
Consequences of Postponing Data Modelling to Allow Flexible Data Collection

Steve Draper
University of Glasgow
s.draper@psy.gla.ac.uk

Richard Thomas
University of Western Australia

richard@csse.uwa.edu.au

Rebecca Mancy
University of Glasgow
mancyr@dcs.gla.ac.uk

Abstract

Current technology is opening up the possibility of

interactive investigations, where data analysis is only
determined after data collection. What might normally be
called data cleaning thus becomes a major phase of analysis
and software development since it must take over the functions
formerly performed by analysis before any data was collected.
Early experience of this is described, and its implications
discussed.

1. REDDIs

Falling prices and expanding capacity on bulk digital

storage, together with increased network bandwidths allow us
to consider collecting more data than ever before with less and
less need for a precise advance idea of its uses. This is
occurring both in research and in industry (e-commerce
purchase logging, stock market). In support of this, data
mining has also provided examples of important discoveries
from data collected for another purpose. The Generic Remote
Usage Measurement Production System (GRUMPS) [2] [3]
project is exploring these current and emerging technical
possibilities.

The new flexibility supports investigations that are neither
traditional database approaches, where collection and
processing are carefully designed in advance, nor data mining
where again collection is fixed in advance, but then
retrospective and often speculative analyses are done post hoc.
We call this emerging middle ground REDDIs: Rapidly
Evolving Digitally-Derived Investigations. These may have
no prior hypothesis, do not usually control or manipulate the
circumstances being studied, and often involve changes in
what is collected in the light of successive examinations of the
data.

In the GRUMPS project, collection is from any source that
produces digital data e.g. CCTV. The collector used for the
work described here was the User Action Recorder (UAR).
The UAR can run on any Windows machine, using Windows
system calls (events) to capture keystrokes, mouse moves,
window events etc. without having access to the source code
of the applications. The example we discuss here is the
collection of such data in a first year student programming

laboratory. The UAR was used to collect user interface events
from the first year Ada programming laboratories at the
Department of Computing Science, University of Glasgow. In
spring 2003, 141 students consented to participate, yielding
4.7 million events over 2655 user sessions (periods between
login and logout).

The first question that we investigated using this data
aimed to look for an indication of student persistence with
programming tasks by looking at pause times in the
programming environment [7].

2. The Collection Data Schema

A consequence of collecting data without being aware of

its potential uses at system design time, is that there should be
minimal fixed attributes in the data model. Much of what is
particular to the case should be encoded in XML fields, and
the repository schema optimised for rapid collection.

Figure 1. The collection data schema

However, proceeding in this manner does not avoid, but only
postpones, the work of data modelling – developing a structure
that reflects the real-world meaning of the data – that is
classically carried out at design time. Data modelling may be
carried out in various paradigms such as object oriented,
aspect oriented, procedural, or in the case of database
applications, ER (Entity Relationship) analysis.

<p>gexecute.exe</p><wl>23</wl><wt>
54</wt><wr>916</wr><wb>678</wb>
<ws>nor</ws> …

3. The data transformations required

Intuitively, it is easy to see that the UAR and the data it
collects hold possibilities for multiple and varied
investigations. Generally speaking, the data is particularly
useful for studies that are longitudinal in nature, that are
concerned with usage across applications or that may evolve
over time. For example, a study has been looking at keystroke
data to determine typing speeds and set-up times and their
evolution over time, linking back to success in programming.
The same data are being used for researching how people
recover from interruptions [6] and another researcher is
interested in possible differences between window layout
between male and female subjects.

The data collected from the UAR are very general, and so
useful for multiple investigations. However, they are recorded
at a very low level of abstraction and it is therefore a difficult
task to search these data for patterns related to the high-level
research questions detailed above. In order for the data to be
useful to the investigators, they must be transformed to a level
of abstraction appropriate to the research question. For
example, in the investigation concerning perseverance with
programming tasks, data at the level of individual keystrokes
is not useful, but become so, re-expressed in terms of user-
sessions, and summaries of the number of compiles, builds,
and runs.

Figure 2. Example client’s representation

Data processing is therefore organised into two major
phases. These phases join at a “lynch pin” data format, the
client’s representation, that allows the data to be represented,
not at the level of data collectors, but at a basic level of
domain meaning. There is substantial software work to be
done in both these phases: in constructing and computing this
client’s representation from the raw data, and then doing
various further analyses on it. In the data mining area, the
software work for phase 2 would be carried out using various
statistical tools, whereas in more traditional database
applications this stage would be done by “reports”: various
custom-made data processing procedures. In both these areas
however, phase 1 would be largely accomplished at design
time, when the data model was laid down based on a careful
but fixed analysis, and any processing done in effect by the
database management system. What is different about
supporting REDDIs is that phase 1 must be done after, not

before, data collection, and often changes as the investigation,
along with the client’s ideas, evolve.

Data repository

Client’s representation

Domain-meaningful analysis
(statistics, data mining)

Cleaning, preparation,
transformation

Client’s results

Phase 1

Phase 2

Figure 3. The two major stages in data processing

4. Eliciting the client’s representation

For the purposes of this discussion of phase 1 data

transformation, we will assume the common case of a client
who is an expert only in the domain being studied (in our
example, novice programmer usage studies), and a consultant
who must organise and carry out the phase 1 data preparation
in order to deliver something meaningful for the client to
process further.

The consultant must begin by eliciting from the client a
representation of the data that the latter can work with. The
client’s representation may depend on many factors, such as
the tools (spreadsheet, data mining packages etc.) to be used
by the client, and the skill level of the client with these tools.
However it will probably mainly reflect the client’s
understanding of the meaningful entities in this domain. In the
case of the student perseverance investigation, the
administrator and client worked together to elucidate a
sensible form for the client’s representation: figure 2 (and also
figure 5).

However this analysis is in general not fixed for at least
three reasons:

• The definition of an entity may change as understanding
of the case improves during the investigation. For example, in
a lab of student programmers, it is natural to assume that
machine login sessions correspond to a single student and their
work. However if it emerged that typical students logged into
two machines side by side, or conversely that students often
worked in pairs so that one login corresponded to two people’s
work (and typing speeds, etc.), then that way of identifying the
domain-entities in the data would have to be changed.

• The client’s interests will change during the
investigation. Many of these changes in hypothesis will only
affect phase 2 processing e.g. by requiring different statistical
summaries or tests based on the client’s representation, but
sometimes they will require a change in phase 1 processing i.e.
in the entities extracted. For instance, if instead of comparing
compile, build, and run actions for each student, the client
decided to treat sequences of consecutive compile-build-run as
objects in their own right, then this would require a change in
phase 1 data preparation.

• Several clients may come to base investigations on the
same data, as mentioned above. Thus it is very likely that
several distinct client representations will be required.

Thus the dialogue between the client(s) and the consultant
needs to be maintained throughout the duration of the
investigation. As the research questions change, the
consultant needs to ensure that sufficient information is
recorded to enable or facilitate the generation of the client’s
representation.

5. Technical implications for phase 1
transformation

Once the client’s representation is decided upon, the
consultant has to go about transforming the data. Whilst
providing for the client’s needs, two other (partially
conflicting) objectives are noted: (1) re-usability and (2) speed
of query execution. These aim to reduce the effort and time
spent generating the client’s representation at each iteration or
new investigation.

We chose to use the database to do the transformations.
Given the large volumes of data, this was appropriate in order
to benefit from indexing and parallel processing. It is worth
choosing the DBMS carefully, to be sure that it offers the
support required (native XML support, programmability). We
chose to use SQL Server; because it is programmable using T-
SQL, it is appropriate in the case of rapidly changing
demands.

However, manipulating temporal data within the relational
model brings with it difficulties [1]. Sequence information is
lost unless stored explicitly and standard techniques for
calculating durations, for example, may be very slow to
execute. Our experience is that these difficulties can be
circumvented, but new techniques need to be developed.
These must be optimised to run in an acceptable time (a few
minutes rather than a few days) so that development of the
client’s representation and consequently investigations are not
held back.

Our experience showed that different investigations,
because they were based on similar data, often shared
concerns and it was therefore valuable to optimise techniques
and queries for re-use. Using stored procedures provided a
structure for this and allowed the storage of procedures rather
than the intermediate data to avoid further augmenting the data
volumes.

We also found it useful to group investigations according
to shared concerns, and so to develop an intermediate
representation between the raw data and that of several clients,
thus allowing us to calculate several clients’ data fairly easily.

Data repository

Cleaned data

Client’s
Representation 1

Domain-meaningful analysis (statistics, data mining)

Data pre paration

Intermediate representation

Client’s
Representation 2

Client’s
Representation 3

Data pre paration

Initial cleaning

P
hase 1

P
hase 2

Figure 4. Data preparation using an intermediate

representation

6. An Illustrative Case

This case study draws on the example of searching for

indicators of persistence mentioned earlier. Following ethics
approval, data were collected on students studying the first
year CS1P programming course in Ada at the University of
Glasgow. The UAR was used to capture keystrokes and
mouse events for user sessions, as students carried out
fortnightly programming exercises using the AdaGide
development environment.

Data were transported over the network and stored in the
data repository, an SQL Server database, using the data model
shown in figure 1. There are two main tables in the schema:
Sessions, containing general information on each user session,
and Actions, used to store details of each interface event. In
total, 4.7M low-level user events were recorded with the
Actions table using 2GB. At this time, the investigations that
would use this data had not been fully determined.

The first question to be investigated using the UAR data
aimed to identify factors that impact on students’ persistence
with programming tasks. Working with one of the authors as
consultant, the client determined two reports that he required
to carry out these analyses. A high-level summary report
(figure 5) gave statistics such as total pause time using Ada,
presented by user session. A second, more detailed report
(figure 2) showed on-task and off-task behaviour over the
course of each session.

There was a certain degree of overlap between the reports
and in order to generate these, an intermediate representation
was developed and both reports created from this, as in figure
4. The repository database management system was chosen to
carry out transformations. A number of techniques were
developed and optimised, to calculate, for example, the
duration and context of an action, using self-joins. Tables
were indexed to improve performance, achieving an 80-fold
reduction in execution time.

The client’s purpose in asking for the two reports was to
aid him in searching for patterns of usage that might indicate
persistence with a programming task. By looking first at the
high-level report, the investigator could select particular user
sessions as representative, investigate these further using the

Figure 5. Top level report showing summary statistics (such as pause times in Ada) by user session

more detailed report, and finally the raw data, referring back to
examination results. This client had already used a similar
(phase 2) iterative technique using special purpose audit trails
[5], with data captured by purpose built extensions to source
code.

7. Implications

New technology is making flexible investigations based on
digital data ever more attractive. However, one implication of
supporting these is that data modelling must be done after, and
not before, data collection. Work has not been avoided, but
only postponed. The problem now appears as one of
restructuring the data. The raw data is not unstructured as free
English text would be, but does require transformation from a
form that represents only the circumstances of collection, to
another that is domain-meaningful. Projects addressing this
must expect a major software support effort to cover this: what
we call “phase 1” data preparation. Furthermore the process
of analysis needs to be fast and easy to update (in contrast to
the circumstances of most data modelling hitherto); and to
support partially overlapping analyses for clients using the
same data for different purposes. In the programming world,
these might be met by facilities for incremental change,
version control, change management, rapid prototyping etc.
Support for such approaches might now be much more
important in analysis tools designed to produce data models.

Acknowledgements

The GRUMPS team gratefully acknowledges the funding provided
by the UK’s EPSRC (GR/N381141). We also thank Malcolm
Atkinson, Richard Cooper, Murray Crease, Gregor Kennedy, Chris
Mitchell, and the Level 1 Computing Science students at the
University of Glasgow.

References

[1] L. Golab and M.T. Ozsu, M.T. (2003) “Issues in data stream
management.” SIGMOD Record, 32 (22), June 2003, pp. 5-14.

[2] P. Gray, I. Mcleod, S. Draper, M. Crease, R. Thomas, “A
Distributed Usage Monitoring System”. In Proc CADUI (Computer
Aided Design of User Interfaces). Kluwer, 2004. pp. 121-132.

[3] The GRUMPS Research Project. [Online]. Available:
http://grumps.dcs.gla.ac.uk [16th June 2003].

[4] D. M. Hilbert, and D.F. Redmiles, “Extracting Usability
Information from User Interface Events”, ACM Computing Surveys
(CSUR) archive, 32(4), 2000, pp. 384 - 421.

[5] G. E. Kennedy and T.S. Judd, “Iterative analysis and
interpretation of audit trail data” In Crisp, G. & Thiele D. (eds) Proc

ASCILITE Conference, Adelaide, Australia, 1, December 7-10, 2003,
pp. 273-282,

[6] K. Renaud, P. Gray, “Making sense of low-level usage data to
understand user activities”, TR-2004-159, Department of Computing
Science, University of Glasgow, 2004

[7] R. Thomas, G. Kennedy, S. Draper, R. Mancy, M. Crease, H.
Evans, P. Gray, “Generic usage monitoring of programming
students”. In Crisp, G. & Thiele D. (eds) Proc ASCILITE Conference,
Adelaide, Australia, 1, December 7-10, 2003, pp. 715-719.

