
Available online at www.sciencedirect.com

ARTICLE IN PRESS
www.elsevier.com/locate/visres

Vision Research xxx (2008) xxx–xxx
Deciding what to see: The role of intention and attention
in the perception of apparent motion

Axel Kohler *, Leila Haddad, Wolf Singer, Lars Muckli

Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany

Brain Imaging Center Frankfurt, Schleusenweg 2-6, 60590 Frankfurt am Main, Germany

Received 4 July 2006; received in revised form 28 July 2007
Abstract

Apparent motion is an illusory perception of movement that can be induced by alternating presentations of static objects. Already in
Wertheimer’s early investigation of the phenomenon [Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeits-

chrift fur Psychologie, 61, 161–265], he mentions that voluntary attention can influence the way in which an ambiguous apparent motion
display is perceived. But until now, few studies have investigated how strong the modulation of apparent motion through attention can
be under different stimulus and task conditions. We used bistable motion quartets of two different sizes, where the perception of vertical
and horizontal motion is equally likely. Eleven observers participated in two experiments. In Experiment 1, participants were instructed
to either (a) hold the current movement direction as long as possible, (b) passively view the stimulus, or (c) switch the movement directions
as quickly as possible. With the respective instructions, observers could almost double phase durations in (a) and more than halve durations
in (c) relative to the passive condition. This modulation effect was stronger for the large quartets. In Experiment 2, observers’ attention was
diverted from the stimulus by a detection task at fixation while they still had to report their conscious perception. This manipulation pro-
longed dominance durations for up to 100%. The experiments reveal a high susceptibility of ambiguous apparent motion to attentional mod-
ulation. We discuss how feature- and space-based attention mechanisms might contribute to those effects.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Apparent motion is an illusory perception of movement
that is induced by a sequence of static displays (Roget,
1825). The phenomenon has been extensively studied in
early 20th century psychology (DeSilva, 1928; Duncker,
1929; Kenkel, 1913; Korte, 1915; Neuhaus, 1930; Schiller,
1933) and was a central paradigm for the initiation of the
Gestalt movement (Sekuler, 1996; Steinman, Pizlo, & Pizlo,
2000; Wertheimer, 1912). Already Wertheimer (1912), in
his classic paper, reports the fact that an observer’s focus
of attention can significantly bias the perception of an
ambiguous apparent motion display. According to his
theory, spatial attention boosts processing at the attended
0042-6989/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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location and thereby leads to faster processing times for
the attended alternative, making it more likely to be
perceived.

Since this time, there have been only few studies address-
ing the issue of attentional modulation of apparent motion.
Ramachandran and Anstis (1983, 1985) mention that in
their experiments with bistable apparent motion displays,
observers were able to voluntarily control the perceived
motion direction. They do not describe any quantitative
measures for the amount of modulation but report that
the influence breaks down when the apparent motion speed
is increased (stimulus onset asynchronies below 350 ms).
Suzuki and Peterson (2000) investigated another type of
bistable apparent motion and found a multiplicative effect
of intentional effort on perception: The more the stimulus
itself was biased towards a certain interpretation, the more
effective was the voluntary influence.
to see: The role of intention and attention ..., Vision Research
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The purpose of our study was to further investigate the
extent of modulation by intention and attention for bistable
apparent motion. We used the so-called ‘motion quartet’
(Hoeth, 1968; Neuhaus, 1930; Ramachandran & Anstis,
1983; Schiller, 1933), in which two pairs of dots at opposing
corners of a virtual rectangle are presented in sequence so
that either horizontal or vertical apparent motion can be per-
ceived. The stimuli were presented in two different sizes in
both experiments to see how modulation strength is affected
by quartet size. In Experiment 1, observers were instructed to
speed up and slow down percept changes in the motion quar-
tet. The resulting percept durations were compared to a pas-
sive condition. In Experiment 2, spatial attention was
diverted from the motion quartet with an attention-demand-
ing detection task while participants still reported their con-
scious perception of the quartet. In this way, we were able to
see how attentional focus affects the dynamics of bistable
apparent motion.

2. Methods

2.1. Observers

Eleven members of the Frankfurt cognitive-neuroscience community
(age, 21–33) participated in Experiments 1 and 2. Three additional partic-
ipants were run in a control experiment. All observers had normal or
corrected-to-normal vision. One participant was left-handed, all others
right-handed.

2.2. Stimuli and apparatus
A

Fig. 1. Stimuli for Experiments 1 and 2. (A) For both experiments, large
and small quartets were used. The horizontal distance was fixed and the
vertical distance was adjusted for individual participants according to a
preceding threshold measurement. The diagonally opposing pairs of dots
(filled and dashed) were presented in alternation, leading to a percept of
either vertical or horizontal motion (B). During prolonged viewing, the
perceived motion direction oscillated between the two possible interpre-
tations. (C) In Experiment 2, participants had to fixate a character stream
in the middle of the screen instead of a fixation cross. During the Task
condition, they had to detect and report the numerical characters among
the sequence of letters.
2.2.1. Experiment 1

Stimuli were generated with a custom-made program based on the
Microsoft DirectX library and presented on a cathode-ray-tube monitor
(Samsung SyncMaster 950P Plus). The distance between the participants’
eyes and the monitor was 47 cm and the screen size 36.5 · 27.4 cm (field of
view, 42.4� · 32.5� visual angle). The participant’s position was fixed with
a chin and forehead rest. The stimulus consisted of four circles (diameter,
1.7�) arranged as a virtual rectangle (Fig. 1). At any given time, only two
dots at diagonally opposite corners were presented. A fixation cross (size,
0.3� · 0.3�) was always displayed in the middle of the screen. Stimuli had a
Michelson contrast of 98% (luminance, 104 cd/m2; background lumi-
nance, 0.81 cd/m2). There were two versions of the motion quartet: (a)
large, with a fixed horizontal distance between dots of 11� and a variable,
observer-dependent vertical distance between 11� and 20.1�; (b) small,
with a fixed horizontal distance between dots of 3.3� and a variable, obser-
ver-dependent vertical distance between 3.3� and 6.3�. Dots were pre-
sented for 150 ms with an interstimulus interval of 100 ms (2 Hz
presentation frequency).

2.2.2. Experiment 2

The motion-quartet stimuli used in Experiment 2 were identical to
Experiment 1 (large and small quartets). Instead of a fixation cross, partic-
ipants looked at a character stream at the center of the screen (Fig. 1C).
The stream consisted of alphanumeric characters (fixed height, 0.3�); the
presentation frequency of the characters was 2 Hz and numeric characters
appeared with a probability of p = .125.

2.2.3. Eye tracking

An infrared eye-tracking system (Ober2; Permobil Meditech, Timra,
Sweden; Applied Science Laboratories, Bedford, MA, USA) was used to
control for eye movements in three out of eleven participants. Eye move-
ments were sampled at 500 Hz.
Please cite this article in press as: Kohler, A. et al., Deciding what
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2.3. Procedure

2.3.1. Threshold measurements

The optimal ratio between vertical and horizontal distance (aspect
ratio) that leads to equal durations of vertical and horizontal motion per-
ception can vary widely between observers. To get a balanced stimulus for
every single participant, we used a ‘Method of Limits’ procedure to adjust
the aspect ratio before the experiments began. The procedure was started
by presenting a motion quartet with a very low aspect ratio (fixed horizon-
tal distance, 6.6�; starting value for vertical distance, 4.4�) leading to
unambiguous perception of vertical motion. The vertical distance was then
ramped up and down in steps of 0.6� per 500 ms. Observers had to press a
key when their perception switched between horizontal and vertical
motion, which also reversed the direction of the step changes. Eleven per-
cept reversals were recorded, the first value was discarded, and the average
value of the remaining ten reversals was taken as the optimal aspect ratio
for all following measurements. Participants were run in a test trial to
familiarize them with the procedure before the actual threshold measure-
ment was acquired.
to see: The role of intention and attention ..., Vision Research
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2.3.2. Experiment 1

In the first experiment, participants received instructions to control the
perceived direction in the motion-quartet stimulus. For every trial, they
had one of three possible instructions: (i) ‘‘Try to alternate between verti-
cal and horizontal perception as often as possible.’’ (ii) ‘‘Passively observe
the motion quartet.’’ (iii) ‘‘At any time, try to hold the currently perceived
motion direction. If the percept changes, try to hold the new perceived
direction.’’ Observers were instructed to report their perception (verti-
cal/horizontal) by holding down one of two keys. If they didn’t see any
motion (motion breakdown), they were told to press no key. They were
reminded to report their actual perception as veridically as possible, even
when they had instructions to influence their perception. Most impor-
tantly, participants were instructed to keep steady fixation at any time.
The combination of instructions (Switch/Passive/Hold) and stimulus size
(large/small) resulted in six different conditions. Two trials each lasting
two minutes were administered for each condition (12 trials overall).
The trials were presented in two blocks (random sequence) with a one-
minute break in between. Before the start of the actual experiment, observ-
ers were familiarized with the instructions and the stimuli in two test trials.

2.3.3. Experiment 2

In the second experiment, the stimulus display had a stream of alpha-
numeric characters instead of a fixation cross. Besides reporting the per-
ceived motion direction of the motion quartet as in Experiment 1,
observers had two possible additional instructions: (i) ‘‘Press a key when
a numerical character is presented at fixation.’’ (ii) ‘‘Press the key at ran-
dom intervals, on average every four seconds.’’ The first task was used to
divert participants’ attention from the motion quartet. The second instruc-
tion was employed as a control for any effects button presses might have
on perceptual stability. In both conditions, participants were instructed to
keep steady fixation on the alphanumerical character stream and report
the changes in perceived motion direction as accurately as possible.
Observers were familiarized with the attention–control task in a test trial.
Two task types (attention task/passive viewing) and two stimulus sizes
combine to four different trial types. Two trials were run per condition
(eight trials overall). The trial sequence was randomly intermixed.

2.3.4. Control experiments

Three of 11 participants in the main experiment were measured with
eye tracking. They wore goggles during the whole experiment. At the
beginning and in the middle of the session, they had to perform additional
calibration runs for the eye-movement analysis. We also measured an
additional three subjects to control for the validity of subjective reports.
For this purpose, three catch–trial periods (3 s) per run were inserted at
random time points in the first, second, and third part of the run. Partic-
ipants did not receive any instructions whatsoever concerning the catch–
trial periods.

2.4. Data analysis

The durations of the individual percept phases (horizontal or vertical
motion) were used as dependent variable. Phases with no motion percep-
tion were rare and discarded from the analysis. Also, the last phase of each
trial was discarded, since the trial duration was fixed (2 min) and the last
phase had therefore an arbitrary value. For each observer, phase durations
were normalized to (divided by) the average phase duration in the passive
condition, separately for small and large quartets. Statistical comparisons
between conditions were performed with a repeated-measures multivariate
analysis of variance (MANOVA) using the software package SPSS 12.0.1
(SPSS, Inc., Chicago, IL, United States of America). The distributions of
phase durations were fitted with a gamma distribution (maximum-likeli-
hood estimate) using Matlab 7.0.4.365 (The MathWorks, Inc., Natick,
MA, United States of America). For the gamma fitting, data were normal-
ized separately for conditions in each subject. To assess the correlations
between subsequent phase durations, we performed lag-1 autocorrelations
on phase-duration sequences, separately for observers and conditions. We
then calculated a weighted average of the correlation coefficients across
participants and tested for significance with an F statistic.
Please cite this article in press as: Kohler, A. et al., Deciding what
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Eye-tracking data were analyzed with custom-made software using
Matlab 7.0.4.365 (The MathWorks, Inc., Natick, MA, United States of
America). Eye blinks were counted and eliminated by hand, and analyzed
with non-parametric tests. The remaining data were detrended and trans-
formed by an affine transformation derived from the calibration data and
then visualized using fixation-density plots. For the eye-movement analy-
sis, data were combined from large- and small-quartet trials.

3. Results

3.1. Threshold measurement

Before the experimental runs, we determined the opti-
mal aspect ratio between vertical and horizontal distance
for each participant with a ramping procedure. The opti-
mal value for bistable apparent motion (50% vertical and
50% horizontal percept) can vary widely between observers
(Selmes, Fulham, Finlay, Chorlton, & Manning, 1997;
Sterzer & Kleinschmidt, 2005). In our sample the average
aspect ratio was 1.45, ranging from 1.0 to 1.88 (Table 1).
The threshold procedure was validated by calculating the
ratio for the sum of vertical and horizontal phase durations
as well as the ratio for the average vertical and horizontal
phase durations. For both measures, the group values were
around 1.0 in Experiment 1 (sum of durations, 1.08; aver-
age durations, 1.05), and around 0.9 in Experiment 2 (sum
of durations, 0.91; average durations, 0.91).

3.2. Experiment 1

In Experiment 1, we tested the ability of our participants
to voluntarily influence the perceived direction of move-
ment in the ambiguous motion quartet. They were
instructed to either (i) switch the percept as often as possi-
ble, (ii) passively view the percept, or (iii) hold the current
percept as long as possible. Typically, the dynamics of
perceptual alternations in multistable displays, such as
binocular rivalry or the Necker cube, is characterized by
gamma-distributed phase durations (but see Brascamp,
van Ee, Pestman, & van den Berg, 2005) and low correla-
tions between subsequent perceptual episodes (Lehky,
1988; Leopold & Logothetis, 1999; Muckli et al., 2002).
In order to compare the perceptual dynamics of our stim-
ulus to other paradigms and to assess the possible influence
of the different conditions on the dynamics, we analyzed
the distributions and autocorrelation functions in the
different conditions. In all conditions, the distribution of
phase durations could be well approximated by a gamma
distribution (Fig. 2). When the fit was assessed with a Kol-
mogorov–Smirnov test, the distributions (large and small
squares) for the Switch conditions were found to be signif-
icantly different from the estimated gamma distributions
(p << 0.001). Note however that the degrees of freedom
were not identical for the different conditions (see Fig. 2).
In addition to the distribution of phase durations, we also
analyzed the lag-1 autocorrelation of phase sequences. We
calculated the correlation values in single participants (sep-
arately for conditions) and then derived a weighted group
to see: The role of intention and attention ..., Vision Research



Table 1
Threshold values for all participants (N = 11)

Participant Pre Exp. 1 Exp. 2

Aspect ratio Ratio for sum of durations Ratio for phase durations Ratio for sum of durations Ratio for phase durations

P1 1.12 1.52 1.38 0.93 1.09
P2 1.58 0.95 0.86 0.62 0.75
P3 1.48 0.91 0.90 0.41 0.28
P4 1.62 0.95 1.16 0.31 0.79
P5 1.57 0.84 0.87 1.10 1.02
P6 1.47 1.54 1.29 0.43 0.38
P7 1.17 1.14 1.11 1.16 0.87
P8 1.35 0.67 0.79 1.06 1.23
P9 1.88 1.18 1.14 1.13 0.87
P10 1.00 1.15 1.07 1.04 1.20
P11 1.68 1.06 0.94 1.85 1.51

Average 1.45 1.01 1.05 0.91 0.91

Notes. Pre, aspect ratio (vertical length of motion quartet divided by horizontal length) as determined in the threshold measurements. Exp. 1 and Exp. 2,
ratios between vertical and horizontal values for sum of durations and phase durations. For optimal bistability, the ratio values should be 1.
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mean of the correlation coefficients. For the Passive and
Hold conditions, correlation coefficients were below .10
and non-significant (p > .30), similar to other multistable
stimuli. In contrast, for both quartet sizes correlations
between subsequent periods in the Switch condition were
positive and significant: small quartet: r = 17, F(1, 466) =
14.648, p < .001; large quartet: r = .23, F(1,586) = 32.713,
p < .001.

For the small quartet, the average absolute phase dura-
tion for the Passive condition was 16.8 s (range, 8.3–41.0 s).
The value for the Hold condition was 29.4 s (range, 15.4–
77.5 s) and 8.5 s (range, 2.2–18.8 s) for the Switch condi-
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tion. The respective values for the large quartet were Pas-
sive—17.5 s (range, 7.3–38.0 s); Hold—32.5 s (range,
12.8–98.0 s); Switch—7.2 s (range, 2.2–21.3 s). This indi-
cates that participants were able to substantially increase
and reduce phase durations. As can be seen from Fig. 3,
this effect was present in every single observer. The group
analysis was performed with a repeated-measures MANO-
VA on the normalized phase durations with the factors
‘instruction’ (Hold, Passive, Switch) and ‘size’ (small and
large quartet). There was a significant effect for ‘instruc-
tion’ (Pillai’s trace = .798, F(2, 9) = 17.825, p < .001), but
no other effects reached significance (p > .25). With large
 Quartet
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quartets, phase durations in the Hold condition were
increased by 92% relative to the Passive condition, the
increase with small quartets was 83%. In the Switch condi-
tion, normalized phase durations were reduced by 58%
with large quartets and only by 47% for small quartets.

3.3. Experiment 2

In Experiment 2, we wanted to probe the influence of
spatial attention on the dynamics of percept changes. In
psychophysical (Chaudhuri, 1990) and imaging studies
(Murray & Wojciulik, 2004), it could be demonstrated that
attention enhances adaptation of sensors. We wanted to
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test (a) whether the same holds true for bistable stimuli,
(b) whether it is specific to the perceived direction, and
(c) how strong the modulatory effect would be. To this
end, we manipulated the focus of attention by a demanding
detection task in the center of the screen (Task condition).
Observers had to monitor a character stream and detect the
numerical characters among letters (Chaudhuri, 1990). At
the same time, they had to report the direction of motion
in the motion quartet. In the Passive condition, observers
had to maintain fixation on the same character stream
but did not perform the detection task. To mimic the pos-
sible influence of button presses and for a minimal dual-
task demand, participants had to randomly press the but-
ton used in the Task condition.

Data analysis was similar to Experiment 1. First, we
assessed the dynamics of perceptual changes for the differ-
ent conditions. Again all distributions could be fit with a
gamma function (Kolmogorov–Smirnov test, p > .25), but
the distributions in the Task condition deviated qualita-
tively from the typical pattern (see Fig. 4). In terms of
the autocorrelation functions, no significant lag-1 correla-
tions between phases were found in any condition
(p > .10). The absolute mean phase durations for the Task
condition were 40.8 s (range, 20.3–106.5 s; small quartet)
and 41.8 s (range, 16.3–119.0 s; large quartet). In the Pas-
sive condition, the respective values were 34.7 s (range,
11.2–67.0 s) and 29.8 s (range, 11.5–108.5 s). For Experi-
ment 2, the average phase durations in the Passive condi-
tion were longer than for Experiment 1, which might be
due to the button-press task and the character stream at
fixation. The normalized durations were analyzed using a
repeated-measures MANOVA with factors ‘instruction’
(Task and Passive) and ‘size’ (small and large quartet,
Fig. 5). The only significant effect was found for ‘instruc-
tion’ (Pillai’s trace = .363, F(1, 10) = 5.697, p = .038). The
effects for ‘size’ and the interaction were non-significant
(p > .10). Also in Experiment 2, the modulation strength
was descriptively greater for the large than the small quar-
tets (1.97 vs. 1.46 normalized phase durations). This differ-
ence did not reach significance due to high inter-individual
variance of results in Experiment 2 (see Fig. 5).

3.4. Control experiments

Experiments on bistable perception rely on observers’
subjective reports for the quantification of percept dura-
tions. When participants have explicit instructions to mod-
ify their conscious perception (Experiment 1), it is possible
that they deviate from veridical reports to conform to task
demands. Also, in dual-task conditions (Experiment 2),
observers could be sufficiently distracted to miss switches
in conscious perception. To control for these factors, we
measured three participants in runs where periods of
unambiguous motion would occasionally occur. Observers
were not informed about the manipulation and only
received the usual instructions for the respective
conditions. Two of the observers rarely missed any of the
to see: The role of intention and attention ..., Vision Research
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catch trials and there was no significant difference between
conditions in both experiments (p > .9). The third partici-
pant had a substantial amount of errors, but, again, there
was no apparent difference between conditions (p > .7).
This confirms that our results can neither be explained by
task demand alone nor by misses under dual-task
conditions.

Another confounding factor that could influence percep-
tual switches differentially with respect to the different tasks
is eye movements. We tracked eye movements in three par-
ticipants of the main experiment. Blinks were identified by
inspection and analyzed separately with a chi-square test.
None of the observers showed any significant difference
between conditions in both experiments for the number
of blinks (p > .25). The blink-corrected data were also plot-
ted to look for deviations in fixation patterns (Figs. 6 and
7). Surprisingly, the only apparent difference was that fixa-
tion was more focused for the Switch condition in Experi-
ment 1. Therefore, the increased number of perceptual
transitions in the Switch condition cannot be explained
by a concomitant increase in eye movements.

4. Discussion

In our experiments, we investigated the effect of voluntary
control (Experiment 1) and attentional focus (Experiment 2)
on the perceived direction of movement in the ambiguous
Please cite this article in press as: Kohler, A. et al., Deciding what
(2008), doi:10.1016/j.visres.2007.11.020
motion quartet. We also tested the influence of distance/
eccentricity of stimuli on the modulation magnitude.
Observers’ ability to influence their movement percept was
substantial. With the corresponding instructions, they could
almost double (Hold) and more than halve (Switch) the
phase durations for horizontal/vertical motion. This effect
was descriptively stronger for the large compared to the
small quartets. A comparable modulation effect—at least
in magnitude—was found in Experiment 2, where in one
condition observers had to perform an attention-demanding
center task while tracking perceived movement of the motion
to see: The role of intention and attention ..., Vision Research
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Fig. 6. Eye-Movement Analysis for Experiment 1. Fixation density plots for two observers in three conditions of Experiment 1. Data were collapsed
across large and small quartets. It is evident that participant were well able to hold fixation during experimental sessions. Fixation was most focused for
the Switch condition.
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quartet. Through this manipulation, percept durations were
increased by up to 100%. The effect was again descriptively
stronger for the large quartet, but there was a large amount
of variance across participants.

The dynamics of perceptual alternations for both exper-
iments were comparable to other multistable phenomena.
Most of the distributions were well fit by a gamma distribu-
tion and in almost all cases correlation coefficients were
small and non-significant. There were two notable excep-
tions: (a) In the Switch condition of Experiment 1, the cor-
relations between subsequent phase durations were
significant with a medium-to-small effect size. This cannot
be due to differences between participants since we calcu-
lated the correlation coefficients individually and then per-
formed a weighted average. During the experiments,
observers reported the Switch condition to be the most
demanding one of all conditions because it required a lot
of effort to constantly try to change the movement direc-
tion against the prepotent tendency of the percept to stay
constant immediately after a switch. It is possible that
observers’ vigilance and effort drifted or oscillated slowly
over the duration of a two-minute trial, which would lead
Please cite this article in press as: Kohler, A. et al., Deciding what
(2008), doi:10.1016/j.visres.2007.11.020
to a positive correlation between subsequent percept dura-
tions. Alternatively, participants became more effective in
manipulating their conscious perception and therefore
showed a drift across trial duration. (b) Percept durations
for multistable phenomena are supposed to be gamma-dis-
tributed (Leopold & Logothetis, 1999; Levelt, 1967). In
most conditions, our data sets showed a good fit to the
gamma distribution, although we cannot rule out that
other functions provide an even better fit, as suggested by
Brascamp and colleagues (2005). Only the distributions
for the Switch condition in Experiment 1 were significantly
different from the corresponding gamma fit.

In a previous study, Ramachandran and Anstis (1985)
reported that their observers were able to intentionally
manipulate the movement direction in a quartet display,
but only when the stimulus-onset asynchrony (SOA) was
above 350 ms. The SOA in our experiments was 250 ms,
but, as reported, our participants showed a very strong
control over their conscious perception. The reason for this
difference might be that the distance between dots (more
than 3� visual angle) and also the dot size (1.7�) in our stim-
ulus was much larger than in the study of Ramachandran
to see: The role of intention and attention ..., Vision Research
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Fig. 7. Eye-Movement Analysis for Experiment 2. Fixation density plots for two observers in two conditions of Experiment 2. Data were collapsed across
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and Anstis. The distance between dots in their displays was
40 min of arc and the dot size 3 min of arc; these values are
near the parameter range reported for short-range appar-
ent motion displays (Braddick, 1980). Therefore, it is pos-
sible that there are qualitative differences between stimuli
with different distances and dot sizes. We explicitly tested
the scaling of voluntary control with distance between dots
and found an enhancement of control, which did not reach
statistical significance.

A recurrent concern in the investigation of multistable
displays is the systematic influence of eye movements. This
issue has been extensively studied for binocular rivalry
(Blake, Fox, & McIntyre, 1971; Lack, 1971), where it has
been shown that percept alternations do not exclusively
depend on eye movements. But it is still possible that eye
movements play a significant role, especially when partici-
pants receive explicit instructions to control their conscious
perception. In a recent series of experiments, van Dam and
van Ee (2006) meticulously investigated the relationship
between perceptual alternations and eye movements in dif-
ferent perceptual-rivalry as well as binocular-rivalry para-
digms. They found that there was a positive correlation
between percept changes and saccades in binocular rivalry
but not for perceptual rivalry (Necker cube and slant riv-
alry). Notably, this pattern did not change when observers
Please cite this article in press as: Kohler, A. et al., Deciding what
(2008), doi:10.1016/j.visres.2007.11.020
had explicit instructions to influence their percept, suggest-
ing that voluntary control is not exerted through saccades.
We explicitly controlled eye movements in our experiments
and are able to confirm previous results that voluntary con-
trol of perceptual switches cannot be explained by differen-
tial eye-movement patterns.

There has been a recent resurgence of interest in the
amount of voluntary control and the influence of spatial
attention on rivaling stimuli (Chong & Blake, 2006; Chong,
Tadin, & Blake, 2005; Hancock & Andrews, 2007; Meng &
Tong, 2004; van Ee, 2005; van Ee, van Dam, & Brouwer,
2005), especially binocular rivalry but also other types of
perceptual rivalry. Meng and Tong (2004) compared the
amount of control for different types of binocular rivalry
and the Necker cube. They could show that voluntary
selection of one of two possible percepts is well possible
with the Necker cube but not with binocular rivalry. The
modulation strength was about 40% for the Necker cube
and only 10% for binocular rivalry. In addition, they tested
non-selective control of the bistable stimuli, i.e., a non-spe-
cific increase or decrease in alternation rate. In this case,
for both stimulus types they found a strong influence on
alternation rates, especially for the speed-up of percept
switches; the effect for the Necker cube was comparable
to the results we found in Experiment 1, the effect for bin-
to see: The role of intention and attention ..., Vision Research
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ocular rivalry was weaker. A major difference to our exper-
iment was that participants in Meng and Tong’s study
could slow down the alternation rate of the Necker cube
and binocular rivalry only by about 30%, whereas our par-
ticipants could almost double phase durations in the Hold
condition of Experiment 1. Similar results to those of Meng
and Tong were reported by van Ee and colleagues (van Ee,
2005; van Ee et al., 2005). In addition to the Necker cube
and binocular rivalry, they also investigated the recently
developed ‘slant rivalry’ paradigm (van Ee, van Dam, &
Erkelens, 2002), where the interpretation of depth structure
is ambiguously determined either by perspective cues or
disparity. Interestingly, slant rivalry showed the highest
susceptibility to control and also had the longest domi-
nance durations during passive viewing (about 6 s). Our
stimulus has even longer natural dominance durations
(about 20–30 s) and could easily be controlled voluntarily.
It is possible that longer natural dominance durations facil-
itate the exertion of voluntary control, although this factor
cannot exhaustively determine the degree of modulation.
For example, the Necker cube has about the same natural
dominance duration as binocular rivalry but is much more
prone to selective influence.

In a series of experiments, Chong and colleagues could
show that, under specific conditions, the selective effects
of attention on binocular rivalry can be substantial (Chong
& Blake, 2006; Chong et al., 2005). They found an increase
of dominance durations of up to 80% when participants
were engaged in an attention-demanding task on one of
the rivaling targets (Chong et al., 2005). This modulation
could be mimicked by increasing the contrast for the stim-
ulus of interest during its dominance phases, suggesting
that attention does in fact enhance perceived contrast, as
has been suggested by other studies (Carrasco, Ling, &
Read, 2004). They argue that the task is a necessary prere-
quisite for the effect of attention and explains the differ-
ences to the other studies described above, in which
participants were only instructed to manipulate their con-
scious perception. What implications do the data of Chong
and colleagues have for our results? Is it possible that the
voluntary control of the motion quartet found in Experi-
ment 1 and the attentional modulation of Experiment 2
rely on the same mechanism of contrast enhancement
through attention? This is unlikely given the following
arguments: (a) Observers could enhance as well as reduce
dominance durations in Experiment 1, whereas in Chong
et al.’s study attention only enhanced the duration of the
attended percept. (b) The mechanism would have to act
selectively on a specific motion direction. If one assumes
that only the contrast of the inducing stimuli can be
enhanced, this would be insufficient since the inducers are
part of all possible stimulus interpretations. (c) The mech-
anism of Chong et al. cannot apply to Experiment 2. There
we found an effect that was exactly opposite to what one
would expect from a contrast–enhancement mechanism.
When attention was drawn away from the stimulus, per-
cept durations were significantly increased. Therefore,
Please cite this article in press as: Kohler, A. et al., Deciding what
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stimulus representations were actually weaker when atten-
tion was directed towards the motion quartet. This implies
that quite different mechanisms are at play in ambiguous
apparent motion and binocular rivalry.

So what are possible explanations for the effects of vol-
untary control and attention on the perception of the
motion quartet? In Experiment 1, observers were able to
change or hold their perception of movement with a high
degree of control. It has been shown in electrophysiological
(Martı́nez-Trujillo & Treue, 2002; Treue & Martı́nez-Truj-
illo, 1999; Treue & Maunsell, 1996) and imaging studies
(Beauchamp, Cox, & DeYoe, 1997; Muckli, Kohler, Krieg-
eskorte, & Singer, 2005; O’Craven, Rosen, Kwong, Treis-
man, & Savoy, 1997; Rees, Frith, & Lavie, 1997; Saenz,
Buracas, & Boynton, 2002) that neuronal activity can be
influenced substantially by the attentional focus of observ-
ers. Especially the electrode recordings by Treue and col-
leagues in the macaque monkey could establish that not
only observers’ spatial focus of attention has an influence
but that there are also specific effects for certain motion
directions, which could be confirmed for humans in psy-
chophysical (Alais & Blake, 1999) and imaging experiments
(Saenz et al., 2002; Serences & Boynton, 2007). This means
that we are able to selectively boost the representation of a
certain direction of movement in a stimulus, comparable to
the effect of spatial attention on stimuli presented at a cer-
tain location. This bias would be expected to be especially
effective in determining conscious perception when a stim-
ulus is ambiguous with respect to movement direction, as it
is the case for the motion quartet. Slight increases in repre-
sentation strength for one direction would tip the balance
towards the intended percept. This effect might be
especially strong for motion, since motion-processing
areas show the highest degrees of attentional modulation
(Muckli et al., 2005; O’Craven et al., 1997). Prefrontal
cortex and possibly parietal areas might be the target struc-
tures responsible for the control of spontaneous and volun-
tary switches (Sterzer & Kleinschmidt, 2007; Windmann,
Wehrmann, Calabrese, & Güntürkün, 2006).

In Experiment 2, percept durations were increased by up
to 100% on average when observers had to perform an
attention-demanding task at fixation. A similar effect has
been described for the motion aftereffect (Chaudhuri,
1990). In this study, the same center task as in our experi-
ment was used to divert observers’ attention from an
adapting unidirectional motion stimulus. Compared to
the passive-viewing condition, the duration of the follow-
ing motion aftereffect was considerably reduced with the
attention task, a result also confirmed in later studies
(Georgiades & Harris, 2000, 2002a, 2002b; Lankheet &
Verstraten, 1995; Rezec, Krekelberg, & Dobkins, 2004).
Although the exact neuronal mechanisms of the motion
aftereffect are not known yet (Culham et al., 1999; Huk,
Ress, & Heeger, 2001; Tootell et al., 1995; for a review
see Anstis, Verstraten, & Mather, 1998), it is widely
assumed that adaptation of direction-selective cells is the
underlying cause. Adaptation processes have also often
to see: The role of intention and attention ..., Vision Research
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been adduced as explanation for percept changes in ambig-
uous apparent motion (Anstis, Giaschi, & Cogan, 1985;
Clatworthy & Frisby, 1973; Finlay & von Grünau, 1987;
Muckli et al., 2002; Selmes et al., 1997). For our results,
this would imply that phase durations are prolonged by
the attention task because adaptation for the perceived
motion direction is reduced and therefore it takes more
time to sufficiently reduce the strength of the dominant per-
cept for a switch to occur. An alternative to the adaptation
model has been proposed by Hock and colleagues (Hock,
Schöner, & Hochstein, 1996). In their experiments, they
found that adaptation might have a minor influence on
perceptual switches in ambiguous apparent motion, but
that the main causing factor is spontaneous activity fluctu-
ations that can randomly tip the balance towards one per-
cept or the other. On their account, a possible explanation
for our results would be that diverting attention from the
motion quartet in our experiments reduces the variance
of spontaneous fluctuations and thereby leads, on average,
to extended dominance durations.

In conclusion, we found substantial modulation of con-
scious perception of the motion quartet in a large sample of
observers when they were instructed to voluntarily control
motion direction. Moreover, a comparably large effect was
observed when their spatial attention was drawn away
from the motion quartet. Voluntary control might be
achieved through feature-selective attentional mechanisms
that boost one stimulus interpretation over the alternative.
The effect of spatial attention can be explained by modula-
tion of adaptation processes. When attention is drawn
away, adaptation to the currently perceived motion direc-
tion is reduced, prolonging the phase duration of the dom-
inant percept.
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