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No oscillation in equilibrium
Alternating increase/decrease of speed

(O = x,(: angular position [rad]
x,(t): angular velocity [rads]
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LECTURE SUMMARY LEARNING OBJECTIVES
1 Oscillations: Mechanisms of generation and | Students will be able to:
to | Analysis 1. describe mechanisms by which neuronal
3 elements give rise to oscillatory activity

2. explain how brain activity can be measured by
magneto- and electroencephalography (MEG,
EEG)

3. deseribe the main features of oscillations (such
as amplitude, phase, fiequency). and how they
cn be anaylzed and interpreted

Oscillations: Relation to evoked activity Students will be able to:
to 4. describe the main models relating evoked and
6 induced brain activities

5. explain the implications of these models of
oscillatory activity for models of cognition

7 [ “Oscillations: Functions and methods of | Students will be able to:

to | interventions 6. describe experiments/paradigms on the role of

10 oscillations in vision, attention, memory and
cognition

7. explain how different features of brain
oscillations (frequency, phase, amplitude,
coherence) are thought to relate to the brain
operations underliyng the above processes

8. discuss pitfalls in the interpretation of
MEG/EEG-signals due to muscular activity
(e.g. gamma and microsaccades)

9. discuss interventional methods to manipulate
brain oscillations and possible

University . o 7 .
of Glasgow Functional brain imaging

Spatial Resolution

20 1
15 |

i EEG

£

$

£ 10

£

MEG

54 fMRI PET
0

T T T T T T T
001 01 1 10 10 100 1000
seconds

Temporal Resolution

University Oscillations
of Glasgow

Amplitude
Frequency

Phase AWALAAAL ‘;‘ﬂ\ I [ |Amplitude

RYAVETRTAVAYRVEVEN)
AEVEXYARY

V

i) University
of Glasgow
10,000,000,000,000,000 — _
1,000,000,000,000,000 — MRI
100,000,000,000,000 —
10,000,000,000,000 —
1,000,000,000,000 — | Environmental
100,000,000,000 Noise
10,000,000000 . EARTH STEADY FIELD
1,000,000,000 __
100,000,000 — URBAN NOISE
10,000,000 —
1,000,000 _
100,000 HEART (QRS) | Physiological
10000 _ SKELETALMUsCLE _| Noise
1,000 __ EPILEPTIC SPIKE
Magnetic Field 100 EVOKED RESPONSE [ MEG Signals
Strength LU - = Limitof Magnes
(Femtotesla) 1 _ SQUID NoISE Resolution
s




i University
% of Glasgow

What are we measuring?
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Brain oscillation

a-waves: passive EEG.

|

9-waves: sleep state 1(8)
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B-waves, superimpused by 16/sec waves: sleep state 3(0)

Predominantly p-waves: active EEG

large 9-and 8- waves: sleep state 4(E)
Slow 6 waves: coma or locel 8- focus
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e
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Neuronal oscillations
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We need two opposing forces/effects
In the brain these are: excitation, inhibition

3 mechanisms:

1. Pacemaker cells

2. Local generator

3. Thalamo-cortical generator
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How are we measuring?
SQUIDS

Shielded room
(noise cancellation)

University Magnetically shielded room (MSR)
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Direct measurement of neural
activity with high temporal and
good spatial resolution

Magnetoencephalography
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Preprocessing

Source localization

Analysis in time and frequency domain
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fitting a function with sinusoids
transformation of time series to frequency domain

1 functions 2 functions
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2 s, occipital sensors
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2 of Glasgow Preprocessing

Filtering

Artifact rejection/correction

External: 50Hz line noise, magnetic noise, Jumps
Internal: Eye, heart, muscle, movements
Decimation
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fitting a function with sinusoids
transformation of time series to frequency domain
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Why TFR?
FFT assumes stationarity!

no time information
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S = spectrogram(x,window,noverlap,nfft,fs);
spectrogram(mtlb,hanning(256),200,256,Fs);

°

M‘ M M‘W‘ ) ,

& m\'“

005 0.1 015 02 025 03 035 04 045 05 OF005 o1 015 02 025 08 03 04 045 05




University
of Glasgow

Time-Frequency analysis
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aim: detect phase-locking (preferred, non-random
phase)
for example: phae locking to stimulus
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Short presentation of papers:

* Ploner, Gross, et al., ‘Pain suppresses
spontaneous brain rhythms’. Cerebral Cortex,
2005

* Kilner, Salenius, et al. “Task-Dependent
Modulations of Cortical Oscillatory Activity..”,
Neuroimage, 2002

* Pfurtscheller, Zalaudek, et al. “Event-related beta
synchronization ...”, Electroencephalography and
Clinical Neurophysiology, 1998
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Oscillations:

-1 regor Thi
Covers e.g.:

Papers:

New methods in
research on oscillations
beyond EEG/MEG —

* Low-frequency alpha
(theta) oscillations

* High-frequency gamma
oscillations

Pitfalls in interpreting
oscillatory activity

Interventional techniques

New findings on the
alpha-frequency band
(interfacing visual
input regulation and
memory)

* Role in low-level
vision (input control)
* Role in high-level
vision (feature
binding, and others)

The emg
contamination

« Thut G, Miniussi C. New

insights into rhythmic brain
activity from TMS-EEG studies.
Trends Cogn Sci 2009 13:182-9.
+ Sauseng P et al. Brain
oscillatory substrates of visual
short-term memory capacity. Curr
Biol 2009 19(21):1846-52.

~Schroeder CE, Lakatos P. Low-
frequency neuronal oscillations
as instruments of sensory
selection. Trends Neurosci
2009 32(1):9-18.

-Uhlhaas PJ, etal. Neural
synchrony in cortical networks:
history, concept and current
status. Front Integr Neurosci
2009 3:17

+ Yuval-Greenberg et al. Transient
induced gamma-band response in
EEG as a manifestation of
miniature saccades. Neuron.
2008 58(3):429-41

« Melloni L et al. (Micro)Saccades,
corollary activity and cortical
oscillations. Trends Cogn Sci

2009 13(6):239-45.

With a focus on predictive oscillations (lectures 8-9)




