
Reflections on Computing Education Research
Steve Draper

steve.draper@glasgow.ac.uk

ABSTRACT
In this paper and the talk built from it my general aim is to offer
some reflections on the state of Computing Education Research
(CER) right now (August 2020) – not like a review of the literature
that looks only backwards, but to develop perspectives partly from
outside Computing, that may cast various different lights on it, and
thence make some suggestions about where it could perhaps go in
future.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
Computing education
ACM Reference Format:
Steve Draper. 2020. Reflections on Computing Education Research. In United
Kingdom & Ireland Computing Education Research conference. (UKICER ’20),
September 3–4, 2020, Glasgow, United Kingdom. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3416465.3416466

1 MULTI-DISCIPLINARITY
Think about both CER (Computing Education Research) and Com-
puting as inherently multidisciplinary subjects. This links a number
of different points. Firstly: CER researchers would seem to need
a grasp of education theory and practice, as well as of computing
theory and practice. A large majority of CER, as shown by authors’
departmental affiliations, is based within computing departments at
both UK-ICER20 (≈ 80%) and ICER20 (≈ 80% of authorship, however
only ≈ 67% of papers had no input from Education based authors).
Being based in computing departments is good for having strong
connections with computing, and also good for access to computing
classes to use them as participants. It is less obvious how they secure
nourishment about education. Furthermore much of the published
CER research and all the ten papers of this conference use quan-
titative research, which implies some access to methods usually
located in yet other disciplines such as statistics and psychology.

2 THREE DIFFERENT ROLES OF TEACHERS
Whether their job title is “graduate teaching assistant” or “pro-
fessor”, the people organising learning for students have to cover
three separate functions, and all of them are worth researching: a)
“Delivering” a learning design i.e. managing and/or performing as
part of it; b) Selecting, or inventing, a learning design; c) Deciding

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8849-8/20/09.
https://doi.org/10.1145/3416465.3416466

on the curriculum i.e. what it is that is to be learned. All of these
are important subjects of research in education. An example of
research on learning designs is McGregor & Maarek’s paper at this
conference “Software testing as medium for peer feedback” which
applies the general idea of reciprocal peer critiquing1 and develops
a way for this to work on introductory programming courses. There
is less focus on delivery, although many experience reports touch
on important aspects of it: perhaps CER could develop this line of
research more directly, starting by “mining” published experience
reports. The third role, deciding on the curriculum, definitely merits
more attention. CER clearly includes studying learners and teach-
ers, and so includes studying the curricula produced and taught:
both knowledge and skills, both intentionally and unintentionally,
both explicitly and implicitly.

3 IMPLICIT AND EXPLICIT KNOWLEDGE
Implicit and explicit knowledge is a pervasive issue. In considering
the broad subfields of curriculum design, these three should be
noted on the spectrum of explicit/implicit knowledge:

(1) Knowledge that is explicitly taught, and directly assessed.
(2) Knowledge known by teachers to be important, but not di-

rectly assessed and perhaps not explicitly taught: basically
cases between (1) above and (3) below. E.g. learning how
to teach yourself another programming language without
tuition, which might need an exam a month long to assess
directly.

(3) Implicit knowledge: that is not stated, not explicitly taught,
and at best accidentally assessed; but which is of professional
importance in the careers the discipline feeds into.
For instance:

(a) Learning how to work in teams, including how to rescue
a dysfunctional team when you are assigned to one.

(b) How to write reports clearly, as measured by the reader’s
comprehension.

(c) Commenting code, measured by the speed for someone to
understand the code and modify it.

The implicit/explicit distinction applies equally to skills. Teachers
have variable implicit skill at, say, chairing discussions in a group
of students; or at “contingent tutoring” i.e. explaining concepts
to one student not by a monologue that guesses (nearly always
wrongly) the level needed, but by a dialogue in which they find
interactively the level of partial understanding and intervene at
that level (not too low level, not too abstract for that student at
that time). Learners acquire enormous amounts of learning skills in
their time at university, mostly implicit. Mazur’s “peer instruction”2
not only deepens students’ understanding of the concepts but as a
“side-effect” gets them into the habit of asking themselves similar

1Reciprocal Peer Critiquing (clickable)
2Peer Instruction (clickable)

https://doi.org/10.1145/3416465.3416466
https://doi.org/10.1145/3416465.3416466
http://tiny.cc/1rcosz
http://tiny.cc/2rcosz


UKICER ’20, September 3–4, 2020, Glasgow, United Kingdom Draper

questions about newmaterial in future, without this being prompted
by teachers or texts.

With all that in mind, we can see that a fruitful and complex area
for CER concerns the issue of what should be taught in computing.
Some methods for doing this include:

• Look at cases where different curricula have been taught, and
consult employers and mid-life professionals about whether
some curricula have had better effects than others.

• By studying the implicit (and thus hidden) curriculum, en-
large the range of questions you ask of these sources. I.e. it
is not just the documented curricula under enquiry, but the
implicit aspects of it too.

• Consult subject matter experts e.g. HE computing academics.
This is the obvious source to most people outside computing,
and indeed to the government at various times.

4 DISCIPLINES ARE PERIODICALLY
RECONSTRUCTED

However there can be drawbacks to simply consulting computing
academics about what needs to be taught and learned. The first is
that periodically every discipline undergoes significant change in
what is thought to be the most important knowledge in its field.

To take the example of Biology: my university campus, built in
the 19th century, has one building with “Zoology” engraved deep
in the stone, and another with “Botany”. However over the same pe-
riod that computing has existed as a discipline, it has emerged that
those are just two of five equally important “kingdoms”. Further-
more, looking at biology from the angle of key theories, most people
outside biology think there is only one important theory: Darwin’s.
But Sir Paul Nurse in a Jan 2018 public lecture3 suggested that there
have been four fundamental theoretical advances in Biology and
that a fifth is imminent. So the intellectual structure of biology has
been revolutionised since 1950. It might be time for Computing to
be restructured around what is most important things to teach.

Another approach is ask what and how a discipline contributes
to notable achievements, especially ones that contribute to the
economy. In December 2019 Hannah Fry presented the Royal Insti-
tution’s Christmas lectures4. She used current examples of innova-
tions, all involving computation. For each example she identified
the discipline central to its operation, and its essential quality. She
said that the great thing about maths is the certainty of its reasoning
(example: the man who sky dived from 30,000 feet into a big catch
net without a parachute). The great thing about computers is they
can do exact calculations much faster than humans – and given time
limits in some problems, this can be a critical benefit e.g. matching
kidney donors to recipients. The key quality about statistics is that
some important situations do not allow you to calculate individual
events deterministically BUT are highly regular when many trials
are combined. This is true of a lot of human behaviour e.g. traffic
flows, pedestrian flows, predicting how infectious disease does and
doesn’t spread, with or without vaccinations. A key quality about
probability is correctly combining multiple bits of partial informa-
tion e.g. combining many sensors so that an alert from any one
shuts a vehicle down; or using Bayes theorem applied to imperfect
3Paul Nurse on landmark Biology theories (clickable)
4Hannah Fry’s Christmas Lectures (clickable)

medical diagnostic tests to give the true chance of this test result
meaning you are ill or clear of an illness.

The second reason why relying on academic Computing re-
searchers for what should be taught may be a poor idea, is that
disciplines are typically formed by people who taught themselves
something new without help. They naturally infer it is therefore
easy for everyone to teach themselves. Maths, in contrast, after hun-
dreds of years is taught to all children and many undergraduates,
but the style of learning and teaching at those levels is completely
unrelated to the training needed for a future contributor to original
maths research. Computing hasn’t learned this lesson, though CER
people have to some extent. The study of why CMU had so few
females on the Computing major brought out the causes of this.5
In brief, the course tacitly assumed that all computing students
had explored and used and programmed computers as a hobby all
their life (10,000 hours?), so it didn’t have to teach most of this; and
the students typically spent 16 hours a day doing even more of it
because it was the love of their life on top of being their education.

Even worse, today in Scotland using advice from Computing in
HE for what to teach in schools is proving even more magnificently
wide of the mark. What is needed is the knowledge of Education
people, of school teachers, about what can be learned and what
kind of teaching does or doesn’t work on each age group.

5 PROGRAMMING AS HOBBY, REASONING,
AND ENGINEERING

The issue that may simultaneously show the biggest tensions within
computing as a discipline, and be the single biggest topic for com-
puting education is how the “same” subject of learning to program
can be seen in three different ways. The sad thing is that for decades
this has mostly been treated as alternative ideas only one of which
can be true. The educational viewpoint should probably be that
these alternative conceptions are alive, strong and already in our
students: and if they are implicit that just makes them more not less
influential. So perhaps educators should actively show how those
alternatives apply to each situation, as physicists do in teaching
about wave and particle “views” of electrons and photons. One view
is of the hobby, the creative angle, the joy of making stuff just for
yourself regardless of whether it will work in all situations or as a
temporary toy. The reasoning angle can produce the deepest under-
standing, but is only as good as its axioms – and as was eventually
learned from Euclidean geometry, that doesn’t necessarily include
understanding how those assumptions relate to the actual world.
The engineering aspect is about dealing not just with what we want,
but with all the things that have to work in practice whether we
understand them or not: and how safety factors and so on allow
engineers to design successfully without understanding everything.
If you prefer to relate your CER research to a theory, then Papert’s
theory of “constructionism” seems to be a serious attempt to relate
these three views both to computers, to programming, to learning,
and to concrete activities.6

5CMU’s project on getting women into computing majors (clickable)
6Papert’s constructionism (clickable)

http://tiny.cc/4rcosz
http://tiny.cc/7rcosz
http://tiny.cc/arcosz
http://tiny.cc/qqcosz

	Abstract
	1 Multi-disciplinarity
	2 Three different roles of teachers
	3 Implicit and explicit knowledge
	4 Disciplines are periodically reconstructed 
	5 Programming as hobby, reasoning, and engineering

