
Time series analysis

Session III



Outline
• Time-Frequency Representations (TFR)
• short-time fourier transform
• uncertainty principle
• Wavelets
• Phase analysis



Time-frequency analysis
• Why TFR?
• all the information is in the TS 

or in the FT of TS
• maybe not easily 

accessible
• TFR increase 

redundancy and 
intelligibility!
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Time-frequency analysis
• Why TFR?
• FFT assumes stationarity!
• no time information
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TFR with FFT
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Short-time FT
• S = spectrogram(x,window,noverlap,nfft,fs);
• spectrogram(mtlb,hanning(256),200,256,Fs);
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Exercise
• specgramdemo



Problem with STFT
• time-frequency resolution is not optimal
• shorter window => better time resolution => decreased 

frequency resolution



Uncertainty principle
• trade-off: localisation in time or frequency domain

Time domain Frequency domain



Uncertainty principle
• trade-off: localisation in time or frequency domain
• gaussian has same localisation in time and frequency 

domain
Time domain Frequency domain
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Uncertainty principle
• duration*bandwidth >= constant
• signals can not be localised with arbitrary precision in 

time and frequency domain



Wavelets
• introduced 1983 (Morlet, Grossmann)
• Morlet wavelet: cosine weighted with a Gaussian
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TFR with Wavelets
• correlating the signal with scaled and shifted wavelets
• what is scale? similar to frequencies in fourier analysis
• stretching or compressing a wavelet 
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computing the TFR
1. correlate your wavelet with the beginning of your TS
2. shift your wavelet and correlate again
3. repeat step 2 until you reach the end of TS
4. scale your wavelet and repeat steps 1-3
5. repeat 1-4 for all desired scales (frequencies)
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TFRs in Fieldtrip
easy comparison between methods

cfg = [];
cfg.output = 'pow';
cfg.method = 'mtmconvol';
cfg.taper = 'hanning';
cfg.foi = 2:2:30;
cfg.t_ftimwin = ones(length(cfg.foi),1).*0.5;
cfg.toi = -1:0.05:3;
freq = freqanalysis(cfg, data);



TFRs in Fieldtrip
easy comparison between methods

cfg = [];
cfg.output = 'pow';
cfg.method = 'mtmconvol';
cfg.taper = 'hanning';
cfg.foi = 2:2:30;
cfg.t_ftimwin = 5/cfg.foi;  %5 cycles !
cfg.toi = -1:0.05:3;
freq = freqanalysis(cfg, data);

similar to wavelet analysis (windowing is different)



Plotting the TFR

cfg = [];
%cfg.baseline = [-0.5 -0.1];     
%cfg.baselinetype = 'relative';
cfg.channel = 'S1c';
singleplotTFR(cfg, freq);
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Plotting the TFR
pcolor(freq.time,freq.freq,squeeze(freq.powspctrm(1,:,:)));
shading interp



TFRs with wavelet
easy comparison between methods

cfg = [];
cfg.output = 'pow';
cfg.method = ‘wltconvol';
cfg.width = 5;
cfg.foi = 2:2:30;
cfg.toi = -1:0.05:3;
freq = freqanalysis(cfg, data);



Exercise
1. compute and plot TFR with STFT 

(modify window length)
2. repeat step 1 with wavelets
3. repeat step 1 with multitapers
4. use singleplot and compare absolute 

and relative power



Practical considerations
• Wavelets

– length of wavelet determines time-frequency resolution 
(short wavelet – poor frequency resolution)

– rule of thumb: not less than two cycles
– wavelets provide better time-frequency resolution than STFT 

(they adapt with frequency, long for low frequencies, short for 
high frequencies)

– product of frequency and time resolution remains constant for 
different frequencies (not true for STFT).



Practical considerations
• Multi-taper

– allows smoothing in frequency domain
– in fieldtrip time windows can be adapted



Remarks
• there is no single correct TFR
• each method emphasises different aspects of the signal
• ideally: use several techniques and vary parameters



Phase analysis
• aim: detect phase-locking (preferred, non-random 

phase)
• for example: phae locking to stimulus
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Phase analysis
1. normalize complex number of 1
2. compute mean of complex numbers
3. compute absolute value
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Phase-locking
%freq = freqanalysis(cfg, data);
freqnorm=freq.fourierspctrm./abs(freq.fourierspctrm);%still complex
PLV=abs(mean(freqnorm,1));%average over trials
pcolor(freq.time,freq.freq,PLV);shading interp; colorbar
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Phase-locking
• can be computed between two time series
• here you want to detect preferred phase difference
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Phase-locking
cfg.output = ‘powandcsd';
freq = freqanalysis(cfg, data);
cfg.cohmethod = ‘PLV’;
PLV = freqdescriptives(cfg, freq);
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