Time series analysis
Matlab tutorial

Joachim Gross
Outline

• Terminology
• Sampling theorem
• Plotting
• Baseline correction
• Detrending
• Smoothing
• Filtering
• Decimation
Remarks

- Focus on practical aspects, exercises, getting experience (not on equations, theory)
- Focus on “How to do …”
- Learn some basic skills for TS analysis

- Note: Usually there is not a single perfectly correct way of doing a TS operation!
 => learn the limitations!
What is a time series?

A sequence of measurements over time
Terminology

– Continuous TS: continuous observations
– Discrete TS: observations at specific times usually equally spaced

– Deterministic TS: future values can be exactly predicted from past values
– Stochastic TS: exact prediction not possible
Objectives of TS analysis

- Description
- Explanation
- Prediction
- Control
Simple descriptive analysis

Summary statistics (mean, std) is not always meaningful for TS
Sampling

- Converting a continuous signal into a discrete time series
- **Reconstruction is possible if sampling frequency is greater than twice the signal bandwidth**

![Graphs showing 75 Hz sampling](image-url)
Sampling

- Nyquist frequency: half of sampling frequency

![10 Hz sampling](image1)

![10 Hz reconstruction](image2)
Sampling

- Aliasing: Frequencies above Nyquist frequency are reconstructed below Nyquist frequency

8 Hz sampling
Sampling

- Aliasing: Frequencies above Nyquist frequency are reconstructed below Nyquist frequency

40 Hz sampling

8 Hz sampling
Simple operations on TS

- Plotting
- Removing a baseline
- Removing a trend
- Smoothing
- Filtering
- Decimation
Plotting in Matlab

- For visual inspection of TS
- For publications/talks

- plot
- sptool
Data preprocessing I

- Removing offset
- \(ts = ts - \text{mean}(ts) \);
Data preprocessing I

- Removing a baseline
- \(\text{basel} = \text{find}(t \leq 0); \)
- \(\text{ts} = \text{ts} - \text{mean}(\text{ts}(ext{basel})); \)
Data preprocessing II

- Removing a trend
- `ts=detrend(ts);`
- subtracts best fitting line
- `detrend` can be used to subtract mean: `detrend(ts,’constant’)`
Data preprocessing III

- Smoothing
- \(ts = \text{filter(ones(1,30)/30,1,ts)}; \) % mean filter, moving average
- uses zeros at beginning!
- => baseline correction or do not use first 30 samples
Data preprocessing III

- introduces a shift! => either correct for it or
- ts=filtfilt(ones(1,15)/15,1,ts); % mean filter, forward and reverse
- no shift!
- filter can take any smoothing kernel (gaussian, etc)
Data preprocessing III

- Smoothing
- \(ts = \text{medfilt1}(ts, 30); \) %median filter, takes into account the shift
- uses 0 at beginning and end!
Data preprocessing III

- Smoothing
- `ts=sgolayfilt(ts,3,41);` \%Savitzky-Golay filter
- fits 3rd order polynomial to frames of size 41
- good at preserving high frequencies in the data
Data preprocessing III

- Smoothing
- compare unsmoothed and smoothed data
- check for shift
- check beginning (and end) of the smoothed time series
Exercise 1
Data preprocessing IV

- Filtering
- **FIR-Filter** (finite impulse response)
 - stable
 - high filter order
 - usually have linear phase
 (phase change is proportional to frequency)
- **IIR-Filter** (infinite impulse response)
 - potentially unstable
 - low filter order
 - non-linear phase distortion
 - computationally efficient
Data preprocessing IV

- IIR-Filter:
 - Butterworth
 - Elliptic
 - Chebychev Typ 1
 - Chebychev Typ 2
 - Bessel

- FIR-Filter:
 - fir1
Data preprocessing IV

- lowpass
- highpass
- bandpass
- bandstop

dB is logarithmic unit
0dB = factor of 1
3dB = factor of 2
10dB = factor of 10

5 Hz lowpass
Data preprocessing IV

- lowpass
- highpass
- bandpass
- bandstop

dB is logarithmic unit
0dB = factor of 1
3dB = factor of 2
10dB = factor of 10

30 Hz highpass
Data preprocessing IV

- lowpass
- highpass
- **bandpass**
- bandstop

dB is logarithmic unit
0dB = factor of 1
3dB = factor of 2
10dB = factor of 10

2-30 Hz bandpass
Data preprocessing IV

- lowpass
- highpass
- bandpass
- **bandstop**

dB is logarithmic unit
0dB = factor of 1
3dB = factor of 2
10dB = factor of 10

30-40 Hz bandstop
Simple design: FIR

- \[[b]=\text{fir1}(4,2*4/sf); \] %4 Hz lowpass
- \[[b]=\text{fir1}(4,2*4/sf,'high'); \] %4 Hz highpass
- \[[b]=\text{fir1}(4,2*[4\ 10]/sf); \] %4-10 Hz bandpass
- \[[b]=\text{fir1}(4,2*[4\ 10]/sf,'stop'); \] %4-10 Hz bandstop

- \[\text{tsf} = \text{filter}(b,1,\text{ts}); \]
- \[\text{tsf} = \text{filtfilt}(b,1,\text{ts}); \] %forward and reverse
Simple design: IIR

- \([b,a]=\text{butter}(4,2\times4/sf);\) %4 Hz lowpass
- \([b,a]=\text{butter}(4,2\times4/sf,'\text{high}')\); %4 Hz highpass
- \([b,a]=\text{butter}(4,2\times[4\ 10]/sf);\) %4-10 Hz bandpass
- \([b,a]=\text{butter}(4,2\times[4\ 10]/sf,'\text{stop}')\); %4-10 Hz bandstop

- \(\text{tsf}=\text{filter}(b,a,ts);\)
- \(\text{tsf}=\text{filtfilt}(b,a,ts);\) %forward and reverse
Simple Inspection

freqz(b,a,100,100);

number of frequencies
Complex design

• fdatool
 – magnitude response
 – phase response
 – impulse response
 – compare filters
 – effect of changing filter order
Filter artifacts

- onset transients
Filter artifacts

- ringing
Filter artifacts

- ringing

filter, 20 Hz lowpass (12th order Butterworth) filtfilt
Filter artifacts

- beginning and end of filtered ts is distorted
- filtering artifacts is dangerous
- filtering may change the latency of effects!
- filtering may change the phase
Suggestions

• be careful with low frequencies
• use low order butterworth forward and reverse (to avoid phase distortions)
• carefully check beginning and end of filtered ts
• make sure you don’t have artifacts in the data
• use surrogate data (filtered noise)
Data preprocessing V

- Decimation
 - `ts=decimate(ts,4);`
 - `decimate` uses a lowpass filter to avoid aliasing artifacts
Exercises 2-4