Seminar Series

Brain Dynamics

Presentation of two papers: Cortical dynamics revisited - W. Singer Recent discoveries on the organisation of the cortical connectome together with novel data on the dynamics of neuronal interactions require an extension of classical concepts on information processing in the cerebral cortex. These new insights justify considering the brain as a complex, self-organised system with nonlinear dynamics in which principles of distributed, parallel processing coexist with serial operations within highly interconnected networks. The observed dynamics suggest that cortical networks are capable of providing an extremely high-dimensional state space in which a large amount of evolutionary and ontogenetically acquired information can coexist and be accessible to rapid parallel search. Structural and Functional Brain Networks: From Connections to Cognition - Hae-Jeong Park1, Karl Friston How rich functionality emerges from the invariant structural architecture of the brain remains a major mystery in neuroscience. Recent applications of network theory and theoretical neuroscience to large-scale brain networks have started to dissolve this mystery. Network analyses suggest that hierarchical modular brain networks are particularly suited to facilitate local (segregated) neuronal operations and the global integration of segregated functions. Although functional networks are constrained by structural connections, context-sensitive integration during cognition tasks necessarily entails a divergence between structural and functional networks. This degenerate (many-to-one) function-structure mapping is crucial for understanding the nature of brain networks. The emergence of dynamic functional networks from static structural connections calls for a formal (computational) approach to neuronal information processing that may resolve this dialectic between structure and function.