not vary with the illuminant.
Nonetheless, the ability to estimate the physical param-
eters with precision is sufficient to achieve constancy.
We return to this point in Section 4.

2. Why It Is Difficult
The inverse problem specified by Eq. (1) is difficult for two
reasons: It is underdetermined and it is nonlinear. An
inverse problem is underdetermined if there are more
scene parameters than there are degrees of freedom in
the data. The spectral functions for surfaces and illumi-
nants are typically represented by using wavelength
bands with widths between 1 nm and 10 nm throughout
the visible spectrum (roughly 380 nm to 780 nm). Even if
we use sparse 10-nm wavelength sampling in the limited
wavelength range 400 nm to 700 nm, e and the sj are of
dimension Nl ! 31. On the other hand, a typical imag-
ing device (e.g., a RGB camera or the human eye), con-
tains only a few classes of photosensors. Indeed, the rj
are often of dimension 3. If we have data from N image
locations (say, 10) and assume one illuminant, then we

have NNr measurements (e.g., 10 " 3 ! 30) available to
estimate Nl(N # 1) scene parameters [e.g., 31 " (10
# 1) ! 341].

Equation (1) represents a nonlinear inverse problem
because some scene parameters multiply others. Al-
though standard methods exist for solving linear inverse
problems,21 no general solution is available for the non-
linear case.

A general solution to color constancy must handle the
geometrical richness of natural image formation. Hu-
man observers, however, show some constancy for the
simple geometry of Fig. 1,11,14,22–29 and this situation has
received considerable attention in the computational
literature.7–9,16,19,20,30–34 Insights gained from studying
the simple geometry may help us to extend the analyses
of color constancy to natural images. In addition, the un-
derdetermined and nonlinear character of the simple
color-constancy problem may make it a good model for
other computational vision problems. The aperture prob-
lem in motion perception,35 the bas-relief illusion of shape
perception,36 the interpretation of line drawings,37,38 the
separation of shading and reflectance,39 and the selection
of perceptual grouping40 are examples of other underde-
termined vision problems for which a similar analysis
may be useful.

B. Previous Work
To address the underdeterminancy of color constancy,
previous investigators have described spectral functions
by using low-dimensional linear models. Brainard41 re-
views the use of linear models in computational color vi-
sion. Let Be be an (Nl " Ne)-dimensional matrix. Illu-
minant spectra are constrained to lie within the linear
model Be if we can write e ! Bewe , where we is an
Ne-dimensional column vector. The columns of Be are
the basis functions of the linear model, since the matrix
product Bewe expresses a weighted sum of these columns.
The dimension of the linear model is Ne . The Ne entries
of we are the linear model weights for the illuminant e.
Similarly, surface spectra are constrained to lie within
the linear model Bs if we can write sj ! Bswsj , where
Bs is an (Nl " Ns)-dimensional matrix and wsj is an
Ns-dimensional column vector.

If we assume that a population of spectra lie within an
Nm-dimensional linear model, then we can parameterize
the spectra by specifying the model weights. (The basis
functions are assumed to be fixed and known.) When
Nm is small, linear models provide compact descriptions
of spectra. Naturally occurring spectra are well de-
scribed by low-dimensional linear models. A four-
dimensional model characterizes a large sample of mea-
sured daylights.42 The dimension required for large
samples of measured surfaces lies somewhere between 6
and 8.43,44 Moreover, linear models with dimension as
low as 3 capture a large percentage of the variance of the
measured surface spectra. We lose no generality by
reparameterizing the color-constancy problem in terms of
linear model weights. If we choose Be and Bs as the iden-
tity matrices, the linear model parameterization reduces
to the spectral parameterization.

Buchsbaum30 developed an algorithm that requires
that the illuminants and the surfaces lie within

Fig. 1. Image formation for a simple geometry. The image is
formed when light from an illuminant reflects off a collection of
surfaces to the imaging device. We assume that the illuminant
is diffuse and spatially uniform, so that it may be characterized
by a single spectral power distribution. We assume that each
surface is flat and matte, so that it may be characterized by a
single spectral reflectance function. The spectral power distri-
bution of the light reaching the observer from each surface is
given as the wavelength-by-wavelength product of the illuminant
spectral power distribution and the surface reflectance function.
At each location this light is sampled by a small number of types
of photosensors. For the case of human vision (as shown), these
are the long-, medium-, and short-wavelength (LMS) sensitive
cones. For a typical digital camera, these are the red, green,
and blue (RGB) sensors.
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Nr-dimensional linear models. Buchsbaum’s algorithm
assumes that the spatial mean of the surface reflectances
sj is constant across scenes and equal to some known re-
flectance function s0 . In such a gray world, the illumi-
nant can be estimated from the spatial mean of the sensor
responses.

Algorithms based on the gray world assumption break
down for images for which the mean reflectance function
differs from s0 .45 That is, these algorithms cannot dis-
tinguish changes of illumination from changes in the col-
lection of surfaces in a scene. Both changes affect the
spatial mean of the sensor responses and are interpreted
as a change in illumination. The human visual system,
on the other hand, seems capable of distinguishing true
illuminant changes from changes in the collection of sur-
faces in a scene.15,22,46,47 There is also evidence that
color appearance is affected by factors other than the
mean of the photosensor responses.48–52

Maloney and Wandell31 and Wandell53 showed that the
rendering equation may be inverted exactly if the illumi-
nants are constrained to lie within an Nr-dimensional lin-
ear model and that the surfaces are constrained to lie
within an (Nr $ 1)-dimensional linear model. When the
linear model constraints hold, the sensor responses rj lie
within an (Nr $ 1)-dimensional subspace of the
Nr-dimensional sensor space. The particular subspace
depends on the illuminant, so that identifying the sub-
space that contains the rj leads to an estimate of the illu-
minant.

An important feature of Maloney and Wandell’s sub-
space algorithm is that the estimate of the illuminant
does not depend on the particular collection surfaces in
the scene. For human vision, however, there are only
three classes of cone photosensors, so that the result ap-
plies directly only if the surfaces lie within a two-
dimensional linear model. Since this is not the case for
natural surfaces, the practical value of the subspace algo-
rithm depends on how it behaves under violations of the
assumptions on which it is based. We used simulations
to investigate this question5 and concluded that the sub-
space algorithm is not robust (see Subsection 3.B).

Forsyth16 used linear models in conjunction with the
constraints that real illuminants cannot have negative
power at any wavelength and that real (nonfluorescent)
surface reflectance functions must take on values be-
tween 0 and 1 at all wavelengths. He showed that exam-
ining the convex hull of the sensor responses rj provided
information about the illuminant. Others have also ar-
gued that physical realizability constraints provide useful
information for estimating the illuminant.9,34

The gray world, subspace, and physical realizability al-
gorithms all work by extracting a summary statistic from
the sensor responses and then using this statistic to esti-
mate the illuminant. For the gray world algorithm, the
statistic is the mean sensor response. For the subspace
algorithm, the statistic is the identity of the subspace that
contains the responses. For the physical realizability al-
gorithm, the statistic is the convex hull of the sensor re-
sponses. The algorithms demonstrate that each of these
statistics carries information about the illuminant. On
the other hand, there is no reason to use only one statis-
tic. If different statistics carry different information,

then we might expect improved performance from an al-
gorithm that uses information from all of them. To capi-
talize on this intuition, we must know how to combine the
information in an effective manner.

2. BAYESIAN FRAMEWORK
The Bayesian framework provides a prescription for how
to use all of the information about the illuminant con-
tained in the sensor responses rj , including the informa-
tion used by the gray world, subspace, and physical real-
izability algorithms. Three probability distributions play
key roles. These are the prior, the posterior, and the
likelihood. The prior probability describes what is
known about the parameters before observing the data,
while the posterior probability describes what is known
after observing the data. If we are trying to estimate pa-
rameters described by the vector x, then the prior infor-
mation is the probability density p(x).54 The likelihood
p(y!x) expresses the relation between the data y and the
parameters x. The likelihood may be thought of as the
rendering equation expressed as a probability distribu-
tion.

Given the prior p(x) and the likelihood p(y!x), the pos-
terior probability p(x!y) is computed by using Bayes’s
rule:

p!x!y" !
p!y!x"p!x"

p!y"
! Cp!y!x"p!x". (2)

In this paper we will use the symbol C to indicate any ex-
pression constant over the variables of interest. Here C
is a normalizing constant that depends on the data y but
not on the parameters x.

To go from the posterior to a single estimate x̃ for the
parameters x, we need to specify a loss function L(x̃,x).
This function specifies the penalty for choosing x̃ when
the actual parameters are x. Given the posterior and a
loss function, we may compute the loss expected in choos-
ing x̃, called the Bayesian expected loss1:

L̄! x̃!y" ! "
x
L! x̃,x"p!x!y"dx. (3)

We choose x̃ to minimize the expected loss. Often the
loss function is shift invariant, so that the loss depends
only on the difference x̃ $ x. In this case the expected
loss is simply the posterior convolved by the loss function
with its argument negated.

Bayesian estimation provides a principled way to
choose an optimal estimate that uses all of the informa-
tion contained in the data (including the information car-
ried by the mean of the data, the subspace containing the
data, and the convex hull of the data). As a practical
matter, a number of difficulties can arise. First, it may
be difficult to specify a prior distribution that adequately
captures what is known about the structure of the param-
eters. In the case of color constancy, the prior must
specify how likely it is that particular illuminant spectral
power distributions and surface reflectances will occur.
Second, it may be difficult to specify a loss function that
captures how costly errors of various type are. Finally, it
may be computationally difficult to minimize the expected

D. H. Brainard and W. T. Freeman Vol. 14, No. 7 /July 1997 /J. Opt. Soc. Am. A 1395



loss. For the case of color constancy, however, we have
developed a Bayesian solution.

A. Bilinear Structure
The color-constancy rendering equation [Eq. (1)] is
bilinear.27,55 This means that the relation between rj
and sj is linear when e is held fixed and that the relation
between rj and e is linear when sj is held fixed. Any re-
sults that hold generally for bilinear rendering
equations56–58 apply to color constancy.

To demonstrate the bilinearity, we rewrite the render-
ing equation [Eq. (1)] as

rj ! L!e"sj ! L!sj"e, (4)

where L(e) ! R diag(e) is an (Nr " Nl)-dimensional
matrix that depends only on e and L(sj) ! R diag(sj) is
an (Nr " Nl)-dimensional matrix that depends only on
sj . Expressing the rendering equation in terms of linear
model weights does not alter its bilinearity. By letting
M(we) ! L(Bewe)Bs and M(wsj) ! L(Bswsj)Be , we have

rj ! M!we"wsj ! M!wsj"we . (5)

Equation (5) may be extended to express the relation be-
tween the data and scene parameters at all N locations
simultaneously. Let r be the NNr-dimensional column
vector obtained by stacking the vectors rj . Let ws be the
NNs-dimensional column vector obtained by stacking the
vectors wsj . Then we can write the overall rendering
equation as

r ! N!we"ws ! N!ws"we . (6)

Here the matrix N(we) is the NNr " NNs block diagonal
matrix with M(we) repeated along its diagonal, while the
matrix N(ws) is the NNr " Ne matrix obtained by stack-
ing the matrices M(wsj).

B. Product Example
The simplest case of a bilinear inverse problem occurs
when the data and the scene parameters are all scalars.
Suppose that we observe a number y and are told that it
is the product of two other numbers, y ! ab. The prob-
lem is to estimate the two numbers a and b.

This problem is clearly underdetermined. Let us say
that the observation is y ! 1 and that we know that
0 % a, b % 4. From the constraint ab ! 1, we can say
only that the solution must lie on the ridge of the surface
shown in Fig. 2(a).

A Bayesian analysis yields more. We start by finding
the posterior probability p(x!y) of the parameter vector
x ! (a b)T given the observation vector y ! y. If we
write the rendering equation as y ! f(x) ! ab and allow
for normally distributed observation noise with mean 0
and variance #2, then we can write the likelihood as

p!y!x" !
1

!2$#2
exp#$

!y $ f!x"!2

2#2 $ . (7)

If we assume a uniform prior p(x) ! 1/16 over the range
%0, 4& " %0, 4& and 0 elsewhere, Bayes’s rule [Eq. (2)]
gives us the posterior for the case y ! 1 and #2 ! 0.18:

p!x!y" ! % C exp# !1 $ ab!2

2!0.18" $ , 0 % a, b % 4

0 otherwise
, (8)

where C is a normalizing constant. This posterior distri-
bution is shown in Fig. 2(a). Points (a, b) whose product
is close to 1 have a large posterior probability. Points
whose product is quite different from 1 have a low poste-
rior probability. The set of points with highest probabil-
ity forms a ridge along the hyperbola ab ! 1. Note from
Fig. 2(b) that, while the ridge has equal height every-
where, it is wider near (1, 1) than at other points.

The posterior probability distribution provides a com-
plete description of what we know, given the data and the
prior. In a typical estimation problem, however, the goal
is to choose one best estimate of the scene parameters.
For the product example, we seek an estimate x̃
! (ã b̃)T. In practice, two decision rules are almost
universally used. These are to choose the scene param-
eter value that maximizes the posterior distribution
(called the maximum a posteriori, or MAP, estimate) or to
choose the mean of the posterior distribution (called the
minimum mean-squared-error, or MMSE, estimate).

Fig. 2. Bayesian analysis of the product example: (a) posterior
probability for the observed data ab ! 1 for Gaussian observa-
tion noise of variance # 2 ! 0.18 and uniform prior probabilities
over the plotted region, (b) cross section through the posterior at
two different locations. Note the different thicknesses of the
ridge; some local regions have more probability mass than oth-
ers, even though the entire ridge has a constant maximum
height.
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The MAP estimator is closely related to maximum-
likelihood methods and has been widely used in computa-
tional vision.3,7,9,59–65

The MAP rule corresponds to minimizing the expected
loss with respect to the minus delta loss function:

L! x̃, x" ! $'! x̃ $ x". (9)

Since convolving the posterior with the minus delta loss
function leaves the relative shape of the posterior un-
changed, the estimate that maximizes the posterior also
minimizes the corresponding expected loss. For the
product example, the minus delta loss function and its
corresponding expected loss are shown in Figs. 3(a) and
3(d), respectively. (In this and related figures, decreas-
ing loss is plotted upward to show the extrema more
clearly.) Every point along the hyperbolic ridge in the
figure has equal expected loss, so the MAP rule does not
provide a unique estimate. Such ridges can occur in un-
derdetermined estimation problems when many alterna-
tives account for the observations equally well. MAP es-
timation ignores variations in the shape of the ridge,
which can be a significant source of information.

The MMSE rule is to choose the posterior mean as the
best estimate for the scene parameters. This estimator
is also in wide use; it is, for example, the basis of Kalman
filtering.66 It is easily shown67 that the MMSE rule cor-
responds to minimizing the expected loss with respect to
the squared-error loss function:

L! x̃, x" ! !x̃ $ x!2. (10)

For the product example, the squared-error loss function
and its corresponding expected loss are shown in Figs.
3(b) and 3(e), respectively. Note that the estimate that
minimizes the expected loss is ã ! b̃ ! 1.3, a strange re-
sult given the observation ab ! 1. The MMSE rule is
sensitive to the structure of the posterior, but it leads to
an estimate that is very unlikely to have generated the
data. Furthermore, computing the MMSE estimate may
require a computationally intensive integration over the
entire scene parameter space.

When the posterior probability mass is well localized in
the scene parameter space, both the MAP and MMSE
rules provide intuitively appealing estimates that tend to
agree with each other. When the posterior is less simple,
as in our product example, the MAP and MMSE rules can
disagree and both can be unsatisfactory unless the actual
loss function for the estimation problem matches that im-
plied by the estimator. We believe that complicated pos-
terior probability distributions, where these effects mat-
ter, occur in real computational vision problems.
Therefore we believe that it is worth considering what is
an appropriate loss function for perception.

The minus delta function loss function implies that
small estimation errors are as bad as large ones. The
squared-error loss function provides for a loss that accel-
erates with the size of the estimation error. But in per-
ception an estimate that is approximately correct will of-
ten do, and once the estimation error is sufficiently large,
the loss may saturate. For example, if we are trying to
catch a ball thrown to us, small errors in the perceived
size or velocity of the ball will not cause us to drop the
ball. Once the errors are large enough so that we fail to

catch the ball, it does not really matter how large they
are. We define the local mass loss function as

L! x̃, x" ! $exp%$!KL
$1/2! x̃ $ x"!2&, (11)

Fig. 3. Product example loss functions and corresponding ex-
pected losses. (a)–(c): Three loss functions. The plots show
the penalty for guessing parameter values offset from the actual
value, taken to be the plot center. Each loss function is shift in-
variant. (a) Minus delta function loss, implicit in MAP estima-
tion. The penalty is constant except for the correct estimate.
(b) Squared-error loss (a parabola), implicit in MMSE estimation.
Very inaccurate estimates can carry inordinate influence. (c)
Local mass loss function. Nearly correct estimates are re-
warded, while all others carry nearly equal penalty. (d)–
(f): Corresponding expected loss for the product example. Note
that the plots are inverted, so that increasing height on the plots
represents decreasing loss. This convention allows better visu-
alization of the location of minimum expected loss. (d) The ex-
pected loss for the MAP estimator is minus the posterior prob-
ability. There is no unique point of minimum expected loss. (e)
Expected loss for the MMSE estimator. The MMSE estimate
(1.3, 1.3) does not lie along the ridge of solutions to ab ! 1. (f)
Expected loss for the MLM estimator. The local mass loss fa-
vors the point (1.0, 1.0), where the ridge of high probability is
widest. There is the most probability mass in the local neigh-
borhood of this estimate.
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where we adopt the notation that !K$1/2x!2 ! xTK$1x.
For matrices KL of sufficiently small eigenvalues, this
loss function rewards approximately correct estimates
and penalizes all grossly incorrect estimates equally. We
believe that the local mass loss function describes the ac-
tual loss for perception problems better than either the
minus delta loss function or the squared-error loss func-
tion. We refer to the estimator obtained by minimizing
the expected loss for the local mass loss function as the
maximum local mass (MLM) estimator.

For the product example, the local mass loss function
and its corresponding expected loss are shown in Figs.
3(c) and 3(f), respectively. The expected loss is obtained
from the posterior by integrating the probability mass in
the neighborhood of that estimate. Note that the MLM
estimate is ã ! b̃ ! 1.0, which accounts well for the ob-
servation ab ! 1. This is the estimate that is most prob-
able to be approximately correct. The ridge of the poste-
rior is widest near (1.0, 1.0) (see Fig. 2). More parameter
values near (1.0, 1.0) could have caused the observed da-
tum than those near any other estimate.

The loss function is important and can change the op-
timal estimate. The MAP estimator is sensitive only to
the height of the posterior and ignores important infor-
mation in its structure. For example, when applied to
underdetermined inverse problems, MAP estimation
leads to a unique solution only when prior information fa-
vors one explanation of the observed data over the others.
In contrast, the MLM rule can in some cases provide a
unique estimate even when the prior information does not
distinguish among parameter values that can explain the
data well. This is because the local mass loss function
exploits information from both the height and the shape
of the posterior.

The MMSE estimator, while optimal in the MSE sense,
can give estimates that are nonsensical from a perceptual
standpoint. In contrast, the MLM rule leads to estimates
that are consistent with the observed data because the lo-
cal mass function is set to be local in the parameter space.
In addition, we show in Appendixes A and B that the
MLM estimate can be computed efficiently.

3. BAYESIAN COLOR CONSTANCY
To apply the MLM estimator to color constancy requires
finding a computable expression for the expected loss.
Once this is obtained, numerical minimization methods
may be used to estimate illuminant and surface spectra
from photosensor responses. In Appendixes A and B, we
derive an analytic approximation to the expected loss for
the local mass loss function. Appendix A derives a gen-
eral result that may be used with any rendering function
and prior. The expression that we derive there depends
on the derivatives of the rendering function. In Appen-
dix B we calculate these derivatives for the special case in
which the rendering function is bilinear.

To evaluate the potential of the Bayesian approach, we
performed simulations. We computed the sensor data
corresponding to simulated scenes and used a Bayesian
algorithm to estimate the illuminant from the data. We
characterized the MLM estimator and compared its per-
formance with that of other constancy algorithms.

A. General Simulation Methods
1. Choice of Priors
We express our knowledge about illuminants and sur-
faces as a probability distribution. To do so, we build on
the low-dimensional linear model approach. We took a
set of Munsell paper surface reflectances68,69 and used
principal-components analysis to find the three-
dimensional linear model that provided the best approxi-
mation to the spectra.70 Figure 4 shows histograms of
the model weights required to fit each reflectance. The
weights for each basis are not distributed uniformly over
all possible values; they cluster around a central value.
This suggests that it is reasonable to make additional as-
sumptions about surface reflectances beyond the fact that
they are well described by low-dimensional linear models.
The solid curves in the figure show normal probability-
density functions with the same mean and variance as
those of the weights. The normal densities fit the histo-
grams well, except that the histogram for the first basis
function is severely truncated relative to the correspond-
ing normal density function. This truncation may reflect
the fact that surface reflectance functions are constrained
to lie between 0 and 1.

The analysis shown in Fig. 4 suggests that we can ob-
tain a good description of naturally occurring surfaces by
using truncated normal distributions over the weights of
low-dimensional linear models. We assume that the
prior for each surface is determined by a truncated mul-
tivariate normal distribution on the weights of a linear
model, so that sj ! Bswsj and

p!wsj" ! % N!usj ,Ksj", Bswsj realizable

0, otherwise
. (12)

For surfaces, realizable means that each entry of Bswsj
lies between 0 and 1. Similarly, we assume that the il-
luminant prior is determined by a truncated multivariate
normal distribution on the weights of a linear model, so
that e ! Bewe and

p!we" ! % N!ue ,Ke", Bewe realizable

0, otherwise
. (13)

For illuminants, realizable means that each entry of e
! Bewe is greater than 0. We assume that the surface
reflectances at each location are independent and identi-
cally distributed, so that we may write

p!ws" ! (
j!1

Ns

p!wsj". (14)

Finally, by assuming that the illuminant and the surfaces
are statistically independent, we have

p!we , ws" ! p!we"p!ws". (15)

Our use of truncated normal priors over linear model
weights captures three types of information about sur-
faces and illuminants. First, our priors generalize the
notion of linear model constraints that have been used in
previous work. Similar generalizations have also been
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used by Trussell and Vrhel7 and by D’Zmura et al.9 Sec-
ond, our priors incorporate physical realizability con-
straints on surfaces and illuminants. Physical realizabil-
ity constraints have a long history in color science71–78

and have been used in previous analyses of color
constancy.9,16,34,79 Finally, our priors capture the fact
that within the gamut of physically realizable spectra,
linear model weights do not seem to be distributed uni-
formly. The mean and the covariance of the truncated
normal distributions describe this nonuniformity. We

note, however, that any other priors could be used in the
Bayesian algorithm that follows.

To perform the simulations, we created three-
dimensional linear models for surfaces and illuminants.
Our surface linear model was the one described above,
computed from the data of Kelly et al.68 and Nickerson.69

Using this linear model, we found the best-fitting model
weights for each individual surface in the data set. We
used the sample mean and covariance of these as the usj
and the Ksj for our surface prior. We incorporated physi-
cal realizability as indicated by Eq. (12).

Large sets of measured illuminants are not readily
available. Summaries of such data sets, in the form of
linear models, do exist. We used the CIE linear model
for daylights as our three-dimensional linear model for
illuminants.80 To generate a prior distribution on the
weights of this linear model, we produced a set of CIE
daylights with correlated color temperatures drawn ac-
cording to a truncated univariate normal distribution
with mean 6500 K and standard deviation 4000 K. (Any
draws outside the range 3000–25,000 K were rejected.)
We then perturbed the intensities of these illuminants by
scale factors drawn uniformly between 1 and 10. Using
our data set, we computed the linear model weights on
each function and formed ue and Ke as the mean and the
covariance of these weights. We incorporated physical
realizability as indicated by Eq. (13).

2. Simulated Scenes
We simulated scenes consisting of eight randomly drawn
surfaces under a single randomly drawn illuminant. In
drawing surfaces and illuminants, we enforced physical
realizability constraints. Any surface whose reflectance
was negative or exceeded unity at any wavelength was re-
jected, while any illuminant with negative power at any
wavelength was rejected. We assumed three classes of
sensors and used Smith–Pokorny estimates of the human
cone sensitivities81 to compute the sensor responses. In
the simulations presented here, we did not perturb the
simulated sensor responses with additive noise.

3. Maximum Local Mass Method
To implement the MLM method, we used the expression
developed in Appendixes A and B to define the expected
loss and then used numerical search routines from the
MATLAB Optimization Toolbox82 to locate the point of
minimum expected loss. Our approximation requires
that we specify Kn and KL and evaluate for large values
of the limit parameter ) (see the appendixes). We set
Kn to represent additive noise with a standard deviation
equal to 1% of the mean sensor responses to the modal
prior surface rendered under the modal prior illuminant.
We set KL to be 1/1000 of the joint prior covariance for the
illuminant and surface scene parameters. For numerical
calculations we set ) ! 10,000. As described in the ap-
pendixes, our search was constrained to parameter values
along points of maximum likelihood. That is, we evalu-
ated the expected loss only for parameter values that ex-
plained the data exactly. This simplification greatly re-
duces the dimensionality of the search while not omitting
any possible solutions to the low-noise case.

Fig. 4. Distribution of surface weights. The histograms show
the distribution of linear model weights derived from the mea-
surements of Kelly et al.68 and Nickerson.69 Each histogram
corresponds to one basis vector. The solid curves show the fit of
a truncated trivariate normal distribution to the weights.
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4. Comparison Methods
We also estimated the illuminant by using a number of
comparison methods. These include a Bayesian MAP al-
gorithm (MAP), two algorithms based on physical realiz-
ability constraints (Realizability 1 and 2), a gray world al-
gorithm (Gray World), and a subspace algorithm
(Subspace). We describe each of these algorithms below.

MAP. We found Bayesian MAP estimates by using a
numerical search over the joint illuminant–surface poste-
rior. As with our implementation of the MLM method,
we searched only over parameter values that were consis-
tent with the data. We used the same priors and the
same Kn as for our MLM method.

Realizability 1 and 2. Our main interest in simulating
physical realizability algorithms was not in testing previ-
ous algorithms9,16,34 per se but rather in establishing the
level of performance obtainable when only physical real-
izability constraints are used. We therefore imple-
mented two simple physical realizability algorithms.
These algorithms found a physically realizable illuminant
such that both (1) the illuminant was constrained to lie
within a three-dimensional linear model for illuminants
and (2) the corresponding surface reflectance functions
were constrained to lie within a three-dimensional linear
model for surfaces and were also physically realizable.
We used the same linear models as those for the MLM
method. Constraints (1) and (2) alone are not sufficient
to determine a unique illuminant estimate. For ex-
ample, we can take any solution for a physically realiz-
able illuminant and corresponding surfaces and create a
new solution by multiplying the illuminant spectral
power distribution by a factor greater than unity and di-
viding the surface reflectances by the same factor. We
used two different heuristics to choose a unique estimate.
For our Realizability 1 algorithm, we sought the physi-
cally realizable solution with minimum power. For our
Realizability 2 algorithm, we sought the physically real-
izable solution with minimum power at the longest wave-
length. In both cases we used numerical search to find
the estimate.

Gray World. Our implementation of the Gray World
algorithm follows Buchsbaum.30 For trichromatic sens-
ing this algorithm requires specification of three-
dimensional linear models for illuminants and surfaces.
We used the same linear models as those for the MLM
method. Because our actual simulations drew surfaces
from normal distributions truncated by the constraint of
physical realizability, we used the sample mean of a large
set of actual draws as the population mean for the Gray
World algorithm. (Using the mean of the untruncated
normal distribution produces a noticeable bias in the es-
timates.)

Subspace. Our implementation of the subspace
method algorithm follows Wandell.53 For trichromatic
sensing this algorithm requires specification of a three-
dimensional linear model for illuminants and a two-
dimensional linear model for surfaces. We used the
same linear model for illuminants as that for our Baye-
sian algorithms. For the surface linear model, we used
the first two principal components of the three-
dimensional linear model for surfaces that we constructed
for the MLM method. The algorithm of Maloney and

Wandell is designed to recover only the relative spectrum
of the illuminant. To scale the absolute intensity of the
estimates returned by this algorithm, we performed the
following steps. First, we computed the mean response
of the image and computed the ratio of this response to
the mean response expected given our illuminant and
surface priors. We then scaled the recovered illuminant
spectral power distribution so that its scalar ratio (found
by univariate regression) to the mean illuminant was in
this same ratio.

Implementation of numerical search. Our implemen-
tations of the MLM, MAP, Realizability 1, and Realizabil-
ity 2 algorithms rely on numerical parameter search to
minimize an objective function (e.g., the expected loss for
the MLM method). Numerical parameter search is
something of an art. Our interest here is in evaluating
the performance possible with Bayesian methods rather
than in developing algorithms for implementing them.
In our implementation we used the general purpose
search routines provided in the MATLAB Optimization
Toolbox.82 These routines are useful but by no means
perfect. In addition, they are not tailored to our prob-
lems. To reduce the probability that our search would
terminate at a local rather than a global minimum, we
chose a number of random starting points for each search.
We always checked that the objective function value for
our obtained estimates was lower than its value for the
actual simulated illuminant. In the few cases in which
this condition was not met, we trimmed the result from
our analyses and plots.

B. Simulation Results
1. Qualitative Analysis
Figure 5 shows how well each of six algorithms estimates
the mode of the illuminant prior when the surfaces are
drawn at random from the actual prior distribution on
surfaces. Each plot illustrates performance for one of the
algorithms. To generate each plot, we fixed the simu-
lated illuminant and repeated the simulation for 15 dif-
ferent sets of eight randomly drawn surfaces. The solid
curve in each plot shows the simulated illuminant. The
dashed curves show the individual estimates of this illu-
minant produced by each algorithm.

We can draw a number of conclusions from the figure.
First, the MLM algorithm provides the best estimates.
The Gray World algorithm also provides reasonable esti-
mates, although their scatter around the true illuminant
is greater than that for the MLM algorithm. Presum-
ably, this difference in clustering arises because the Baye-
sian MLM algorithm is able to take advantage of informa-
tion in the sensor responses that is not carried by their
spatial mean.

The MAP algorithm returns estimates whose relative
spectral power distribution is approximately correct.
The overall intensity of the estimates returned by this al-
gorithm is too high, however. For the color-constancy
problem, this bias seems to be a consistent property of the
MAP algorithm.

The Realizability 1 algorithm also returns estimates
that are approximately correct. In contrast to the MAP
algorithm, however, the overall intensity of these esti-
mates is consistently too low. Note that the perfor-
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Fig. 5. Basic algorithm performance. Each plot illustrates performance for one of the algorithms. To generate each panel, we fixed
the simulated illuminant and repeated the simulation for 15 different sets of eight randomly drawn surfaces. The solid curve in each
plot shows the simulated illuminant. The dashed curves show the individual estimates of this illuminant produced by each algorithm.
The simulated illuminant was a CIE 6500-K daylight, which is the mode of the illuminant prior. The surfaces were drawn at random
from the surface prior. The six algorithms compared in this figure are (a) MLM, (b) Realizability 1, (c) Gray World, (d) MAP, (e) Real-
izability 2, and (f) Subspace.
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mances of the Realizability 1 and Realizability 2 algo-
rithms differ vastly. This tells us that the physical
realizability constraint alone is not strong enough to pro-
vide an accurate estimate of the illuminant. Recall that
the only difference between these two algorithms was the
heuristic used to choose a unique realizable solution from
the set of all such solutions. Apparently, the good perfor-
mance of previous algorithms incorporating physical real-
izability constraints9,16,34 is not driven by the realizability
constraint per se. This point is bolstered further when
one notes that MLM and MAP may also be considered re-
alizability algorithms, since the priors that we used incor-
porate the constraint of physical realizability. In Subsec-
tion 4.c we consider why the minimum-power heuristic
incorporated in our Realizability 1 algorithm may be a
reasonable one.

It is not surprising that the Subspace algorithm does
poorly for these simulations, where its assumptions are
violated. For a visual system with three classes of sen-
sors, this algorithm is guaranteed to work only when the
surfaces are described exactly by a two-dimensional lin-
ear model. Apparently, the Subspace algorithm is not ro-
bust against violations of its linear model constraints.

We did confirm that our implementation of the Subspace
algorithm performs well when run for simulations for
which the two-dimensional linear model constraint holds.

Figure 5 shows results from the case in which the illu-
minant was equal to the mode of the illuminant prior and
in which the surfaces were drawn at random from the
surface prior. That is, the simulation conditions match
those for which the algorithms were designed. An impor-
tant part of algorithm evaluation is to consider what hap-
pens when the algorithm must deal with conditions that
differ from those for which it was designed. For this rea-
son we evaluated the performance of the algorithms by
using simulations for which we biased either the illumi-

Fig. 6. Performance of the MLM algorithm for two illuminants
that differ from the prior mode. To generate each panel, we
fixed the simulated illuminant and repeated the simulation for
15 different sets of eight randomly drawn surfaces (no surface
bias). The solid curve in each plot shows the simulated illumi-
nant. The dashed curves show the individual estimates of this
illuminant produced by the MLM algorithm. (a) Results for the
simulated 4000-K daylight, (b) results for the simulated
15,000-K daylight.

Table 1. Simulated Illuminantsa

Illuminant
Index

CCT
(K) x y Y (Arbitrary Units)

1 4000 0.38 0.38 5.32 " 106

2 0.35 0.36 6.11 " 106

3 0.31 0.33 6.23 " 106

4 6500 0.31 0.32 5.96 " 106

5 0.29 0.31 5.91 " 106

6 0.28 0.29 5.46 " 106

7 15000 0.26 0.27 4.76 " 106

a Each of the seven illuminants is a CIE daylight. The table provides
the CIE x–y chromaticities and luminance (in arbitrary units) of these il-
luminants. We also provide the correlated color temperature (CCT) for
illuminants 1, 4, and 7.

Table 2. Mean Simulated Surfacesa

Surface
Index Label x y Luminance Factor

1 ‘‘Yellow’’ 0.43 0.40 41.82
2 0.42 0.39 38.84
3 0.39 0.37 39.04
4 0.38 0.37 39.13
5 0.36 0.35 39.31
6 None 0.36 0.35 35.83
7 0.35 0.34 35.67
8 0.33 0.33 34.25
9 0.32 0.32 31.73

10 0.30 0.30 30.86
11 ‘‘Blue’’ 0.29 0.29 31.00

a Each of the 11 surface distributions is obtained by shifting the mean
of the normal distribution underlying our standard prior surface distribu-
tion. We provide the CIE x–y chromaticity and luminance factor of the
mean of each surface distribution when it is rendered under an equal-
energy illuminant. Since the distributions are truncated normals, we
provide sample means. Surface distributions 1, 6, and 11 carry the labels
‘‘yellow,’’ ‘‘none,’’ and ‘‘blue,’’ respectively.

1402 J. Opt. Soc. Am. A/Vol. 14, No. 7 /July 1997 D. H. Brainard and W. T. Freeman



nant or the distribution from which the collection of sur-
faces was drawn, without adjusting the algorithm design
to match. To bias the distribution from which the sur-
face collection was drawn, we added a constant offset to
the prior distribution for surfaces. Since we enforced a
physical realizability constraint when we drew the sur-
faces, there is no simple analytic expression for the result-
ing means of the truncated distributions. Tables 1 and 2
specify the illuminants and the sample means of the sur-
face collection distributions, respectively, that we used in
our simulations.

Figure 6 shows the performance of the MLM algorithm
for two illuminants that differ considerably from the

mode of the illuminant prior. We see that in each case
the algorithm returns accurate estimates. Thus we con-
clude that the MLM algorithm is not sensitive only to its
illuminant prior: It is able to use the sensor data to
track illumination changes.

When the collection of surfaces in the scene is in fact
drawn from our surface prior, the color-constancy prob-
lem may not be too difficult. Indeed, under these condi-
tions, the Gray World algorithm performs reasonably
well. More challenging is to estimate the illuminant cor-
rectly in the face of biases in the collection of surfaces in
the scene. To evaluate how well the algorithms handled
this problem, we simulated conditions with the 6500-K il-

Fig. 7. Performance of MLM and Gray World algorithms when the surfaces are drawn from biased distributions. (a) Performance of
the MLM algorithm for the simulated 6500-K daylight when the surfaces were drawn from the ‘‘blue’’ distribution specified by Table 2,
(c) performance of the Gray World algorithm for the same conditions. In each case we fixed the simulated illuminant and repeated the
simulation for 15 different sets of eight randomly drawn surfaces. Plots (b) and (d) highlight the difference between the performances
of the two algorithms. Plot (b) compares the mean estimate of the MLM algorithm for the simulated 6500-K daylight when the surfaces
were drawn from the blue distribution with the mean estimate of the Gray World algorithm for the same conditions. Plot (d) shows the
same comparison when the surfaces were drawn from the ‘‘yellow’’ distribution.
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luminant and biased the distribution from which we drew
the surfaces. Figure 7 shows the performance of the
MLM algorithm for the 6500-K daylight when the sur-
faces are drawn from biased distributions. Figure 7(a)
shows the performance of the MLM algorithm for the
simulated 6500-K daylight when the surfaces were drawn
from the ‘‘blue’’ distribution specified by Table 2. Here
we see that the bias in the surface distribution has a sub-
stantial effect on the illuminant estimate. Figure 7(c)
shows the performance of the Gray World algorithm for
the same conditions. By comparing these two plots, we
see that although the MLM algorithm is influenced by the
bias in the surface distribution, it is not as severely af-
fected as the Gray World algorithm. This fact is seen
more clearly in Fig. 7(b), where the mean estimates of
each algorithm are plotted together. Figure 7(d) shows a
similar comparison for the ‘‘yellow’’ surface distribution.
For this surface draw, the difference between the two al-
gorithms is less pronounced.

2. Quantitative Analysis
The qualitative analysis presented in Subsection 3.B.1
leads to two main conclusions. First, of the algorithms
that we have considered, the MLM algorithm provides the
best illuminant estimates. Second, the performance of
all the algorithms is influenced when the distribution of
surfaces is heavily biased. We can confirm these conclu-
sions with a more quantitative analysis of our simulation
results.

Quantifying the performance of the various algorithms
involves many issues. Ideally, there would be a single
performance metric appropriate for all applications of
color-constancy algorithms. As our discussion above
makes clear, however, different loss functions may be ap-
propriate for different applications. If we take the Baye-
sian view and specify a loss function, then the expected
loss provides a natural metric for algorithm comparison.
This metric may not appeal to non-Bayesians, however.
In addition, the expected loss can be difficult to compute
numerically. As an extreme example, consider the mi-
nus delta loss function of the MAP estimate. Since this
loss function is constant for any but exactly the correct es-
timate, simulations of any algorithm are highly likely to
give the same estimate of expected loss. Similar consid-
erations apply to any localized loss function.

Here we have chosen to use a standard metric for com-
paring the algorithms. We compute the fractional root-
mean-squared error (RMSE) between the estimates of the
illuminant spectral power distribution returned by the al-
gorithms and the simulated illuminant spectral power
distribution. This error measure, !Bew̃e $ Bewe!2/
!Bewe!2, captures roughly how well the algorithms re-
cover the physical properties of the illuminant. In spite
of the difficulties with using a squared-error metric as a
loss function for designing algorithms (see Subsection
2.B), our choice has the didactic advantage of familiarity.
In addition, since it is not highly localized, we can esti-
mate its expected value by using simulations.

For each illuminant–surface prior pair, we computed
the mean fractional RMSE for each algorithm (over the 15
repetitions of the simulation; rare convergence failures
excluded). Figure 8 summarizes the performance of the
MLM, MAP, Realizability 1, and Gray World algorithms
for a variety of simulation conditions. Figure 8(a) shows
the error for different simulated illuminants when the
surfaces are drawn from an unbiased distribution. As
with our qualitative analysis, we see that the MLM algo-
rithm does well at tracking changes in the illuminant:
The estimation error is roughly constant as the simulated
illuminant is varied. In addition, Fig. 8(a) shows that
the MLM algorithm performs better than the other algo-
rithms according to the fractional RMSE metric.

Figure 8(b) shows the error for different surface distri-
butions when the 6500-K illuminant is simulated.
Again, the MLM algorithm performs best. It is also clear
that the algorithm is not immune to shifts in the surface
distribution. As the surface distribution is biased, the
error for the MLM algorithm increases, although not as
rapidly as that for the Gray World algorithm. Note that
the performance of the algorithm degrades gracefully in
the face of biases in the surface distribution.

Fig. 8. Summary of algorithm performance for a variety of
simulation conditions. The figure shows the mean fractional
RMSE computed in the spectral domain for each algorithm for a
variety of simulation conditions. (a) Error plotted as a function
of the seven simulated illuminants listed in Table 1. For these
simulations there was no bias in the distribution of surfaces. (b)
Error plotted as a function of the 11 surface distributions listed
in Table 2. For these simulations the 6500-K simulated illumi-
nant was used.
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4. DISCUSSION
A. Algorithm Performance
Although the MLM method is more robust against
changes in the collection of surfaces than the Gray World
algorithm, it is still influenced substantially by changes
in the collection of surfaces in the scene. For our viewing
geometry, the separation of changes in illuminant from
changes in surface collection is a hard problem, even with
the use of all the statistical information available. This
separation has been achieved only when the surface re-
flectances are severely restricted to lie within a two-
dimensional linear model. In this case both the MLM
and Subspace algorithms perform well (simulations not
presented).

Little is known about the actual distributions of illumi-
nants and surfaces in natural scenes. It seems unlikely
that the priors that we used adequately capture all of the
regularities of these distributions. One attractive fea-
ture of our MLM algorithm is that it depends only locally
on the prior. Although we have used truncated normals,
our expression for the expected loss may be implemented
for arbitrary priors without any increase in computa-
tional complexity. Richer priors may improve algorithm
performance.

As we noted in Section 1, there is good evidence that
human vision successfully separates changes in illumina-
tion from changes in surface collection.15,22,46,47 These
studies, however, employed stimuli composed of real illu-
minated surfaces. Such stimuli are not characterized by
the simple model of image formation that we analyzed.
Only a few studies28,29,83 have measured how well human
vision separates illuminant changes from changes in the
surface collection by using stimuli that conform to our im-
aging model. These studies are not conclusive, but they
leave open the possibility that the human visual system is
unable to separate the two physical processes effectively
for simple viewing geometries. Thus it is possible that
the problem of separating illuminant changes from
changes in the surface collection is not soluble for the
simple image model that we have considered, given rea-
sonable assumptions about the distribution of illuminant
spectral power distributions and surface reflectance func-
tions. Presumably guided by this view, a number of au-
thors have investigated the computational color-
constancy problem for richer imaging models and
concluded that information about the illuminant is car-
ried by interreflection between surfaces,84 specular
highlights,85,86 and variation in the illumination.32,33 We
believe that extending the Bayesian approach to these
richer viewing geometries may provide further insight as
to what information is most useful.

The Gray World algorithm performs reasonably across
our simulation conditions, although uniformly worse than
the MLM algorithm. This is not surprising, as the MLM
algorithm uses all of the information contained in the sen-
sor responses while the Gray World algorithm uses only
the mean of the sensor responses. The fact that the Gray
World algorithm performs reasonably suggests that the
mean of the sensor responses carries the bulk of the in-
formation about the illuminant available for our simple

viewing geometry. Maloney87 has pointed out that the
Bayesian approach can be used to test this idea more pre-
cisely, since we can compare the performance of different
Bayesian algorithms when each is given access to a dif-
ferent summary of the sensor data. For the local mass
loss function, such algorithms may be implemented by
substituting different rendering functions into the formu-
las developed in Appendix A.

B. Local Mass Loss Function
Other research relates to the local mass loss function.
Yuille and Bulthoff 88 independently suggested such a loss
function for perception problems, although they did not
use it in an algorithm. The local mass loss function is
similar in spirit to Shepard’s notion of a consequential
region.89 It also looks similar to the penalty functions
used in robust regression,90–92 which fit well-param-
etrized data but ignore outliers. However, the local mass
loss function applies to the scene parameters, not to the
data, and thus plays a different role from that of regres-
sion penalty functions.

Freeman proposed a Bayesian interpretation of the ge-
neric viewpoint assumption93,94 that involved marginaliz-
ing the posterior probability over particular variables,
such as viewpoint, which are not to be estimated. Im-
proved estimates of the scene parameters can result from
using the marginalized posteriors, thus exploiting the as-
sumption of generic viewpoint. The local mass loss func-
tion offers a more general computation with a similar in-
terpretation. The loss function multiplies the posterior
probability by a Gaussian of a particular width in each
parameter direction before integration to find the ex-
pected loss. The loss function shape specifies how much
uncertainty we tolerate in each scene parameter dimen-
sion. Marginalization over a generic variable may be un-
derstood as using an infinitely wide loss function in that
parameter dimension. The local mass loss function ap-
proach, however, offers two advantages over marginaliza-
tion. First, marginalizing over a generic variable pre-
cludes estimating an optimal value for that parameter,
while the loss function approach allows us to specify that
we care more about the precision of some parameters
than others but still to obtain a best estimate for all of
them. Second, the asymptotic approximation for the
marginalized posterior probability88 may become singular
if the likelihood function is flat along the generic variable.
The Gaussian window of the local mass loss function
avoids that singularity.

An asymmetric loss function is appropriate in situa-
tions in which we are more interested in some of the scene
parameters than in others. For example, we may be
much more interested in correctly estimating surface
properties than in estimating the illuminant, or vice
versa. Whether using an asymmetric loss function af-
fects the estimates of the MLM algorithm, however, de-
pends on the particular shape of the posterior. Figure 9
shows the expected loss for the y ! ab product example
for an asymmetric loss function. Here the posterior ridge
curves sharply in the parameter space, and using an
asymmetric loss function has a substantial effect. For
the color-constancy problem of our simulations, we have
found only a moderate sensitivity to varying the shape of
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the loss function. We also found that the MLM algo-
rithm performed similarly to an algorithm that used MAP
estimation on the marginal posterior for the illuminant
parameters.5

C. Bayesian Approach
The Bayesian approach has three explicit components.
To calculate the likelihood, we must model image forma-
tion. To specify the prior, we must quantify our assump-
tions about images. And to minimize the expected loss,
we must state the cost of estimation errors. Within the
Bayesian framework, each of these components may be
considered separately: We need not confound our as-
sumptions about the world (the prior) with how we will
use our estimate (the loss function).

The Bayesian approach is sometimes criticized exactly
because it requires specification of priors and loss func-
tions. This is regarded as undesirable because of uncer-
tainty about what prior or loss is appropriate. We dis-
agree. While specifying the prior and the loss may be
difficult, that is not the fault of the approach. When the
result of a Bayesian algorithm depends strongly on either
the prior or the loss, what we learn is that the estimation
problem itself is difficult and that we must carefully con-
sider what assumptions we make to solve it. Such as-
sumptions are implicit in any algorithm that solves the
problem; the Bayesian approach makes the assumptions
explicit.1

Bayesian methods may be used to understand non-
Bayesian algorithms. The idea is to find a prior and a
loss function for which the non-Bayesian algorithm mim-
ics the Bayesian solution. As an example, Appendix C
analyzes a special case of the color-constancy problem,
lightness constancy in a monochromatic world. We show
that Land and McCann’s18 normalization rule of assign-
ing the percept of white to the brightest patch follows
from a Bayesian analysis. Although not stated in terms
of illuminant estimation, their rule is equivalent to as-
suming that the actual illuminant has the minimum
power consistent with physical realizability. For a class
of prior probability distributions, our analysis in Appen-
dix C shows that their heuristic implements the MLM es-

timate. This provides a principled derivation of a heuris-
tic rule. Note that our Realizability 1 algorithm
represents one possible way of generalizing the minimum
power heuristic from lightness to color. Although the Re-
alizability 1 algorithm performed reasonably, it was not
as effective as the MLM algorithm derived from a full
analysis of the color-constancy problem.

D. Relation of Estimation to Perception
We close with a few remarks about the relation among
Bayesian estimation, loss functions, and perception. In
this paper we have focused on estimation of the illumi-
nant as the key to color constancy. We designed our
Bayesian algorithm to minimize error in a parameter
space that specified physical illuminants and surfaces,
and we evaluated the algorithms by assessing how well
they estimated the simulated illuminants. As empha-
sized by Forsyth16 (see also Brainard et al.,17 McCann
et al.,11 Land and McCann,18 Land,19,20 Marimont and
Wandell,56 and Finlayson34), an explicit estimate of the il-
luminant is not necessary for color constancy. Rather,
all that is required is that the visual system construct a
representation of surfaces that is constant across changes
of viewing context. Given that estimating the physical il-
luminant and surfaces has proved to be a difficult prob-
lem, it seems worth considering whether the problem of
estimating constant surface descriptors is more tractable.
Note that there is no guarantee that the algorithm that is
best at estimating physical spectra will also be best at re-
turning stable surface descriptors.

For human vision it is clear that a great deal of infor-
mation about the physical properties of surfaces and illu-
minants is lost at the initial stage of light encoding, since
the cone photosensors collectively provide only three
pieces of information about the incident spectrum at each
location. Certain variations in spectra are completely in-
visible to the human visual system (see Brainard et al.17;
also, Brainard41 and Nielsen and Wandell95). Rather
than estimating the full illuminant or surface spectra, it
might be advantageous to estimate surface descriptors
that are weaker yet carry enough information to discrimi-
nate between surfaces in an invariant manner across il-
luminants. In this spirit Marimont and Wandell56

showed how the design of linear models to represent spec-
tra could take advantage of the spectral sensitivities of
the sensors. In preliminary analyses of our current
simulations, we found some combinations of illuminant
and surface bias for which an algorithm that performed
poorly according to our spectral error metric performed
better when error was evaluated in terms of chromaticity.

In the context of Bayesian estimation, these ideas may
be incorporated into the loss function. Suppose, for ex-
ample, that we consider a surface descriptor consisting of
the cone responses to the surface rendered under a ca-
nonical illuminant. Let g(x) be a function that maps a
vector x in our full illuminant–surface parameter space to
a vector of the cone coordinates of each surface described
by x when rendered under the canonical illuminant.
Given this function g(x), we can construct a loss function
of the form

L! x̃, x" ! $exp*$!KL
$1/2%g! x̃" $ g!x"&!2+. (16)

Fig. 9. Product example with an asymmetric loss function. (a)
Loss function; (b) corresponding expected loss, computed accord-
ing to expression (A5). As in Fig. 3, decreasing loss is plotted
upward for visual clarity. The loss function aspect ratio is 0.14
to 1.0. The optimal parameter estimate is (0.37, 2.7), which dif-
fers from the results obtained for the symmetric local mass loss
function (Fig. 3).
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Unlike the loss function that we used in developing our
MLM algorithm, this loss function penalizes differences
not in the physical parameter space but rather in the sur-
face descriptor space induced by g(x). Extending the
analysis of Appendix A to handle loss functions of the
form of Eq. (16) is straightforward as long as the function
g(x) is twice differentiable in x. We hope to learn
whether the surface descriptors produced by this ap-
proach are stable.

APPENDIX A
In this appendix we derive an approximation to the ex-
pected loss for the local mass loss function. We consider
the general problem of estimating a parameter vector x
from an observation y. We write the rendering function
as y ! f(x) and assume that there is additive Gaussian
observation noise with zero mean and known covariance.
The prior probability is given by the density function
p(x). We use an asymptotic approximation to calculate
the expected loss. In Appendix B we specialize to the
color-constancy problem, and in Appendix C we address
monochromatic lightness constancy.

Computing the expected loss, which we seek to mini-
mize, involves an integral over the entire scene param-
eter space, Eq. (3), yet our loss function, Eq. (11), is ap-
preciably nonzero only near the estimate x̃. We want to
exploit that locality to find an approximation for the ex-
pected loss that depends only on measurements at x̃.
This simplification applies generally to scene parameter
estimation by the MLM method in the limit of low obser-
vation noise.

Let Kn and KL be matrices that describe the shape and
the relative sizes of the noise and loss function covari-
ances. We can compute the expected loss in the low-
noise limit by scaling each matrix by a factor 1/) and ex-
amining the limit as ) becomes large. (This
approximation neglects any effects that depend on the ab-
solute scale of KL .)

Combining Eq. (2) (Bayes rule) with the multivariate
generalization of Eq. (7) (for the likelihood function) in
Eq. (3) gives the expected loss:

L̄! x̃!y" ! C " (likelihood)(priors)(loss function) dx

! $C " exp% $
)

2
!Kn

$1/2%y $ f!x"&!2& p!x"

" exp#$
)

2
!KL

$1/2!x $ x̃"!2$dx. (A1)

For an integral of the form

I!)" ! " exp%$),!x"& g!x"dx, (A2)

the leading-order term in an asymptotic expansion for
large ) is96

I!)" -
exp%$),!x0"&

*!det%,xx!x0"&!+1/2 ' 2$

)
( n/2

g!x0", (A3)

where x0 minimizes , (x).
We identify g(x) ! p(x) and

,!x" ! 1
2 !Kn

$1/2%y $ f!x"&!2 # 1
2 !KL

$1/2!x $ x̃"!2.
(A4)

Then, using approximation (A3), we have

L̄! x̃!y" - $C exp($)* 1
2 !Kn

$1/2%y $ f!x0"&!2

# 1
2 !KL

$1/2!x0 $ x̃"!2+)
p!x0"

*!det%,xx!x0"&!+1/2 .

(A5)

Twice differentiating , (x) in Eq. (A4) gives the following
for the (i, j)th element of the matrix ,xx :

%,xx!x0"& ij ! fi!
TKn

$1fj! $ %y $ f!x0"&TKn
$1fij"

# %KL
$1& ij , (A6)

where % • & ij means the (i, j)th array element,

fi! !
.f!x"

.xi
)

x!x0

and fij" !
.2f!x"

.xi.xj
)

x!x0

. (A7)

To apply expression (A5) for the expected loss at x̃, we
need to find an expansion point x0 where , (x) of Eq. (A4)
is minimized. If we restrict attention to evaluating the
expected loss for estimates x̃ at local maxima or ridges of
the likelihood function, then both terms of , (x) are mini-
mized locally by the choice x0 ! x̃. Thus we can set
x0 ! x̃ in expression (A5) to evaluate the expected loss at
points of maximum likelihood. [We believe that setting
x0 ! x̃ in expression (A5) provides an upper bound for the
expected loss for other points as well.]

At x0 ! x̃ the difference between the expected loss
L̄(x̃!y) in expression (A5) and the negative posterior is
the factor 1/*!det%,xx(x̃)&!+1/2. This term allows the local
mass loss to respond to the width as well as the height of
probability ridges such as those shown in Fig. 2(a). A re-
lated approximation is used in Bayesian statistics, dating
to Laplace.2,97–99 The first two terms of ,xx(x0) form the
conditional Fisher information matrix I.1,98 It can be
used to marginalize the posterior over nuisance
parameters,1,100,101 yielding a factor of 1/!det(I) after in-
tegration. Recent authors have exploited this in param-
eter estimation102–104 and computer vision.93,94 How-
ever, if one marginalizes over parameters, one cannot
estimate their optimal values. Furthermore, for under-
determined estimation problems, det(I) can be 0, spoiling
the approximation. The loss function approach used
here avoids this singularity and allows for trading off ac-
curacy requirements among scene parameter compo-
nents.

APPENDIX B
To apply the general results of Appendix A to the color-
constancy problem, we need to identify x and evaluate the
derivatives of Eqs. (A7). From our representation of the
spectral variables that we want to estimate, we have

x ! ' ws
we

( , x0 ! ' ws0
we0

( . (B1)

To evaluate fi! of Eqs. (A7), we use the rendering equation
as written in Eq. (6) to write
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. f!ws , we"/.wsi ! N!we"i , (B2)

. f!ws , we"/.wei ! N!ws"i , (B3)

where N(we) i is the ith column of the matrix N(we).
For this example it is simpler to write the full matrix of

Eq. (A6), rather than the (i, j)th element of it. We have

,xx!x0" ! ' NT!we0"
NT!ws0" (Kn

$1!N!we0" N!ws0"" # KL
$1,

(B4)

where we examine only feasible solutions, so y $ f (x0)
! 0. This term appears in the desired expression for
the expected loss, expression (A5). The exponential in
that expression is 1, leaving the prior term, discussed in
Subsection 3.A.1.

APPENDIX C
We specialize Appendix A to the case of lightness con-
stancy for a monochromatic visual system in a monochro-
matic world. The scene parameter x is

x ! ' x1
x2
*

xN
xI

( , (C1)

where xi , i ! 1, ..., N, is the reflectance of the ith sur-
face and xI is the illuminant strength. The rendering
equation is

y ! f!x" ! ' x1
x2
*

xN

( xI . (C2)

Using the above and Eqs. (A7), it follows that

f!TKn
$1f! !

1

#n
2 # xI

2

0
*
0

xIx1

0
xI

2

*
0

xIx2

...

...
!
...
...

0
0
*

xI
2

xIxN

xIx1
xIx2

*
xIxN

/ i!1
N x1

2

$ ,

(C3)

written for the case of identically distributed observation
noise of variance #n . We also assume an isotropic loss
function covariance KL

$1 ! I/#L
2 , where I is the identity

matrix.
Finding the expected loss for a value of the scene pa-

rameter x that accounts for the observed data [i.e., y
! f(x)] involves evaluating det(,xx) ! det(f!TKn

$1f!
# KL

$1) from Eq. (A6). Substituting from above, we
have

We expand the determinant by minors for each element of
the bottom row. The submatrix of the minor for the bot-
tom right element is diagonal. By inspection, that bot-
tom right element times its cofactor is (/ i!1

N xi
2

# #n
2/#L

2 )(xI
2 # #n

2/#L
2 )N. The minors of the other ele-

ments of the bottom row are also straightforward. For
each submatrix of a minor, there is one row that has only
one nonzero element, and the submatrix associated with
that nonzero element is diagonal. The jth element of the
bottom row times its cofactor then works out to be
$(xIxj)2(xI

2 # #n
2/#L

2 )N$1. Thus we have

det%,xx!x"& ! ' /
i!1

N

xi
2 #

#n
2

#L
2 ( ' xI

2 #
#n

2

#L
2 ( N

$ /
j!1

N

!xIxj"
2' xI

2 #
#n

2

#L
2 ( N$1

!
#n

2

#L
2 ' xI

2 #
#n

2

#L
2 ( N$1' /

i!1

N

xi
2 # xI

2 #
#n

2

#L
2 ( .

(C5)

Under the low-noise conditions, where #L is sufficiently
larger than #n , we have #n

2/#L
2 & xi , and the expression

for det%,xx(x)& simplifies to

det%,xx!x"& -
#n

2

#L
2 !xI

2"N$1' /
i!1

N

xi
2 # xI

2(
-

#n
2

#L
2 !xI

2"N$2' /
i!1

N

yi
2 # xI

4( . (C6)

Using the above and evaluating, expression (A5) at fea-
sible solutions [for which y ! f(x0) and x0 ! x̃], we have,
for the expected loss,

L̄!x!y" - $
Cp!x"

xI
N$2' /

i!1

N

yi
2 # xI

4( 1/2 , (C7)

where we have absorbed constants over x into C. We see
that the integration of the local probability mass has in-
troduced a bias favoring low illuminant values.

For the case of uniform priors over surface reflectances
(in a linear parameterization), we have

p!xi" ! %1
0

if xi is between 0 and 1
otherwise (C8)

for 1 0 i 0 N. If we assume that the prior probability of
illuminants is uniform over the range of interest, then, for
scene parameters that account for the data, we have

,xx !
1

#n
2# xI

2 # #n
2/#L

2

0
*
0

xIx1

0
xI

2 # #n
2/#L

2

*
0

xIx2

...

...
!
...
...

0
0
*

xI
2 # #n

2/#L
2

xIxN

xIx1
xIx2

*
xIxN

/ i!1
N xi

2 # #n
2/#L

2
$ . (C4)

1408 J. Opt. Soc. Am. A/Vol. 14, No. 7 /July 1997 D. H. Brainard and W. T. Freeman



p' yi

xI
( ! %1

0
if yi /xI is between 0 and 1
otherwise . (C9)

Expression (C7) then has a simple interpretation:
L̄(xI!y1 , ..., yN) is 0 unless the lighting strength xI is
such that all surface reflectances would be between 0 and
10. Within that range there is a bias favoring the dim-
mest illuminant value consistent with the observations.
This equation interprets Land’s brightest patch ! white
heuristic12 as the MLM estimator for the patch reflec-
tance. Figure 10 shows a plot of the resulting expected
utility (minus expected loss) for an example set of condi-
tions.

The bias will favor the lowest feasible illuminant for
the uniform priors used in the example above and for
many other prior distributions as well. The expected loss
for the MAP estimator does not contain this term, which
suggests why the MAP estimate for the full color problem
consistently overestimated spectral intensities.

For the priors of Eq. (C8), with N ' 2, one can also mo-
tivate the brightest patch ! white heuristic in another
way. If one calculates the marginal posterior distribu-
tion for the illuminant intensity (by integrating the full
posterior over all possible surface reflectance values),
then the MAP estimate for this marginalized posterior is
the same as the MLM estimate derived above.
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