
Using database technologies to transform low-level stream data for
client analysis

Rebecca Mancy
University of Glasgow
mancyr@dcs.gla.ac.uk

Richard Thomas
University of Western Australia

richard@csse.uwa.edu.au

Steve Draper
University of Glasgow
s.draper@psy.gla.ac.uk

Phil Gray
University of Glasgow

pdg@dcs.gla.ac.uk

Gregor Kennedy
University of Melbourne

gek@unimelb.edu.au

Abstract

GRUMPS, a Generic Remote Usage
Measurement Production System, collects
streams of computer-generated events
representing low-level actions and stores these
in a database. We have successfully created
repositories of 5 million events in about 2GB of
semi-structured data. These generic data
represent a valuable source for multiple
investigations but require significant
transformation before domain-level analysis
can begin. This is a difficult and time-
consuming stage with this approach, and
requires the correct choice of tool. Because of
the large volumes of data, we chose to carry
out transformations within the database. To
benefit from previous experience effectively,
techniques and queries need to be optimised for
both re-usability and speed of execution with
the chosen tool. We have found it useful to
group investigations according to the high-
level data required, using an intermediate
representation from which data for multiple
investigations can be generated, and
developing techniques using re-usable stored
procedures.

1. GRUMPS
The Generic Remote Usage Measurement

Production System or GRUMPS [GRUMPS,
2001] is being developed at Glasgow
University. The GRUMPS project aims to
explore current and emerging technical
possibilities for collecting and exploiting usage
data e.g. logins, command calls, web page

visits, etc. The project has a number of aspects:
for instance developing a novel network
infrastructure to support this [Gray 2004], and
developing control and management
mechanisms to allow an investigator to change
dynamically and remotely what is collected.

This new flexibility in collection, along
with the recording of generic user actions that
lend themselves to a wide range of
investigations, allows multiple researchers to
adapt collection and data processing as research
questions evolve. We call such explorations
REDDIs: Rapidly Evolving Digitally-Derived
Investigations. These differ both from a
traditional hypothesis-testing approach where
collection and processing are carefully
designed in advance, as well as from data
mining, where again collection is fixed in
advance, but retrospective analyses are carried
out post hoc. In contrast, REDDIs are
investigations – as opposed to experiments –
that may have no prior hypothesis, do not
usually control or manipulate the circumstances
being studied, and often involve changes in
what is collected in the light of successive
examinations of the data.

Data repository

Client’s representation

Domain-meaningful analysis
(statistics, data mining)

Cleaning, preparation,
transformation

Client’s results

Figure 1. Stages in data preparation

A consequence of this new approach is that
the data model most appropriate for each
investigation or iteration thereof can not be
designed in advance. Instead, the repository
schema is optimised for rapid collection, and
the transformation of data into a form
meaningful and useful to the investigator must
be done later. We thus have two major phases
of processing: phase 1 transforms the raw data
in the repository into the first domain-
meaningful form – the client's representation –
that the client can interpret and use, while
phase 2 comprises the further transformations
the client directs e.g. statistical or data mining
analyses.

Phase 1 has been noted as a difficult area
[Thomas 2003], particularly in the case of large
datasets [Hilbert 2000]; this paper describes our
experiences in developing phase 1
transformations.
2. Data Set

Several collectors are being developed for
the GRUMPS system. The work reported in
this paper concentrated on data generated by
the User Action Recorder (UAR). This
collector uses Windows system calls, gathering
large volumes of low-level events representing
actions such as window focus and keystrokes.

The UAR was used in the Computing
Science Department at the University of
Glasgow to collect user interface events from
the first year programming laboratories, as
students completed programming exercises in
Ada, using the Adagide development
environment. In spring 2003, 141 students
consented to participate, yielding 4.7 million
events over 2655 user sessions (periods
between login and logout).

The repository is a SQL Server database
with a simple schema, the main entities being
the Actions (events) and Sessions. Much of the
specific information on each action or session
is stored as XML in a single attribute. The
Actions table has 4.7M rows and takes about
2GB.

Sessions

PK SessionID

StartTime
EndTime
Body

Actions

PK ActionID

FK1 SessionID
Time
Body

Figure 2. (a) The repository schema
(b) Body XML for window focus event

3. The client’s data
The first question to be investigated using

the UAR data aimed to identify factors that
impact on students’ persistence with
programming tasks. With traditional
approaches, a model allowing the investigator
to spot patterns in student perseverance would
have been determined in advance and used
during collection. A consequence of the
GRUMPS aim of supporting flexible and
evolving data uses is that the analysis leading
to such a model is left until after collection,
where it is guided by the client's requirements
for their particular investigation.

The investigator (client) was familiar with
studies using special purpose audit trails
[Kennedy 2003]. Investigations had been
carried out with an iterative process over three
levels from general to specific and the client
asked for a similar output in the form of
reports. The first, most general report was a list
of all sessions, with statistics such as pause
times and number of compiles for each session.
The second report shows the sequence of
applications visited, plus a further subdivision
of any activity in Ada, broken down into
essentially the edit-compile-run cycle. The
third level was the raw GRUMPS action data.

<p>gexecute.exe</p><wl>23</wl><wt>54</w
t><wr>916</wr><wb>678</wb><ws>nor</ws> …

Figure 3. Client’s representation - second
report

3.1. Defining the intermediate
representation

To convert the low-level UAR data into the
higher-level reports described, it was necessary
to perform significant transformations.
Studying the requirements for the two reports
outlined above, it became apparent that there
was a subset of information that would have to
be computed for both reports.

For example, both reports required
knowledge of the context (or application) in
which activities took place, and calculations of
durations . Neither of these was directly
available in the UAR data but had to be
calculated using filtering and abstraction
[Hilbert 2000].

We thus decided on an i n t e rmed ia te
represen ta t ion or recoding of the data
containing most of the required information for
the reports. This was a recoded stream where
certain fields were the same as in the raw UAR
data, whilst others were transformed to a form
that would more easily allow us to generate the
reports.

3.2. Generating the Intermediate
Representation

We decided to carry out the data
transformations in the database because of the
large volumes of data and the flexibility that
this offered. This prevented us from having to
extract and transfer the full dataset, a slow
process on 2GB of data. The use of indexes
and parallel processing capacities make
databases particularly appropriate for dealing

with large volumes of data. We used
Microsoft’s SQL Server, programming with
SQL, and the extension of this language,
Transact-SQL (T-SQL).

To generate the intermediate representation,
data transformations were carried out at various
levels, from transformations that are essentially
data “cleaning” to higher level interpretations
and abstractions such as context and durations.

One of the low-level transformations
consisted in ensuring that each action was
represented by exactly one line in the Actions
table. For example, changes in window focus
and use of the function keys F1-F12 generated
two events (Windows systems calls) at
collection, both stored in the repository.

Similarly, dates and times are stored in the
database as recorded by the collector. In order
for these to be meaningful for the client, they
were transformed into a common intermediate
form, in this case, dd/mm/yyyy.

At a slightly higher level, the XML data,
storing much of the information about the
events, needed to be readily available; for
example, the name of the application, in the
case of window focus changes. Aspects of the
XML were expanded out, essentially by partial
normalisation of the application name into a
new table in the database. (Note that this
would probably not have been necessary had
we used a later version of SQL Server with
native XML support.)

However, the most important and initially
challenging transforms were to compute the
context (application) and duration of each
action. Had we chosen to use flat files and
sequential processing, such transformations
would simply have been a question of looping
over the file, holding, for example, the last
application name in a variable. With set-based,
parallel processing, implicit sequence is lost
and new techniques are required.

Taking the example of durations, the
resources available suggested using a technique
that calculated a partial cross product [Nielsen
2003]. Predictably, this scaled very poorly and
we eventually opted for a solution based on a
self equijoin. By joining the table to itself “one
line down” and selecting the relevant columns,

we were able to obtain start and end times on
the same line; subtracting one from the other
gave durations. A T-SQL procedure was
written that included code to account for the
last ActionID.

34456691250972

34457731250973

34457741250974

34457771250975

34456671250971

TimeActionID

34456691250972

34457731250973

34457741250974

34457771250975

34456671250971

TimeActionID

34456691250972

34457731250973

34457741250974

34457771250975

34456671250971

TimeActionID

34456691250972

34457731250973

34457741250974

34457771250975

34456671250971

TimeActionID

344577334456691250972

344577434457731250973

344577734457741250974

Null34457771250975

344566934456671250971

EndStartActionID

344577334456691250972

344577434457731250973

344577734457741250974

Null34457771250975

344566934456671250971

EndStartActionID

This Next

SELECT This.ActionID, This.Time, Next.Time
FROM This, Next
WHERE This.ActionID + 1 = Next.ActionID

Figure 4. Calculating end times

The above method obviously relies on
ActionIDs being contiguous. With respect to
context, a similar self-join technique was used
to generate entry and exit times to an
application. However, this calculation
concerned a subset of the actions – those that
represented a change of application – and as
such the ActionIDs were no longer contiguous.
We found that the time taken to copy this
subset into a temporary table with an
automatically generated, contiguous primary
key was negligible; this table could then be
joined with itself as required. Further
manipulations allowed the current application
to be calculated for each action.

The above techniques were developed in T-
SQL for SQL Server, to run in an acceptable
time on the large dataset of 4.7 million actions.
Because of the volumes of data that we were
dealing with, indexing was important, and
allowed us to reduce the time taken to generate
the intermediate representation from 12 hours
to 9 minutes.

Clearly, other solutions are possible; the
above is given as an illustration. Golab and
Ozsu (2003) discuss stream management more
fully.

3.3. Generating the Client’s
Representation

The intermediate representation proved to
be extremely useful for generating both of the
reports described above. The first report, a
summary of the activities of each session, uses

a case statement and a selection of built-in
aggregate functions.

In order to generate the second report
shown in Figure 3, a case statement generated
the report according to a state table defining the
type of high-level action (activity, compile, run,
etc.). Furthermore, some of the techniques
developed earlier were re-used. For example,
the duration technique was used for higher
level groups of actions such as compiling and
editing.

4. Other Investigations
4.1. Typing and setup times

Following the success in generating the
reports outlined above, the second author
worked on his own research questions
concerning typing speeds and setup (chunking)
times. The idea was to establish whether there
was a link between typing speeds in Ada and
student success on the course.

The client’s data for this investigation was
clearly different, but it was found that the
intermediate representation was a useful
starting point for transformations. These
investigations required information on
individual keystrokes, and the intermediate
representation was refined to take account of
this.

Similarly, these investigations re-used many
of the techniques developed during the creation
of the first two reports. For example, the
durations technique was used for the inter-key
time, but as an onset (time before) rather than
offset (time after). Furthermore, when these
queries were established for typing activity in
general, the techniques were partially
applicable for some lexical analysis, to give
Ada reserved words, for example. In turn this
capability gave rise to the opportunity to
recreate commands issued as keyboard
shortcuts, such as CTRL-ALT-Down, which
gives the next warning in the compiler listing
when using the Adagide environment.

4.2. Further investigations
As anticipated, we are beginning to find

that the UAR and repository have more general
applicability than the two investigations

mentioned above, particularly for researchers
who want to see what users do in the long term
or across applications.

For instance, indicators of flow [Draper
1999] are being investigated as users perform
tasks, with a thinkaloud screen where every 15
minutes they are prompted to type what they
are thinking [Karahasanovic 2004]. Analyses
of the UAR and thinkaloud data aim to
determine whether flow can be detected by
looking at activity; both the rate of clicks and
keystrokes, and the variation of these with time.
This required a report similar to that shown in
Figure 3.

The same researchers believed it would be
useful to know how long a user spends in each
document. A report was generated from a
simple extension of the stored procedures,
using the intermediate representation and
building on an understanding of how to extract
durations and context.

Another researcher suspects that data
generated by the UAR could give information
about whether male and female computer users
organise windows into different screen layouts.
It is expected that the work already carried out
will form a strong basis for the required
analysis, adapting the high level session report,
with its calculation of statistics for each session
but using other fields in the XML, such as
window minimised/maximised/normal and
coordinates.

5. Discussion
 Although far from trivial, transforming the

low-level raw data into domain-meaningful
client’s data, is nonetheless feasible. As we
tackled each new transformation, we gained
experience and were able to benefit from the
strategies and knowledge we had developed
previously.

Three partially conflicting objectives are
noted in the data preparation stage: (1)
addressing the client’s needs, (2) re-usability
and (3) speed of query execution. The latter is
important at the development stage, and equally
to avoid slowing the investigation process.

The first investigation required significant
time and effort, and we note that this approach,

where data is collected without prior
knowledge of its use and later transformed, can
be seen as feasible only if multiple
investigations are to be carried out, either on
the same data set or very similar data.

Data repository

Cleaned data

Client ’s
Representation 1

Domain -meaningful analysis (statistics, data mining)

Data pre paration

Intermediate representation

Client ’s
Representation 2

Client ’s
Representation 3

Data pre paration

Initial cleaning

Figure 5. Stages in data preparation
with intermediate representation.

It has become apparent that different
investigations based on the similar often share
concerns, such as the need for durations in
several of the investigations outlined above.
Because of this, we found it extremely useful to
develop an intermediate representation from
which several different clients’ data could be
generated. It seems that investigations can be
grouped according to the data that they require,
and either one or several intermediate
representations developed. These can be
considered as relatively flexible, being added to
or adjusted as and when necessary.

For the same reasons, techniques developed
for one investigation can often be re-used. It is
therefore worth spending the time and effort
necessary to optimise these, and developing
them with a view to re-use.

Although certain of the optimisations
carried out are DBMS-independent (for
example, calculating a cross-product will
always scale badly), it is worth noting that the
way in which techniques are optimised and
developed depends in part on the database in
use. Different DBMS have different behaviour,
use different versions of SQL and various
extensions to this language, such as T-SQL,
PLSQL, etc. A technique that is optimised for

one DBMS may therefore be inappropriate for
another.

Using T-SQL, we found it extremely useful
to integrate queries into stored procedures.
This allowed us to develop techniques
incrementally and execute them with a single
command, storing the queries rather than the
intermediate data created.

Gray et al. [Gray 2002] discuss the issue of
creating multiple copies of data that lead to
rapid data inflation, suggesting that it is often
preferable to store the metadata – in our case,
the stored procedures – that allow the
generation of this data when necessary.

Although we have found it feasible to
transform generic data for different
investigations, it is nonetheless true that certain
transformations are more difficult to achieve
than others. This depends, to some extent, on
the tool used for the transformations. Our
choice to manipulate the data within the
database was determined essentially by the
volumes of data to be manipulated. With this
choice came the difficulties associated with
loss of implicit sequence (e.g. calculating
durations and context). Other successful
transformations have been carried out on
smaller datasets, extracting the data and
transforming using Java [Renaud, 2004].

It is therefore worth spending time
designing the collector in such as way as to
alleviate these difficulties as far as is practical,
both in general, but possibly also in view of a
specific transformation tool. When using the
database for this stage, it was important to have
sequence numbers for the actions as
timestamps were not always unique and so
could not be used to sort reliably. Because we
were using Windows system calls, one action
sometimes generated several events, which
complicated transformations. In some
situations it may be possible to avoid this, in a
trade-off between processing during collection
and after storage, although data is likely to be
lost.

In addition, it is worth evaluating different
tools for transforming the data, according to the
specific constraints of the collected data and the
investigation itself. The problems of

expanding the XML would have been
alleviated by using a later version of SQL
Server with native XML support. However,
this issue is independent of others encountered,
such as calculating durations.

6. Conclusion
We have described our experience of

transforming low-level usage data into forms
that can be used directly by multiple
investigators. The raw data requires significant
manipulation and we have shown that it is both
possible and efficient to do much of this within
the database itself. We suggest that
investigations based on the same or similar raw
data will inevitably share concerns and that
research questions can be grouped according to
these.

For each group of investigations, it is useful
to develop an intermediate representation from
which the data for several studies can be
generated. Techniques and queries should be
developed using stored procedures and need to
be optimised for re-usability and execution
times, both partially dependent on the DBMS
used. This way of working significantly
reduces effort required with each iteration or
new investigation.

Acknowledgements
The GRUMPS team gratefully acknowledges the
funding provided by the UK’s EPSRC
(GR/N381141). We also thank Malcolm Atkinson,
Gregor Kennedy, Murray Crease, Karen Renaud and
the Level 1 Computing Science students at the
University of Glasgow.

References
Draper, S. (1999) Analysing fun as a candidate
software requirement Personal Technology, vol.3
pp.117-122

Golab, L. & Ozsu, M.T. (2003) Issues in data stream
management. SIGMOD Record, 32 (22), 5-14, June.

Gray, J., Szalay, A. S., Thakar, A. R., Stoughton, C.,
vanderBerg, J. (2002) Online Scientific Data
Curation, Publication, and Archiving. MSR-TR-
2002-74: http://arxiv.org/abs/cs.DL/0208012

Gray, P., Mcleod, I., Draper, S., Crease, M.,
Thomas, R. (2004) A Distributed Usage Monitoring

System. In Proc CADUI (Computer Aided Design of
User Interfaces). Kluwer, 2004. pp. 121-132.

GRUMPS (2001) The GRUMPS Research Project.
[Online]. http://grumps.dcs.gla.ac.uk

Hilbert, D. M. & Redmiles, D. F. (2000) Extracting
Usability Information from User Interface Events
ACM Computing Surveys (CSUR) archive
32(4), 384 - 421.

Karahasanovic, A., Fjuk, A., Sjøberg, D.. Thomas,
R. A Controlled Experiment to Evaluate the
Reactivity and Usefulness of Data Collection with
the Think-Aloud Tool versus Classical Think-Aloud
Method. IRMA 2004 Conference, accepted.

Kennedy, G.E. & Judd, T.S. (2003) Iterative
analysis and interpretation of audit trail data. In
Crisp, G. & Thiele D. (eds) Proc ASCILITE
Conference, Adelaide, Australia, 1, pp 273-282,
December 7-10, 2003.

Nielsen, P. Microsoft SQL Server 2000 Bible (2003),
Wiley Publishing, Inc., New York. P260-264.

Renaud, K., Gray, P. (2004) Making sense of low-
level usage data to understand user activities, TR-
2004-159, Department of Computing Science,
University of Glasgow.

Thomas, R., Kennedy, G., Draper, S., Mancy, R.,
Crease, M., Evans, H., Gray, P. (2003) Generic
usage monitoring of programming students. In
Crisp, G. & Thiele D. (eds) Proc ASCILITE
Conference, Adelaide, Australia, 1, pp 715-719,
December 7-10, 2003.

