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Abstract 

 
Current technology is opening up the possibility of 

interactive investigations, where data analysis is only 
determined after data collection.  What might normally be 
called data cleaning thus becomes a major phase of analysis 
and software development since it must take over the functions 
formerly performed by analysis before any data was collected.  
Early experience of this is described, and its implications 
discussed. 
 
1. REDDIs 

 
Falling prices and expanding capacity on bulk digital 

storage, together with increased network bandwidths allow us 
to consider collecting more data than ever before with less and 
less need for a precise advance idea of its uses.  This is 
occurring both in research and in industry (e-commerce 
purchase logging, stock market).  In support of this, data 
mining has also provided examples of important discoveries 
from data collected for another purpose.  The Generic Remote 
Usage Measurement Production System (GRUMPS) [2] [3] 
project is exploring these current and emerging technical 
possibilities. 

The new flexibility supports investigations that are neither 
traditional database approaches, where collection and 
processing are carefully designed in advance, nor data mining 
where again collection is fixed in advance, but then 
retrospective and often speculative analyses are done post hoc.  
We call this emerging middle ground REDDIs: Rapidly 
Evolving Digitally-Derived Investigations.  These may have 
no prior hypothesis, do not usually control or manipulate the 
circumstances being studied, and often involve changes in 
what is collected in the light of successive examinations of the 
data. 

In the GRUMPS project, collection is from any source that 
produces digital data e.g. CCTV.  The collector used for the 
work described here was the User Action Recorder (UAR).  
The UAR can run on any Windows machine, using Windows 
system calls (events) to capture keystrokes, mouse moves, 
window events etc. without having access to the source code 
of the applications.   The example we discuss here is the 
collection of such data in a first year student programming 

laboratory.  The UAR was used to collect user interface events 
from the first year Ada programming laboratories at the 
Department of Computing Science, University of Glasgow. In 
spring 2003, 141 students consented to participate, yielding 
4.7 million events over 2655 user sessions (periods between 
login and logout). 

The first question that we investigated using this data 
aimed to look for an indication of student persistence with 
programming tasks by looking at pause times in the 
programming environment [7]. 

 
2. The Collection Data Schema 

 
A consequence of collecting data without being aware of 

its potential uses at system design time, is that there should be 
minimal fixed attributes in the data model.  Much of what is 
particular to the case should be encoded in XML fields, and 
the repository schema optimised for rapid collection. 

 

 

 
Figure 1. The collection data schema 

 
However, proceeding in this manner does not avoid, but only 
postpones, the work of data modelling – developing a structure 
that reflects the real-world meaning of the data – that is 
classically carried out at design time.  Data modelling may be 
carried out in various paradigms such as object oriented, 
aspect oriented, procedural, or in the case of database 
applications, ER (Entity Relationship) analysis. 
 
 

<p>gexecute.exe</p><wl>23</wl><wt> 
54</wt><wr>916</wr><wb>678</wb> 
<ws>nor</ws> … 



3. The data transformations required 
 

Intuitively, it is easy to see that the UAR and the data it 
collects hold possibilities for multiple and varied 
investigations. Generally speaking, the data is particularly 
useful for studies that are longitudinal in nature, that are 
concerned with usage across applications or that may evolve 
over time.  For example, a study has been looking at keystroke 
data to determine typing speeds and set-up times and their 
evolution over time, linking back to success in programming.  
The same data are being used for researching how people 
recover from interruptions [6] and another researcher is 
interested in possible differences between window layout 
between male and female subjects. 

The data collected from the UAR are very general, and so 
useful for multiple investigations.  However, they are recorded 
at a very low level of abstraction and it is therefore a difficult 
task to search these data for patterns related to the high-level 
research questions detailed above.  In order for the data to be 
useful to the investigators, they must be transformed to a level 
of abstraction appropriate to the research question.  For 
example, in the investigation concerning perseverance with 
programming tasks, data at the level of individual keystrokes 
is not useful, but become so, re-expressed in terms of user-
sessions, and summaries of the number of compiles, builds, 
and runs. 

 

 
 

Figure 2. Example client’s representation 
 

Data processing is therefore organised into two major 
phases.  These phases join at a “lynch pin” data format, the 
client’s representation, that allows the data to be represented, 
not at the level of data collectors, but at a basic level of 
domain meaning.  There is substantial software work to be 
done in both these phases: in constructing and computing this 
client’s representation from the raw data, and then doing 
various further analyses on it.  In the data mining area, the 
software work for phase 2 would be carried out using various 
statistical tools, whereas in more traditional database 
applications this stage would be done by “reports”: various 
custom-made data processing procedures.  In both these areas 
however, phase 1 would be largely accomplished at design 
time, when the data model was laid down based on a careful 
but fixed analysis, and any processing done in effect by the 
database management system.  What is different about 
supporting REDDIs is that phase 1 must be done after, not 

before, data collection, and often changes as the investigation, 
along with the client’s ideas, evolve. 
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Figure 3. The two major stages in data processing 
 
4. Eliciting the client’s representation 

 
For the purposes of this discussion of phase 1 data 

transformation, we will assume the common case of a client 
who is an expert only in the domain being studied (in our 
example, novice programmer usage studies), and a consultant 
who must organise and carry out the phase 1 data preparation 
in order to deliver something meaningful for the client to 
process further. 

The consultant must begin by eliciting from the client a 
representation of the data that the latter can work with.  The 
client’s representation may depend on many factors, such as 
the tools (spreadsheet, data mining packages etc.) to be used 
by the client, and the skill level of the client with these tools.  
However it will probably mainly reflect the client’s 
understanding of the meaningful entities in this domain. In the 
case of the student perseverance investigation, the 
administrator and client worked together to elucidate a 
sensible form for the client’s representation: figure 2 (and also 
figure 5).   

However this analysis is in general not fixed for at least 
three reasons: 

• The definition of an entity may change as understanding 
of the case improves during the investigation.  For example, in 
a lab of student programmers, it is natural to assume that 
machine login sessions correspond to a single student and their 
work.  However if it emerged that typical students logged into 
two machines side by side, or conversely that students often 
worked in pairs so that one login corresponded to two people’s 
work (and typing speeds, etc.), then that way of identifying the 
domain-entities in the data would have to be changed. 

• The client’s interests will change during the 
investigation.  Many of these changes in hypothesis will only 
affect phase 2 processing e.g. by requiring different statistical 
summaries or tests based on the client’s representation, but 
sometimes they will require a change in phase 1 processing i.e. 
in the entities extracted.  For instance, if instead of comparing 
compile, build, and run actions for each student, the client 
decided to treat sequences of consecutive compile-build-run as 
objects in their own right, then this would require a change in 
phase 1 data preparation. 



• Several clients may come to base investigations on the 
same data, as mentioned above.  Thus it is very likely that 
several distinct client representations will be required. 

Thus the dialogue between the client(s) and the consultant 
needs to be maintained throughout the duration of the 
investigation.  As the research questions change, the 
consultant needs to ensure that sufficient information is 
recorded to enable or facilitate the generation of the client’s 
representation. 
 
5. Technical implications for phase 1 
transformation 
 

Once the client’s representation is decided upon, the 
consultant has to go about transforming the data.  Whilst 
providing for the client’s needs, two other (partially 
conflicting) objectives are noted: (1) re-usability and (2) speed 
of query execution.  These aim to reduce the effort and time 
spent generating the client’s representation at each iteration or 
new investigation. 

We chose to use the database to do the transformations.  
Given the large volumes of data, this was appropriate in order 
to benefit from indexing and parallel processing. It is worth 
choosing the DBMS carefully, to be sure that it offers the 
support required (native XML support, programmability).  We 
chose to use SQL Server; because it is programmable using T-
SQL, it is appropriate in the case of rapidly changing 
demands. 

However, manipulating temporal data within the relational 
model brings with it difficulties [1].  Sequence information is 
lost unless stored explicitly and standard techniques for 
calculating durations, for example, may be very slow to 
execute.  Our experience is that these difficulties can be 
circumvented, but new techniques need to be developed.  
These must be optimised to run in an acceptable time (a few 
minutes rather than a few days) so that development of the 
client’s representation and consequently investigations are not 
held back.   

Our experience showed that different investigations, 
because they were based on similar data, often shared 
concerns and it was therefore valuable to optimise techniques 
and queries for re-use.  Using stored procedures provided a 
structure for this and allowed the storage of procedures rather 
than the intermediate data to avoid further augmenting the data 
volumes.  

We also found it useful to group investigations according 
to shared concerns, and so to develop an intermediate 
representation between the raw data and that of several clients, 
thus allowing us to calculate several clients’ data fairly easily. 
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Figure 4. Data preparation using an intermediate 

representation 
 

 
6. An Illustrative Case 

 
This case study draws on the example of searching for 

indicators of persistence mentioned earlier.  Following ethics 
approval, data were collected on students studying the first 
year CS1P programming course in Ada at the University of 
Glasgow.  The UAR was used to capture keystrokes and 
mouse events for user sessions, as students carried out 
fortnightly programming exercises using the AdaGide 
development environment. 

Data were transported over the network and stored in the 
data repository, an SQL Server database, using the data model 
shown in figure 1.  There are two main tables in the schema: 
Sessions, containing general information on each user session, 
and Actions, used to store details of each interface event.  In 
total, 4.7M low-level user events were recorded with the 
Actions table using 2GB.  At this time, the investigations that 
would use this data had not been fully determined. 

The first question to be investigated using the UAR data 
aimed to identify factors that impact on students’ persistence 
with programming tasks.  Working with one of the authors as 
consultant, the client determined two reports that he required 
to carry out these analyses.  A high-level summary report 
(figure 5) gave statistics such as total pause time using Ada, 
presented by user session.  A second, more detailed report 
(figure 2) showed on-task and off-task behaviour over the 
course of each session. 

There was a certain degree of overlap between the reports 
and in order to generate these, an intermediate representation 
was developed and both reports created from this, as in figure 
4.  The repository database management system was chosen to 
carry out transformations.  A number of techniques were 
developed and optimised, to calculate, for example, the 
duration and context of an action, using self-joins.   Tables 
were indexed to improve performance, achieving an 80-fold 
reduction in execution time. 

The client’s purpose in asking for the two reports was to 
aid him in searching for patterns of usage that might indicate 
persistence with a programming task.  By looking first at the 
high-level report, the investigator could select particular user 
sessions as representative, investigate these further using the 



 
 

Figure 5. Top level report showing summary statistics (such as pause times in Ada) by user session 
 
 

more detailed report, and finally the raw data, referring back to 
examination results.  This client had already used a similar 
(phase 2) iterative technique using special purpose audit trails 
[5], with data captured by purpose built extensions to source 
code.  
 
7. Implications 
 
New technology is making flexible investigations based on 
digital data ever more attractive.  However, one implication of 
supporting these is that data modelling must be done after, and 
not before, data collection.  Work has not been avoided, but 
only postponed.  The problem now appears as one of 
restructuring the data.  The raw data is not unstructured as free 
English text would be, but does require transformation from a 
form that represents only the circumstances of collection, to 
another that is domain-meaningful.  Projects addressing this 
must expect a major software support effort to cover this: what 
we call “phase 1” data preparation.  Furthermore the process 
of analysis needs to be fast and easy to update (in contrast to 
the circumstances of most data modelling hitherto); and to 
support partially overlapping analyses for clients using the 
same data for different purposes.  In the programming world, 
these might be met by facilities for incremental change, 
version control, change management, rapid prototyping etc.  
Support for such approaches might now be much more 
important in analysis tools designed to produce data models. 
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